搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一氧化碳纳米管束低压相的第一性原理研究

周红才 黄树来 李桂霞 于桂凤 王娟 步红霞

引用本文:
Citation:

一氧化碳纳米管束低压相的第一性原理研究

周红才, 黄树来, 李桂霞, 于桂凤, 王娟, 步红霞

First-principles prediction of carbon monoxide nanotube bundles in low pressure phase

Zhou Hong-Cai, Huang Shu-Lai, Li Gui-Xia, Yu Gui-Feng, Wang Juan, Bu Hong-Xia
PDF
HTML
导出引用
  • 对低压下一氧化碳(CO)晶体结构的研究已有半个多世纪, 研究其晶体内部结构的方法有很多, 实验人员通过红外设备进行红外分析, 或者通过更先进的激光设备进行拉曼分析, 以求得到精准的CO晶体的内部结构. 通过基于不同原理的计算分析手段, 科学家可以预言或者验证碳原子和氧原子如何排序来形成CO固体结构. 基于密度泛函理论, 本文设计了一种类似于碳纳米管束状结构的CO晶体结构. 通过分析计算, 该CO纳米管束状晶体是宽带隙半导体, 与目前已经研究报道的最稳定的CO分子晶体和链状晶体相比, 具有能量的更稳定性. 截然不同的电子结构性质以及能量上的高度稳定性, 使得该结构不仅丰富了低压下CO晶体结构的多样性, 还为探究低压下CO晶体的内部结构提供了新的思路与方向.
    The crystal structure of carbon monoxide has been studied for more than half a century. The internal structures of low-pressure carbon monoxide crystals have been investigated by means of infrared analysis and Raman analysis, and the internal structure of carbon monoxide has also been studied through computational analysis. Previous studies showed that carbon monoxide can produce different phase transitions at different pressures, and thus forming new polymers with new physical properties such as electrical, optical and mechanical properties. In this paper, from first-principles calculations, we propose six nanotube structures made of carbon monoxide, named Tube-3–Tube-8. The nanotubes are packed into the nanotube bundles, and carbon monoxide nanotube bundle structures that are similar to carbon nanotube bundles are constructed by first-principles calculation. We study the structural, energy and electronic properties of the nanotubes and nanotube bundles. In order to evaluate the relative stability of the predicted nanotubes, we calculate the cohesive energy and phonon spectrum, and we also carry out the molecular dynamics analysis. The results show that there are three nanotubes (Tube-4–Tube-6) that are relatively stable, of which Tube-5 nanotube is the most stable phase. We attribute the stability of Tube-5 to sp3-hybridized C atoms being nearest to the hybridized atoms of diamond. Then we investigate nanotube bundles from the three stable nanotubes, and accordingly name them Bundles-4–Bundles-6. We calculate the enthalpy function under pressure and compare it with the enthalpy function of several known carbon monoxide molecular crystal and chain crystal, which are the most stable structures according to the current studies. More pleasingly, we find that these nanotube bundles are more stable than these carbon monoxide molecular crystal and chain crystal at low pressure. In addition, by calculating the energy bands of Tube-4–Tube-6, we can deduce that these nanotube bundles (Bundles-4– Bundles-6) are all wide band gap semiconductors, which are entirely different from molecular and chain crystals that are metals. We expect that the discovery of nanotube bundle structures will increase the diversity of carbon monoxide crystal under low pressure, and provide a new understanding of exploring the internal structure of carbon monoxide crystal.
      通信作者: 步红霞, buhx666@163.com
    • 基金项目: 国家自然科学基金(批准号: 11604170)、山东省高校科研项目(批准号: J16LJ06)和山东省自然科学基金(批准号: ZR2014AQ018)资助的课题
      Corresponding author: Bu Hong-Xia, buhx666@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11604170), the Scientific Research in Universities of Shandong Province, China (Grant No. J16LJ06), and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2014AQ018)
    [1]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [2]

    Yoo C S, Cynn H, Gygi F, Galli G 1999 Phys. Rev. Lett. 83 5527Google Scholar

    [3]

    Eremets M I, Gavriliu K A G, Trojan I A, Dziven Ko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [4]

    Yoo C S 2013 Phys. Chem. Chem. Phys. 15 7949Google Scholar

    [5]

    Santoro M, Gorelli F A, Bini R, Salamat A, Garbarino G, Levelut C, Cambon O, Haines J 2014 Nat. Commun. 5 3761Google Scholar

    [6]

    Zhou R L, Qu B Y, Dai J, Cheng Z 2014 Phys. Rev. X 4 011030Google Scholar

    [7]

    Evans W J, Lipp M J, Yoo C S, Cynn H 2006 Chem. Mater. 18 10

    [8]

    Schettino V, Roberto B 2003 Phys. Chem. Chem. Phys. 5 1951Google Scholar

    [9]

    Raza Z, Pickard C J, Pinilla C, Saitta A M 2013 Phys. Rev. Lett. 111 235501Google Scholar

    [10]

    Naghavi S S, Crespo Y, Martoná K R, Tosatti1 E 2015 Phys. Rev. B 91 224108Google Scholar

    [11]

    Pic Kard C J, Needs R J 2009 Phys. Rev. Lett. 102 125702Google Scholar

    [12]

    Sun J, Klug D D, Martoná K R, Montoya J A, Lee M S, Scandolo S, Tosatti E 2009 Proc. Natl. Acad. Sci. U.S.A. 106 6077Google Scholar

    [13]

    Boulard E, Pan D, Galli G, Liu Z, Mao W L 2015 Nat. Commun. 6 6311Google Scholar

    [14]

    Lipp M, Evans W J, Garcia-Baonza V, Lorenzana H E 1998 Low Temp. Phys. 111 247Google Scholar

    [15]

    Bernard S, Chiarott G L, Scandolo S, Tosatti E 1998 Phys. Rev. Lett. 81 2092Google Scholar

    [16]

    Sun J, Klug D D, Pic Kard C J, Needs R J 2011 Phys. Rev. Lett. 106 145502Google Scholar

    [17]

    Lipp M J, Evans W J, Baer B J, Yoo C S 2005 Nat. Mater. 4 211Google Scholar

    [18]

    Cromer D T, Schiferl D, Lesar R, Mills R T 1983 Acta Crystallogr C 39 1146Google Scholar

    [19]

    Ma, Y M, Oganov A R, Li Z W, Xie Y, Kota Kos Ki J 2009 Phys. Rev. Lett. 102 065501Google Scholar

    [20]

    Santoro M, Gorelli F A 2006 Chem. Soc. Rev. 35 918Google Scholar

    [21]

    Plašienka D, Martoňák R 2014 Phys. Rev. B 89 134105Google Scholar

    [22]

    Lu C, Miao M, Ma Y 2013 Am. Chem. Soc. 135 14167Google Scholar

    [23]

    Datchi F Mallic K B, Salamat A, Rousse G, Ninet S, Garbarino G, Bouvier P, Mezouar M 2014 Phys. Rev. B 89 144101Google Scholar

    [24]

    Datchi F, Mallic K B, Salamat A, Ninet S 2012 Phys. Rev. Lett. 108 125701Google Scholar

    [25]

    Polian A, Loubeyre P, Boccara N 1989 Simple Molecular System at Very High Density (New York: Plenum Publishing Corporation) pp221−236

    [26]

    Mills R L, Schiferl D, Katz A L, Olinger B W 1984 J. Phys. Colloq. 45 186Google Scholar

    [27]

    Yang N L, Snow A, Haubenstoc K H, Bramwell F B 1978 J. Polymer. Sci. Polymer. Chem. Ed. 16 1909Google Scholar

    [28]

    Ordejón P, Artacho E, Soler J M 1996 Phys. Rev. B 53 10441Google Scholar

    [29]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [31]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [32]

    Perdew J P, Bur Ke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [34]

    Heyd J, Scuseria G E, Ernzerhof M J 2006 Chem. Phys. 124 219906

    [35]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

  • 图 1  (a)每种CO纳米管的相对能量; (b)每种CO纳米管键角相对于直径的函数图像

    Fig. 1.  (a) Relative energy of each CO nanotube; (b) the bond angle as a function of the diameter of each CO nanotube

    图 2  各纳米管z方向晶格扫描能量图(a)和横截面图(b)

    Fig. 2.  Lattice scanning energy diagrams (a) and cross sections (b) of various nanotubes according z direction

    图 3  (a) Tube-4—Tube-6的声子谱; (b)分子动力学模拟图像

    Fig. 3.  (a) Phonon spectra and (b) evolution of energy as a function of time during the molecular dynamics simulations at 300 K of Tube-4− Tube-6

    图 4  Tube-4—Tube-6纳米管堆垛而成的纳米管束结构

    Fig. 4.  Structure diagram of nanotube bundle

    图 5  (a)五种不同一氧化碳晶体的焓变函数; (b) Bundles-5带隙和结构参数随压强的变化

    Fig. 5.  (a) Enthalpy function of five different kinds of carbon monoxide crystals; (b) band gap and structural parameters vary with pressure of Bundles-5

    图 6  Tube-4—Tube-6的能带结构

    Fig. 6.  Band gap of Tube-4−Tube-6

    表 1  CO纳米管的键长dC—CdC—O, 每个CO单元的总能量Etol和形成能Ecoh, 以及纳米管每个原胞中碳原子转移给氧原子的电荷数CCHG—OCHG

    Table 1.  Structural parameters of Tube-3−Tube-7, where dC—C is bond length between carbon atoms, dC—O is bond length between carbon atom and oxygen atom; total energy (Etol) and cohesive energy (Ecoh); electron transfer from carbon atom to oxygen atom (CCHG—OCHG)

    dC—C dC—O Etol/eV·CO–1 Ecoh/eV·CO–1 CCHG—OCHG/e
    Tube-3 1.53 1.40 –14.61 0.16 0.99
    Tube-4 1.58 1.40 –15.01 –0.24 0.99
    Tube-5 1.58 1.41 –15.13 –0.36 0.98
    Tube-6 1.61 1.41 –15.03 –0.25 0.95
    Tube-7 1.64 1.40 –14.84 –0.07 0.96
    Tube-8 1.67 1.40 –14.64 0.13 0.93
    下载: 导出CSV

    表 2  CO纳米管束不同密堆积方式的总能量 (单位: eV/CO)

    Table 2.  Total energy of different dense packing modes of nanometer tube bundles (in eV/CO)

    Bundles-4 Bundles-5 Bundles-6
    Square –15.149 –15.268 –15.159
    Hexagon –15.146 –15.276 –15.161
    下载: 导出CSV
  • [1]

    Ashcroft N W 2004 Phys. Rev. Lett. 92 187002Google Scholar

    [2]

    Yoo C S, Cynn H, Gygi F, Galli G 1999 Phys. Rev. Lett. 83 5527Google Scholar

    [3]

    Eremets M I, Gavriliu K A G, Trojan I A, Dziven Ko D A, Boehler R 2004 Nat. Mater. 3 558Google Scholar

    [4]

    Yoo C S 2013 Phys. Chem. Chem. Phys. 15 7949Google Scholar

    [5]

    Santoro M, Gorelli F A, Bini R, Salamat A, Garbarino G, Levelut C, Cambon O, Haines J 2014 Nat. Commun. 5 3761Google Scholar

    [6]

    Zhou R L, Qu B Y, Dai J, Cheng Z 2014 Phys. Rev. X 4 011030Google Scholar

    [7]

    Evans W J, Lipp M J, Yoo C S, Cynn H 2006 Chem. Mater. 18 10

    [8]

    Schettino V, Roberto B 2003 Phys. Chem. Chem. Phys. 5 1951Google Scholar

    [9]

    Raza Z, Pickard C J, Pinilla C, Saitta A M 2013 Phys. Rev. Lett. 111 235501Google Scholar

    [10]

    Naghavi S S, Crespo Y, Martoná K R, Tosatti1 E 2015 Phys. Rev. B 91 224108Google Scholar

    [11]

    Pic Kard C J, Needs R J 2009 Phys. Rev. Lett. 102 125702Google Scholar

    [12]

    Sun J, Klug D D, Martoná K R, Montoya J A, Lee M S, Scandolo S, Tosatti E 2009 Proc. Natl. Acad. Sci. U.S.A. 106 6077Google Scholar

    [13]

    Boulard E, Pan D, Galli G, Liu Z, Mao W L 2015 Nat. Commun. 6 6311Google Scholar

    [14]

    Lipp M, Evans W J, Garcia-Baonza V, Lorenzana H E 1998 Low Temp. Phys. 111 247Google Scholar

    [15]

    Bernard S, Chiarott G L, Scandolo S, Tosatti E 1998 Phys. Rev. Lett. 81 2092Google Scholar

    [16]

    Sun J, Klug D D, Pic Kard C J, Needs R J 2011 Phys. Rev. Lett. 106 145502Google Scholar

    [17]

    Lipp M J, Evans W J, Baer B J, Yoo C S 2005 Nat. Mater. 4 211Google Scholar

    [18]

    Cromer D T, Schiferl D, Lesar R, Mills R T 1983 Acta Crystallogr C 39 1146Google Scholar

    [19]

    Ma, Y M, Oganov A R, Li Z W, Xie Y, Kota Kos Ki J 2009 Phys. Rev. Lett. 102 065501Google Scholar

    [20]

    Santoro M, Gorelli F A 2006 Chem. Soc. Rev. 35 918Google Scholar

    [21]

    Plašienka D, Martoňák R 2014 Phys. Rev. B 89 134105Google Scholar

    [22]

    Lu C, Miao M, Ma Y 2013 Am. Chem. Soc. 135 14167Google Scholar

    [23]

    Datchi F Mallic K B, Salamat A, Rousse G, Ninet S, Garbarino G, Bouvier P, Mezouar M 2014 Phys. Rev. B 89 144101Google Scholar

    [24]

    Datchi F, Mallic K B, Salamat A, Ninet S 2012 Phys. Rev. Lett. 108 125701Google Scholar

    [25]

    Polian A, Loubeyre P, Boccara N 1989 Simple Molecular System at Very High Density (New York: Plenum Publishing Corporation) pp221−236

    [26]

    Mills R L, Schiferl D, Katz A L, Olinger B W 1984 J. Phys. Colloq. 45 186Google Scholar

    [27]

    Yang N L, Snow A, Haubenstoc K H, Bramwell F B 1978 J. Polymer. Sci. Polymer. Chem. Ed. 16 1909Google Scholar

    [28]

    Ordejón P, Artacho E, Soler J M 1996 Phys. Rev. B 53 10441Google Scholar

    [29]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 864Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [31]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [32]

    Perdew J P, Bur Ke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [33]

    Blöchl P E 1994 Phys. Rev. B 50 17953Google Scholar

    [34]

    Heyd J, Scuseria G E, Ernzerhof M J 2006 Chem. Phys. 124 219906

    [35]

    Heyd J, Scuseria G E, Ernzerhof M 2003 J. Chem. Phys. 118 8207Google Scholar

  • [1] 袁文翎, 姚碧霞, 李喜, 胡顺波, 任伟. 第一性原理计算研究γ'-Co3(V, M) (M = Ti, Ta)相的结构稳定性、力学和热力学性质. 物理学报, 2024, 73(8): 086104. doi: 10.7498/aps.73.20231755
    [2] 刘郅澄, 周杰, 陈凡, 彭彪, 彭文屹, 章爱生, 邓晓华, 罗显芝, 刘日新, 刘德武, 黄雨, 阎军. Si对Inconel 718合金中γ相影响的第一性原理研究. 物理学报, 2023, 72(18): 186301. doi: 10.7498/aps.72.20230583
    [3] 丁怡, 盛雷梅. 扭转单壁碳纳米管的第一性原理研究. 物理学报, 2023, 72(19): 197302. doi: 10.7498/aps.72.20230566
    [4] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究. 物理学报, 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [5] 樊涛, 曾庆丰, 于树印. Hf-N体系的晶体结构预测和性质的第一性原理研究. 物理学报, 2016, 65(11): 118102. doi: 10.7498/aps.65.118102
    [6] 马振宁, 周全, 汪青杰, 王逊, 王磊. Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究. 物理学报, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [7] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [8] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [9] 邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波. β-碳化硅/碳纳米管核壳结构的第一性原理研究. 物理学报, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [10] 刘源, 姚洁, 陈驰, 缪灵, 江建军. 氢修饰石墨烯纳米带压电性质的第一性原理研究. 物理学报, 2013, 62(6): 063601. doi: 10.7498/aps.62.063601
    [11] 范开敏, 杨莉, 孙庆强, 代云雅, 彭述明, 龙兴贵, 周晓松, 祖小涛. 六角相ErAx (A=H, He)体系弹性性质的第一性原理研究. 物理学报, 2013, 62(11): 116201. doi: 10.7498/aps.62.116201
    [12] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [13] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [14] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究. 物理学报, 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [15] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [16] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [17] 朱兴华, 张海波, 杨定宇, 王治国, 祖小涛. C/SiC纳米管异质结电子结构的第一性原理研究. 物理学报, 2010, 59(11): 7961-7965. doi: 10.7498/aps.59.7961
    [18] 杨敏, 王六定, 陈国栋, 安博, 王益军, 刘光清. 碳掺杂闭口硼氮纳米管场发射第一性原理研究. 物理学报, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [19] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  7688
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-13
  • 修回日期:  2019-07-19
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回