搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡脱落热声振荡中相似性及涡声锁频行为

王伟 出口祥啓 何永森 张家忠

引用本文:
Citation:

涡脱落热声振荡中相似性及涡声锁频行为

王伟, 出口祥啓, 何永森, 张家忠

Similarity and vortex-acoustic lock-on behavior in thermoacoustic oscillation involving vortex shedding

Wang Wei, Deguchi Yoshihiro, He Yong-Sen, Zhang Jia-Zhong
PDF
HTML
导出引用
  • 基于Matveev和Culick提出的涡脱落引起的热声不稳定性一维简化模型, 对涡脱落引起的热声振荡中的典型非线性现象进行研究, 着重研究了系统的初值敏感性、关键参数对热声振荡的影响规律及涡声锁频现象. 首先, 采用Galerkin方法将控制方程中压力和速度波动在基函数下展开, 使偏微分方程组转化为一簇常微分方程; 然后, 数值求解得到了不同系统参数下声场的压力和速度波动, 并详细分析了系统在不同初始条件下的热声不稳定性, 同时研究了不同稳态流动速度对系统热声振荡的影响规律, 以及在不同稳态流动速度下热声振荡过程中出现的涡声锁频现象. 结果表明: 该涡脱落热声振荡系统对初值极为敏感, 是典型的非线性系统; 随着稳态流动速度增大, 压力波动的振幅总体有增大趋势, 但在几个速度区间内却重复出现振幅先减小后增大的相似结构; 系统最终以涡撞击频率(fs)的整数(fp/fs)倍做周期振荡, 呈现转数为fp/fs的涡声锁频, 该涡声锁频可以作为周期性燃烧振荡的重要特征.
    In engineering, the combustion chamber with a backward step is very popular, and it is a kind of flame stabilizer. In this type of combustion chamber, there will be shedding vortices at the step due to the instability of the flow field. The shedding vortices will carry reactants to move downstream and burn, resulting in unstable heat release and then pressure and velocity fluctuations of the sound field, thereby, finally, forming a combustion-vortex-acoustic interaction process. If a positive feedback loop is formed between the unstable heat release and the pressure fluctuation of sound field, combustion instability will occur, and it is also referred to as thermoacoustic oscillation due to vortex shedding. Combustion instability frequently occurs in many practical systems or equipment, and its induced significant pressure oscillations have a serious influence on the normal operation of the equipment. Recently, the combustion instability has been extensively studied experimentally, but the theoretical investigation on its nature is still rare. Since combustion instability is a complicated nonlinear phenomenon, it is necessary to study its nature from the viewpoint of nonlinear dynamics. Based on the one-dimensional simplified model of thermoacoustic instability involving vortex shedding proposed by Matveev and Culick, the typical nonlinear phenomenon in thermoacoustic oscillation induced by vortex shedding is studied. The study focuses on the initial value sensitivity of the system, the influence of key parameters on thermoacoustic oscillation, and the phenomenon of vortex-acoustic lock-on. Firstly, the Galerkin method is used to approximate the governing equation, and the partial differential equations are reduced to a set of ordinary differential equations. Then, the first ten modes are selected, and the pressure and velocity fluctuations of sound field under different system parameters are obtained by MATLAB program. Finally, the thermoacoustic instability of the system under different initial disturbances, the influences of different steady flow velocity on the thermoacoustic oscillation of the system, and the phenomenon of vortex-acoustic lock-on in thermoacoustic oscillation are studied in detail. The results show that the system of thermoacoustic oscillation involving vortex shedding is extremely sensitive to initial values, and there are a rich variety of nonlinear phenomena. With steady flow velocity increasing, the amplitude of pressure fluctuation augments generally. However, the similar structures are found in several intervals of steady flow velocity, and the amplitude first decreases and then increases. In particular, it is verified that the system oscillates periodically by integer (fp/fs) multiple of the vortex impinging frequency (fs), that is, the vortex-acoustic frequency locking with the number of revolutions fp/fs, which is found in experiment and can be regarded as an important characteristic of periodic thermoacoustic oscillation.
      通信作者: 张家忠, jzzhang@xjtu.edu.cn
    • 基金项目: 陕西省重点研发计划(批准号: 2017ZDCXL-GY-02-02)、压缩机技术国家重点实验室及压缩机技术安徽省实验室基金(批准号: SKL-YSJ201802)和中央高校建设世界一流大学(学科)和特色发展引导专项资金(批准号: PY3A056)资助的课题
      Corresponding author: Zhang Jia-Zhong, jzzhang@xjtu.edu.cn
    • Funds: Project supported by the Key Research and Development Program of Shaanxi Province, China (Grant No. 2017ZDCXL-GY-02-02), the State Key Laboratory of Compressor and Key Laboratory of Compressor of Anhui Province, China (Grant No. SKL-YSJ201802), and the World-Class Universities (Disciplines) and the Characteristic Development Guidance Funds for the Central Universities, China (Grant No. PY3A056)
    [1]

    Zinn B T, Lieuwen T C 2005 Combustion IInstabilities: Basic Concepts 210 3

    [2]

    Annaswamy A M, Ghoniem A F 2002 IEEE Control Syst. Mag. 22 37Google Scholar

    [3]

    Balasubramanian K, Sujith R I 2008 Phys. Fluids 20 44

    [4]

    Subramanian P, Mariappan S, Sujith R I, Wahi P 2010 Int. J. Spray Combust. 2 325Google Scholar

    [5]

    党南南, 张正元, 张家忠 2018 物理学报 67 134301Google Scholar

    Dang N N, Zhang Z Y, Zhang J Z 2018 Acta Phys. Sin. 67 134301Google Scholar

    [6]

    Rogers D E 1956 Jet Propul. 26 456Google Scholar

    [7]

    Hegde U G, Reuter D, Daniel B R, Zinn B T 1987 Combust. Sci. Technol. 55 125Google Scholar

    [8]

    Poinsot T J, Trouve A C, Veynante D P, Candel S M, Esposito E J 1987 J. Fluid Mech. 177 265Google Scholar

    [9]

    Sterling J D, Zukoski E E 1991 Combust. Sci. Technol. 77 225Google Scholar

    [10]

    Cohen J, Anderson T 1996 34th Aerospace Sciences Meeting and Exhibit Reno, January 15−18, 1996 p819

    [11]

    Speth R, Altay H, Hudgins D, Annaswamy A, Ghoniem A 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7–10, 2008 p1053

    [12]

    Bauwens L, Daily J W 1992 J. Propul. Power 8 264Google Scholar

    [13]

    Najm H N, Ghoniem 1993 Combust. Sci. Technol. 94 259Google Scholar

    [14]

    Menon S, Jou W H 1991 Combust. Sci. Technol. 75 53Google Scholar

    [15]

    Angelberger C, Veynante D, Egolfopoulos F 2000 Flow Turbul. Combust. 65 205Google Scholar

    [16]

    Qin F, He G Q, Li J, Liu P J 2007 43rd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit Cincinnati, OH, July 8–11, 2007 p5748

    [17]

    万少文, 何国强, 石磊 2011 固体火箭技术 34 32Google Scholar

    Wan S W, He G Q, Shi L 2011 Journal of Solid Rocket Technology 34 32Google Scholar

    [18]

    Matveev K I, Culick F E C 2003 Combust. Sci. Technol. 175 1059Google Scholar

    [19]

    Tulsyan B, Balasubramanian K, Sujith R I 2009 Combust. Sci. Technol. 181 457Google Scholar

    [20]

    Matveev K I. 2003 ASME 2003 International Mechanical Engineering Congress and Exposition Washington, DC, November 15−21, 2003 p119

    [21]

    Nair V, Sujith R I 2015 Proc. Combust. Inst. 35 3193Google Scholar

    [22]

    Seshadri A, Nair V, Sujith R I 2016 Combust. Theor. Model. 20 441Google Scholar

    [23]

    Singaravelu B, Mariappan S 2016 J. Fluid Mech. 801 597Google Scholar

    [24]

    Singaravelu B, Mariappan S 2017 Fifteenth Asian Congress of Fluid Mechanics Kuching, November 21–23, 2017 p12

    [25]

    Chakravarthy S R, Sivakumar R, Shreenivasan O J 2007 Sadhana 32 145Google Scholar

    [26]

    Dotson K W, Koshigoe S, Pace K K 1997 J. Propul. Power 13 197Google Scholar

  • 图 1  带后向台阶的燃烧室简化模型

    Fig. 1.  The simplified model of combustor with backward facing step.

    图 2  计算模型验证[19]

    Fig. 2.  Verification of computation model[19].

    图 3  相空间重构后的相图及庞加莱截面

    Fig. 3.  Phase diagram after phase space reconstruction and Poincaré section.

    图 4  不同初始扰动下压力比的初始时间序列

    Fig. 4.  Initial time series of pressure ratios under different initial disturbances.

    图 5  不同${u_0}$下的压力比的最大值和最小值

    Fig. 5.  Maximum and minimum pressure ratios at different ${u_0}$.

    图 6  图5的局部放大图

    Fig. 6.  Partial enlargement of Fig. 5.

    图 7  O1, O2, O3, O4, O5, O6$p'/{p_0}$时间序列 (a) u0 = 5.50; (b) u0 = 6.25; (c) u0 = 7.50; (d) u0 = 9.50; (e) u0 = 12.75; (f) u0 = 19.25

    Fig. 7.  $p'/{p_0}$ time series of O1, O2, O3, O4, O5, O6: (a) u0 = 5.50; (b) u0 = 6.25; (c) u0 = 7.50; (d) u0 = 9.50; (e) u0 = 12.75; (f) u0 = 19.25

    图 8  S1, S2, S3, S4, S5, O7$p'/{p_0}$时间序列

    Fig. 8.  $p'/{p_0}$ time series of S1, S2, S3, S4, S5, O7.

    图 9  涡声锁频

    Fig. 9.  Vortex-acoustic frequency locking.

    图 10  ${f_{\rm{p}}}$${f_{\rm{s}}}$的关系及${f_{\rm{p}}}/{f_{\rm{s}}}$${u_0}$的变化图

    Fig. 10.  The relationship between ${f_{\rm{p}}}$ and ${f_{\rm{s}}}$ and the change of ${f_{\rm{p}}}/{f_{\rm{s}}}$ with ${u_0}$.

    图 11  6个不同频率比下的$u'$-$p'/{p_0}$相图 (a) fs/fp = 0.1430; (b) fs/fp = 0.1669; (c) fs/fp = 0.2003; (d) fs/fp = 0.2500; (e) fs/fp = 0.3330; (f) fs/fp = 0.4999

    Fig. 11.  $u'$-$p'/{p_0}$ phase diagram at six different frequency ratios: (a) fs/fp = 0.1430; (b) fs/fp = 0.1669; (c) fs/fp = 0.2003; (d) fs/fp = 0.2500; (e) fs/fp = 0.3330; (f) fs/fp = 0.4999.

  • [1]

    Zinn B T, Lieuwen T C 2005 Combustion IInstabilities: Basic Concepts 210 3

    [2]

    Annaswamy A M, Ghoniem A F 2002 IEEE Control Syst. Mag. 22 37Google Scholar

    [3]

    Balasubramanian K, Sujith R I 2008 Phys. Fluids 20 44

    [4]

    Subramanian P, Mariappan S, Sujith R I, Wahi P 2010 Int. J. Spray Combust. 2 325Google Scholar

    [5]

    党南南, 张正元, 张家忠 2018 物理学报 67 134301Google Scholar

    Dang N N, Zhang Z Y, Zhang J Z 2018 Acta Phys. Sin. 67 134301Google Scholar

    [6]

    Rogers D E 1956 Jet Propul. 26 456Google Scholar

    [7]

    Hegde U G, Reuter D, Daniel B R, Zinn B T 1987 Combust. Sci. Technol. 55 125Google Scholar

    [8]

    Poinsot T J, Trouve A C, Veynante D P, Candel S M, Esposito E J 1987 J. Fluid Mech. 177 265Google Scholar

    [9]

    Sterling J D, Zukoski E E 1991 Combust. Sci. Technol. 77 225Google Scholar

    [10]

    Cohen J, Anderson T 1996 34th Aerospace Sciences Meeting and Exhibit Reno, January 15−18, 1996 p819

    [11]

    Speth R, Altay H, Hudgins D, Annaswamy A, Ghoniem A 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 7–10, 2008 p1053

    [12]

    Bauwens L, Daily J W 1992 J. Propul. Power 8 264Google Scholar

    [13]

    Najm H N, Ghoniem 1993 Combust. Sci. Technol. 94 259Google Scholar

    [14]

    Menon S, Jou W H 1991 Combust. Sci. Technol. 75 53Google Scholar

    [15]

    Angelberger C, Veynante D, Egolfopoulos F 2000 Flow Turbul. Combust. 65 205Google Scholar

    [16]

    Qin F, He G Q, Li J, Liu P J 2007 43rd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit Cincinnati, OH, July 8–11, 2007 p5748

    [17]

    万少文, 何国强, 石磊 2011 固体火箭技术 34 32Google Scholar

    Wan S W, He G Q, Shi L 2011 Journal of Solid Rocket Technology 34 32Google Scholar

    [18]

    Matveev K I, Culick F E C 2003 Combust. Sci. Technol. 175 1059Google Scholar

    [19]

    Tulsyan B, Balasubramanian K, Sujith R I 2009 Combust. Sci. Technol. 181 457Google Scholar

    [20]

    Matveev K I. 2003 ASME 2003 International Mechanical Engineering Congress and Exposition Washington, DC, November 15−21, 2003 p119

    [21]

    Nair V, Sujith R I 2015 Proc. Combust. Inst. 35 3193Google Scholar

    [22]

    Seshadri A, Nair V, Sujith R I 2016 Combust. Theor. Model. 20 441Google Scholar

    [23]

    Singaravelu B, Mariappan S 2016 J. Fluid Mech. 801 597Google Scholar

    [24]

    Singaravelu B, Mariappan S 2017 Fifteenth Asian Congress of Fluid Mechanics Kuching, November 21–23, 2017 p12

    [25]

    Chakravarthy S R, Sivakumar R, Shreenivasan O J 2007 Sadhana 32 145Google Scholar

    [26]

    Dotson K W, Koshigoe S, Pace K K 1997 J. Propul. Power 13 197Google Scholar

  • [1] 陈浩宇, 徐涛, 刘闯, 张子柯, 詹秀秀. 基于高阶信息的网络相似性比较方法. 物理学报, 2024, 73(3): 038901. doi: 10.7498/aps.73.20231096
    [2] 柴振霞, 刘伟, 杨小亮, 周云龙. 可变周期谐波平衡法求解周期性非定常涡脱落问题. 物理学报, 2019, 68(12): 124701. doi: 10.7498/aps.68.20190126
    [3] 杨剑楠, 刘建国, 郭强. 基于层间相似性的时序网络节点重要性研究. 物理学报, 2018, 67(4): 048901. doi: 10.7498/aps.67.20172255
    [4] 党南南, 张正元, 张家忠. Rijke管热声振荡的稳定性切换行为研究. 物理学报, 2018, 67(13): 134301. doi: 10.7498/aps.67.20180269
    [5] 王光学, 王圣业, 葛明明, 邓小刚. 基于转捩模型及声比拟方法的高精度圆柱分离涡/涡致噪声模拟. 物理学报, 2018, 67(19): 194701. doi: 10.7498/aps.67.20172677
    [6] 沈露予, 陆昌根. 三维边界层内定常横流涡的感受性研究. 物理学报, 2017, 66(1): 014703. doi: 10.7498/aps.66.014703
    [7] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁. 高速模型尾迹流场及其电磁散射特性相似性实验研究. 物理学报, 2017, 66(10): 102401. doi: 10.7498/aps.66.102401
    [8] 成泰民, 张龙燕, 孙腾, 张新欣, 朱林, 李林. 高压下有序晶态合金Fe3Pt的低能声子不稳定性及磁性反常. 物理学报, 2015, 64(14): 146301. doi: 10.7498/aps.64.146301
    [9] 周树兰, 赵显, 江向平, 韩晓东. 立方相Na1/2Bi1/2TiO3和K1/2Bi1/2TiO3的电子结构和结构不稳定性的第一性原理比较研究. 物理学报, 2014, 63(16): 167101. doi: 10.7498/aps.63.167101
    [10] 付洋洋, 罗海云, 邹晓兵, 王强, 王新新. 棒-板电极下缩比气隙辉光放电相似性的仿真研究. 物理学报, 2014, 63(9): 095206. doi: 10.7498/aps.63.095206
    [11] 王启光, 苏海晶, 支蓉, 冯爱霞. 长江中下游汛期降水模式预测误差相似性及其可预报度. 物理学报, 2014, 63(11): 119202. doi: 10.7498/aps.63.119202
    [12] 付洋洋, 罗海云, 邹晓兵, 刘凯, 王新新. 缩比间隙中辉光放电相似性的初步研究. 物理学报, 2013, 62(20): 205209. doi: 10.7498/aps.62.205209
    [13] 郑雨军, 张兆玉, 张西忠. 单分子体系动力学的高阶累积量相似性. 物理学报, 2009, 58(12): 8194-8198. doi: 10.7498/aps.58.8194
    [14] 龚志强, 封国林. 基于非线性分析方法的多种代用资料的相似性研究. 物理学报, 2007, 56(6): 3619-3629. doi: 10.7498/aps.56.3619
    [15] 童永在, 王西安, 余本海, 胡雪惠. 电光效应的自相似性. 物理学报, 2006, 55(12): 6667-6672. doi: 10.7498/aps.55.6667
    [16] 李文飞, 张丰收. 非对称核物质的化学不稳定性与力学不稳定性. 物理学报, 2001, 50(10): 1888-1895. doi: 10.7498/aps.50.1888
    [17] 刘金远, 宫野, 李国炳, 马腾才, 张林. 轴向磁场中线性热势模型电弧的螺旋不稳定性. 物理学报, 1996, 45(4): 608-618. doi: 10.7498/aps.45.608
    [18] 安志刚, P. H. Diamond. 场反向箍缩位形的电阻性互换不稳定性及其对能量约束性能的影响. 物理学报, 1985, 34(3): 314-321. doi: 10.7498/aps.34.314
    [19] 夏蒙棼, 周如玲. 逃逸电子不稳定性. 物理学报, 1980, 29(6): 788-793. doi: 10.7498/aps.29.788
    [20] 章立源. 含杂质的线链晶体中Peierls不稳定性和超导电性. 物理学报, 1979, 28(1): 136-140. doi: 10.7498/aps.28.136
计量
  • 文章访问数:  9032
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-04
  • 修回日期:  2019-09-19
  • 上网日期:  2019-11-26
  • 刊出日期:  2019-12-05

/

返回文章
返回