搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能

王尘 许怡红 李成 林海军 赵铭杰

引用本文:
Citation:

基于两步退火法提升Al/n+Ge欧姆接触及Ge n+/p结二极管性能

王尘, 许怡红, 李成, 林海军, 赵铭杰

Improved performance of Al/n+Ge Ohmic contact andGe n+/p diode by two-step annealing method

Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun, Zhao Ming-Jie
PDF
HTML
导出引用
  • 锗(Ge)中高激活浓度、低扩散深度的n型掺杂是实现高性能Ge n-MOSFET的重要前提条件. 本文采用低温预退火与脉冲激光退火相结合的两步退火法, 结合磷离子注入, 制备Al/n+Ge的欧姆接触以及Ge n+/p结二极管. 通过电流-电压特性测试来研究Al/n+Ge的欧姆接触以及Ge n+/p结二极管的性能, 测试结果表明: 低温预退火可初步修复注入损伤, 并降低激光退火时杂质的扩散深度; 结合离子注入工艺和两步退火工艺, Al/n+Ge欧姆接触的比接触电阻率降至2.61 × 10–6 Ω·cm2, Ge n+/p结二极管在 ± 1 V的整流比提高到8.35 × 106, 欧姆接触及二极管性能均得到了显著提升.
    Silicon based germanium devices are crucial parts of optoelectronic integration as CMOS feature size continuously decreases. Germanium has attracted increasing attention due to its higher electron and hole mobility, larger optical absorption coefficient as well as lower processing temperature than those of silicon. However, the high diffusion coefficient and low solid solubility about n-type dopant and relatively high thermal budget required for high n-type doping in Ge make it difficult to achieve high activation n-type doping and excellent n+/p shallow junction for source/drain in the nano-scaled n-MOSFET (here MOSFET stands for). The high activation concentration and shallow junction n-type doping in Ge are greatly beneficial to the scaled Ge n-MOSFET technology. In this work, the ohmic contact of Al/n+Ge and Ge n+/p junction fabricated by a combination of low temperature pre-annealing process and excimer laser annealing for phosphorus-implanted germanium are demonstrated. Prior to excimer laser annealing, the samplesare annealed at a relatively low temperature, which can heal the implantation damages preliminarily. Through the optimization of pre-annealing temperature and time, the low temperature pre-annealing step can play a critical role in annihilating the implantation damages and significantly suppressing phosphorus diffusion in the laser annealing process, resulting in a very small dopant diffusion length at a high activation level of phosphorus. Through the combination of ion implantation and two-step annealing technology, the specific contact resistivity (ρC) of Al/n+Ge Ohmic contact is measured by CTLM structure. The optimized annealing condition is 400 oC-10 min of low temperature annealing and 150 mJ/cm2 of ELA. Under that annealing condition, the ρC of the sample by two-step annealing is reduced to 2.61 × 10–6 Ω·cm2, which is one order of magnitude lower than that by ELA alone (about 3.44 × 10–4 Ω·cm2). The lower value of ρC for the sample with LTPA can contribute to the higher carrier concentration and better crystalline quality thanthat without LTPA, which is confirmed by SRP and TEM. Moreover, the rectification ratio of Ge n+/p junction diode is improved to 8.35 × 106 at ± 1 V, which is two orders of magnitudes higher than that by ELA alone. And a lower ideality factor of about 1.07 is also obtained than that by ELA alone, which indicates that the implantation damages can be repaired perfectly by two-step annealing method.
      通信作者: 王尘, chenwang@xmut.edu.cn
    • 基金项目: 福建省自然科学基金(批准号: 2018J05115)、厦门理工学院高层次人才项目(批准号: YKJ16012R)、厦门理工学院科研攀登计划项目(批准号: XPDKQ18027)和国家自然科学基金青年科学基金(批准号: 61704142)资助的课题.
      Corresponding author: Wang Chen, chenwang@xmut.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2018J05115), the High Level Talent Project of Xiamen University of Technology, China (Grant No. YKJ16012R), the Scientific Research Climbing Plan of Xiamen University of Technology, China (Grant No. XPDKQ18027), and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61704142).
    [1]

    Chui C O, Ramanathan S, Triplett B, McIntyre P C, Saraswat K C 2002 IEEE Electron Device Lett. 23 473Google Scholar

    [2]

    Park J H, Kuzum D, Jung W S, Saraswat K C 2011 IEEE Electron Device Lett. 32 234Google Scholar

    [3]

    Zhang R, Huang P C, Lin J C, Taoka N, Takenaka M, Takagi S 2013 IEEE Trans. Electron Devices 60 927Google Scholar

    [4]

    Morii K, Iwasaki T, Nakane R, Takenaka M, Takagi S 2010 IEEE Electron Device Lett. 31 1092Google Scholar

    [5]

    Kuzum D, Krishnamohan T, Nainani A 2009 IEEE IEDM Tech. Dig. p1

    [6]

    Martens K, Chui C O, Brammertz G, et al. 2008 IEEE Trans. Electron Devices 55 547Google Scholar

    [7]

    Shang H, Frank M, Gusev E P, Chu J O, Bedell S W, Guarini K W, Ieong M 2006 IBM J. Res. Develop. 50 377Google Scholar

    [8]

    Simoen E, Satta A, D’Amore A, et al. 2006 Mater. Sci. Semicond. Process 9 634Google Scholar

    [9]

    Dimoulas A, Tsipas P, Sotiropoulos A 2006 Appl. Phys. Lett. 89 252110Google Scholar

    [10]

    Kuzum D, Krishnamohan T, Nainani A, Sun Y, Pianetta P A, Wong H, Saraswat K C 2010 IEEE Trans. Electron Devices 58 59

    [11]

    Chui C O, Kulig L, Moran J, Tsai W, Saraswa K 2005 Appl. Phys. Lett. 87 091909Google Scholar

    [12]

    Wundisch C, Posselt M, Schmidt B, Heera V, Schumann T, Mucklich A, Grotzschel R, Skorupa W, Clarysse T, Simoen E, Hortenbach H 2009 Appl. Phys. Lett. 95 252107Google Scholar

    [13]

    Zhang R, Li J, Chen F, Zhao Y 2016 IEEE Trans. Electron. Dev. 63 2665Google Scholar

    [14]

    Yu B, Wang Y, Wang H, Xiang Q, Riccobene C, Talwar S, Lin M 1999 IEDM Tech. Dig. p509

    [15]

    Wang C, Xu Y, Li C, Lin H 2018 Chin. Phys. B 27 018502Google Scholar

    [16]

    Wang C, Li C, Huang S, et al. 2013 Appl. Phys. Exp. 6 106501Google Scholar

    [17]

    Wang C, Li C, Lin G, et al. 2014 IEEE Trans. on Electron Dev. 61 3060Google Scholar

    [18]

    Thareja G, Chopra S, Adamas B, Kim Y, Moffatt S, Saraswat K 2011 IEEE Electron Device Lett. 32 838Google Scholar

    [19]

    Milazzo R, Napolitani E, Impellizzeri G, Fisicaro G, Boninelli S, Cuscuna M, de Salvador D, Mastromatteo M, Italia M, La Magna A 2014 J. Appl. Phys. 115 053501Google Scholar

    [20]

    Tsouroutas P, Tsoukalas D, Florakis A, Zergioti I, Serafetinides A, Cherkashin N, Marty B, Claverie A 2006 Mater. Sci. Semicond. Processing 9 644Google Scholar

    [21]

    Chao Y L, Woo J 2010 IEEE Trans. Electron Dev. 57 665Google Scholar

    [22]

    Koike M, Kamata Y, Ino T, et al. 2008 J. Appl. Phys. 104 023523Google Scholar

    [23]

    Ruan Y, Chen C, Huang S, Huang W, Chen S, Li C, Li J 2013 IEEE Trans. Electron Dev. 60 3741Google Scholar

  • 图 1  Ge n+/p结二极管制备工艺流程图

    Fig. 1.  Process flow used for the fabrication of Ge n+/p junction diodes.

    图 2  150 mJ/cm2激光能量密度不同预退火条件下p-n结二极管的I-V特性曲线

    Fig. 2.  Room temperature I-V characteristics of Ge n+/p junction diode formed by ELA with one pulse at 150 mJ/cm2 with different pre-annealing conditions.

    图 3  Al/n+-Ge接触的比接触电阻率随不同退火条件的变化曲线, 内插图是CTLM结构的俯视图

    Fig. 3.  Change of specific contact resistivity of Al/n+-Ge extracted by CTLM with different annealing conditions. The inset shows the CTLM schematic structure (top view).

    图 4  (a) 不同退火条件下Ge n+/p结二极管的I-V特性曲线; (b) Ge n+/p结二极管的整流比随退火条件变化曲线

    Fig. 4.  (a) Room temperature I-V characteristics of Ge n+/p junction diode; (b) rectification ratio of Ge n+/p junction diodes formed by ELA with or without pre-annealing at 400 ℃-10 min.

    表 1  不同退火条件下Ge n+/p结二极管的整流比和理想因子

    Table 1.  Rectification ratio and ideality factor of Ge n+/p junction diodes under different annealing conditions.

    样品编号退火条件整流比(@ ± 1 V)理想因子
    R1350 ℃-10 min&150 mJ/cm22 × 1051.11
    R2400 ℃-10 min&150 mJ/cm28.35 × 1061.08
    R3400 ℃-30 min&150 mJ/cm21.12 × 102 > 2
    R4450 ℃-10 min&150 mJ/cm213 > 2
    下载: 导出CSV
  • [1]

    Chui C O, Ramanathan S, Triplett B, McIntyre P C, Saraswat K C 2002 IEEE Electron Device Lett. 23 473Google Scholar

    [2]

    Park J H, Kuzum D, Jung W S, Saraswat K C 2011 IEEE Electron Device Lett. 32 234Google Scholar

    [3]

    Zhang R, Huang P C, Lin J C, Taoka N, Takenaka M, Takagi S 2013 IEEE Trans. Electron Devices 60 927Google Scholar

    [4]

    Morii K, Iwasaki T, Nakane R, Takenaka M, Takagi S 2010 IEEE Electron Device Lett. 31 1092Google Scholar

    [5]

    Kuzum D, Krishnamohan T, Nainani A 2009 IEEE IEDM Tech. Dig. p1

    [6]

    Martens K, Chui C O, Brammertz G, et al. 2008 IEEE Trans. Electron Devices 55 547Google Scholar

    [7]

    Shang H, Frank M, Gusev E P, Chu J O, Bedell S W, Guarini K W, Ieong M 2006 IBM J. Res. Develop. 50 377Google Scholar

    [8]

    Simoen E, Satta A, D’Amore A, et al. 2006 Mater. Sci. Semicond. Process 9 634Google Scholar

    [9]

    Dimoulas A, Tsipas P, Sotiropoulos A 2006 Appl. Phys. Lett. 89 252110Google Scholar

    [10]

    Kuzum D, Krishnamohan T, Nainani A, Sun Y, Pianetta P A, Wong H, Saraswat K C 2010 IEEE Trans. Electron Devices 58 59

    [11]

    Chui C O, Kulig L, Moran J, Tsai W, Saraswa K 2005 Appl. Phys. Lett. 87 091909Google Scholar

    [12]

    Wundisch C, Posselt M, Schmidt B, Heera V, Schumann T, Mucklich A, Grotzschel R, Skorupa W, Clarysse T, Simoen E, Hortenbach H 2009 Appl. Phys. Lett. 95 252107Google Scholar

    [13]

    Zhang R, Li J, Chen F, Zhao Y 2016 IEEE Trans. Electron. Dev. 63 2665Google Scholar

    [14]

    Yu B, Wang Y, Wang H, Xiang Q, Riccobene C, Talwar S, Lin M 1999 IEDM Tech. Dig. p509

    [15]

    Wang C, Xu Y, Li C, Lin H 2018 Chin. Phys. B 27 018502Google Scholar

    [16]

    Wang C, Li C, Huang S, et al. 2013 Appl. Phys. Exp. 6 106501Google Scholar

    [17]

    Wang C, Li C, Lin G, et al. 2014 IEEE Trans. on Electron Dev. 61 3060Google Scholar

    [18]

    Thareja G, Chopra S, Adamas B, Kim Y, Moffatt S, Saraswat K 2011 IEEE Electron Device Lett. 32 838Google Scholar

    [19]

    Milazzo R, Napolitani E, Impellizzeri G, Fisicaro G, Boninelli S, Cuscuna M, de Salvador D, Mastromatteo M, Italia M, La Magna A 2014 J. Appl. Phys. 115 053501Google Scholar

    [20]

    Tsouroutas P, Tsoukalas D, Florakis A, Zergioti I, Serafetinides A, Cherkashin N, Marty B, Claverie A 2006 Mater. Sci. Semicond. Processing 9 644Google Scholar

    [21]

    Chao Y L, Woo J 2010 IEEE Trans. Electron Dev. 57 665Google Scholar

    [22]

    Koike M, Kamata Y, Ino T, et al. 2008 J. Appl. Phys. 104 023523Google Scholar

    [23]

    Ruan Y, Chen C, Huang S, Huang W, Chen S, Li C, Li J 2013 IEEE Trans. Electron Dev. 60 3741Google Scholar

  • [1] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [2] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [3] 丁华俊, 薛忠营, 魏星, 张波. 1 nm Al 插入层调节 NiGe/n-Ge 肖特基势垒. 物理学报, 2022, 71(20): 207302. doi: 10.7498/aps.71.20220320
    [4] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [5] 王苏杰, 李树强, 吴小明, 陈芳, 江风益. 热退火处理对AuGeNi/n-AlGaInP欧姆接触性能的影响. 物理学报, 2020, 69(4): 048103. doi: 10.7498/aps.69.20191720
    [6] 何天立, 魏鸿源, 李成明, 李庚伟. n型GaN过渡族难熔金属欧姆电极对比. 物理学报, 2019, 68(20): 206101. doi: 10.7498/aps.68.20190717
    [7] 史文俊, 易迎彦, 黎敏. 锗在吸收边附近的压力-折射率系数. 物理学报, 2016, 65(16): 167801. doi: 10.7498/aps.65.167801
    [8] 吴学科, 黄伟其, 董泰阁, 王刚, 刘世荣, 秦朝介. 热退火、激光束和电子束等作用对纳米硅制备及其局域态发光特性的影响. 物理学报, 2016, 65(10): 104202. doi: 10.7498/aps.65.104202
    [9] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [10] 朱彦旭, 曹伟伟, 徐晨, 邓叶, 邹德恕. GaN HEMT欧姆接触模式对电学特性的影响. 物理学报, 2014, 63(11): 117302. doi: 10.7498/aps.63.117302
    [11] 黄亚平, 云峰, 丁文, 王越, 王宏, 赵宇坤, 张烨, 郭茂峰, 侯洵, 刘硕. Ni/Ag/Ti/Au与p-GaN的欧姆接触性能及光反射率. 物理学报, 2014, 63(12): 127302. doi: 10.7498/aps.63.127302
    [12] 张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新. 60Coγ射线对高铝组分Al0.5Ga0.5N基p-i-n日盲型光探测器理想因子的影响. 物理学报, 2013, 62(7): 076106. doi: 10.7498/aps.62.076106
    [13] 郭德成, 蒋晓东, 黄进, 向霞, 王凤蕊, 刘红婕, 周信达, 祖小涛. 紫外脉冲激光退火发次对KDP晶体抗损伤性能的影响. 物理学报, 2013, 62(14): 147803. doi: 10.7498/aps.62.147803
    [14] 李晓静, 赵德刚, 何晓光, 吴亮亮, 李亮, 杨静, 乐伶聪, 陈平, 刘宗顺, 江德生. 退火温度和退火气氛对Ni/Au与p-GaN之间欧姆接触性能的影响. 物理学报, 2013, 62(20): 206801. doi: 10.7498/aps.62.206801
    [15] 王晓勇, 种明, 赵德刚, 苏艳梅. p-GaN/p-AlxGa1-xN异质结界面处二维空穴气的性质及其对欧姆接触的影响. 物理学报, 2012, 61(21): 217302. doi: 10.7498/aps.61.217302
    [16] 潘书万, 亓东峰, 陈松岩, 李成, 黄巍, 赖虹凯. Si(100)表面Se薄膜生长及其在Ti/Si欧姆接触中的应用. 物理学报, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [17] 封飞飞, 刘军林, 邱冲, 王光绪, 江风益. 硅衬底GaN基LED N极性n型欧姆接触研究. 物理学报, 2010, 59(8): 5706-5709. doi: 10.7498/aps.59.5706
    [18] 丁志博, 王 坤, 陈田祥, 陈 迪, 姚淑德. 氧气氛中p-GaN/Ni/Au电极在相同温度不同合金时间下的欧姆接触形成机制和扩散行为. 物理学报, 2008, 57(4): 2445-2449. doi: 10.7498/aps.57.2445
    [19] 哈力木拉提, 阿 拜, 拜 山, 艾买提. p-n结二极管结区边界附近的交流电特性. 物理学报, 2008, 57(2): 1161-1165. doi: 10.7498/aps.57.1161
    [20] 王印月, 甄聪棉, 龚恒翔, 阎志军, 王亚凡, 刘雪芹, 杨映虎, 何山虎. 传输线模型测量Au/Ti/p型金刚石薄膜的欧姆接触电阻率. 物理学报, 2000, 49(7): 1348-1351. doi: 10.7498/aps.49.1348
计量
  • 文章访问数:  12723
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-08
  • 修回日期:  2019-06-10
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回