搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微光学元件宽带光源照明下无色散边界条件探讨

黄燕燕 张旭琳 杨伟 王笑冰 雷蕾 彭文达 徐平

引用本文:
Citation:

微光学元件宽带光源照明下无色散边界条件探讨

黄燕燕, 张旭琳, 杨伟, 王笑冰, 雷蕾, 彭文达, 徐平

Non-dispersion boundary conditions of micro-optical element illuminated by broadband light source

Huang Yan-Yan, Zhang Xu-Lin, Yang Wei, Wang Xiao-Bing, Lei Lei, Peng Wen-Da, Xu Ping
PDF
HTML
导出引用
  • 基于宽带光源微光学元件(如集成导光板)在衍射色散方面的设计需求, 本文构建了宽带光源微光学元件衍射理论分析模型, 探讨分析了衍射光谱的色度规律特性, 提出并定义了能准确定量衡量衍射光束色散程度的色散量C, 同时明确给出了零色散的边界判据点. 通过对研制的矩形位相光栅进行测试分析, 所得的光谱色度特性规律与理论分析结果相一致, 实验结果验证了本文提出的色散度判据参量C和零色散边界点的正确性. 本文提出的宽带光源色散度判据参量C、零色散边界判据点, 不仅为集成导光板结构参数的设计提供指导, 而且也能为其他宽带微光学元件的设计过程中探讨色散特性时提供指导.
    With the development of the microstructure fabrication process and the integration of micro-optical elements, diffractive micro-optical elements are widely used in broadband light sources, such as the integrated light guide plate (ILGP). And with the structural feature size of the ILGP decreasing from tens of microns to microns and even sub-microns, the diffraction dispersion phenomenon will inevitably become a prominent problem in research and design of non-dispersion elements. Nevertheless, under the broadband light source illumination, the analysis of the dispersion characteristic of diffraction spectrum of the microstructure array has not been reported in detail. Therefore a theoretical model of micro-optical element with a typical one-dimensional rectangular phase grating (RPG) and a widely used white LED source is established in this paper. The dispersion characteristic of the diffraction spectrum is studied, that is, with the increase of period of the RGP or the cone angle of incident beam, the dispersion of diffraction spectrum weakens. Dispersion parameter C and its formula are proposed, which can precisely measure the chromatic dispersion degree of the diffraction spectrum. Furthermore, the boundary criterion point of non-dispersion C = 0.3 is given explicitly. It is explored that no matter whether the cone angle of incident beam or the RPG period increases, the non-dispersion output light can be obtained only by matching the two parameters to make the dispersion parameter C less than 0.3. Then an RPG sample, of which the structural parameters are consistent with the designed ones, is fabricated by using micro-nano processing technology. By changing the cone angle of incident beam, the luminance and the chromaticity coordinates of the diffraction beam are tested. The analyses of the test results of the fabricated RPG sample show that the spectrum dispersion regularity is in accord with the theoretical analysis. The consistency verifies the correctness of dispersion parameter C, its formula and the non-dispersion boundary criterion point. The dispersion parameter C and non-dispersion boundary criterion point presented in this paper provide a guidance for analyzing the dispersion characteristics when the structural parameters of the integrated light guide plate and other broadband micro-optical element are designed.
      通信作者: 徐平, xuping@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61275167)和深圳市基础研究计划(批准号: JCYJ20180305125430954, JCYJ20140418095735591, JCYJ20130329103020637)资助的课题
      Corresponding author: Xu Ping, xuping@szu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 61275167), and Shenzhen Science and Technology Development Funds (Grant Nos. JCYJ20180305125430954, JCYJ20140418095735591, JCYJ20130329103020637)
    [1]

    Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809Google Scholar

    [2]

    Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773Google Scholar

    [3]

    Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar

    [4]

    黄海漩, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 物理学报 64 154212Google Scholar

    Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212Google Scholar

    [5]

    徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 物理学报 66 124201Google Scholar

    Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar

    [6]

    徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺 2018 物理学报 67 024202Google Scholar

    Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 67 024202Google Scholar

    [7]

    Thomschke M, Reineke S, Lüssem B, Leo K 2012 Nano Lett. 12 424Google Scholar

    [8]

    Siitonen S, Laakkonen P, Vahimaa P, Kuittinen M, Tossavainen N 2006 Appl. Opt. 45 2623Google Scholar

    [9]

    Zhao X N, Hu J P, Lin Y, Xu F, Zhu X J, Pu D L, Chen L S, Wang C H 2016 Sci. Rep. 6 28319Google Scholar

    [10]

    Xue C X, Cui Q F 2010 Opt. Lett. 35 986Google Scholar

    [11]

    Tsukamoto H, Nishiyama M 2006 Jpn. J. Appl. Phys. 45 6678Google Scholar

    [12]

    Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159Google Scholar

    [13]

    Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887Google Scholar

    [14]

    Xu P, Yan Z L, Wan L L, Huang H X 2004 Proceedings of SPIE Holography Diffractive Optics and Applications Ⅱ Beijing, China, November 8−11, 2004 p66

    [15]

    Park S R, Kwon O J, Shin D, Song S H, Lee H S, Choi H Y 2007 Opt. Express 15 2888Google Scholar

    [16]

    Yang X P, Yan Y B, Jin G F 2005 Opt. Express 13 8349Google Scholar

    [17]

    Caputo R, Sio L D, Jak M J J, Hornix E J, Boer D K G, Cornelissen H J 2007 Opt. Express 15 10540Google Scholar

    [18]

    Xu M, Urbach H P, Boer D K G 2007 Opt. Express 15 5789Google Scholar

    [19]

    张以谟 2008 应用光学 (北京:电子工业出版社) 第7章

    Zhang Y M 2008 Applied Optics (Beijing: Publishing House of Electronics Industry) Chapter 7 (in Chinese)

    [20]

    吕乃光 2006 傅里叶光学 (北京:机械工业出版社)第70−113页

    Lü N G 2006 Fourier Optics (Beijing: China Machine Press) pp70−113 (in Chinese)

    [21]

    苏显渝, 李继陶 1999 信息光学 (北京:科学出版社) 第44页

    Su X Y, Li J T 1999 Information Optics (Beijing: Science Press) p44 (in Chinese)

  • 图 1  宽带光源微光学元件衍射理论模型图(宽带光源为白光LED, 微光学元件为矩形位相光栅)

    Fig. 1.  Diffraction theoretical model under the broadband light source illumination. The broadband light source is a white LED, and the microstructure array is the RPG.

    图 2  零级、± 1级三衍射级次的相对光强分布 (a)−(e)入射光束锥角θ和光栅周期d分别分别为(7.5°, 4 μm), (7.5°, 8 μm), (7.5°, 40 μm), (14.5°, 4 μm), (102.5°, 4 μm); 图中红色、绿色、蓝色线分别代表三原色的红光、绿光、蓝光; 零级、+1级、–1级分别用粗横线、竖短线、细横线表示

    Fig. 2.  Relative light intensity distributions of zero, positive and negative one order of diffraction beams of three primary colors, where the RPG period d and the cone angle of incident beam θ of (a)−(e) are (7.5°, 4 μm), (7.5°, 8 μm), (7.5°, 40 μm), (14.5°, 4 μm) and (102.5°, 4 μm) respectively. The red, green, blue line represents the red, green, blue light of three primary colors respectively. The zero, positive and negative one order beam is represented by the thick horizontal, vertical short and thin horizontal line respectively.

    图 3  色散量C的相关定参量示意图, 其中红线、黑线分别代表红色光束、零级光束

    Fig. 3.  Relevant parameters of the dispersion parameter C. Where the red, black line respectively represents the red, zero order light beam.

    图 4  色散量C与矩形位相光栅周期d, LED入射光束锥角θ的关系 (a)矩形位相光栅周期d; (b) LED入射光束锥角θ; 其中红圆圈表示零色散的边界点

    Fig. 4.  Influences of grating period d and incident light cone angle θ on the dispersion parameter C. (a), (b) is the calculated relationship curve between C and d, or θ respectively, where the red circles represent the zero-dispersion boundary points.

    图 5  矩形光栅样品的结构测试图 (a)光刻显影后; (b)紫外线压印后

    Fig. 5.  Structural testing diagrams of the RPG sample: (a) After being developed; (b) the structural testing diagrams of the final sample after UV stamping.

    图 6  实验光束观测图 (a)零色散边界点(θ = 34.71°, d = 4 µm); (b) θ = 3.58°, d = 4 µm

    Fig. 6.  Observation diagram of the diffraction beam: (a) At zero-dispersion boundary point (θ = 34.71°, d = 4 µm); (b) θ = 3.58°, d = 4 µm.

    图 7  色散量C的理论值和测试值与入射光束锥角θ关系曲线的对比

    Fig. 7.  Contrast curves of the relationship between the test and theoretical value of C with θ.

    表 1  不同入射光束锥角θ在观察平面中点所对应的衍射光谱的亮度值和色坐标

    Table 1.  Luminance and chromaticity coordinate of the center diffraction spectrum with different θ.

    θ102.68º64.01º45.24º34.71º
    Luminance L (cd/m2)6105.65161.24018.23262.1
    Chromaticity Coordinatex = 0.2978
    y = 0.2828
    x = 0.3024
    y = 0.2798
    x = 0.3074
    y = 0.2779
    x = 0.3025
    y = 0.2770
    下载: 导出CSV
  • [1]

    Xu P, Huang H X, Wang K, Ruan S C, Yang J, Wan L L, Chen X X, Liu J Y 2007 Opt. Express 15 809Google Scholar

    [2]

    Xu P, Hong C Q, Cheng G X, Zhou L, Sun Z L 2015 Opt. Express 23 6773Google Scholar

    [3]

    Huang H X, Ruan S C, Yang T, Xu P 2015 Nano-Micro Lett. 7 177Google Scholar

    [4]

    黄海漩, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕 2015 物理学报 64 154212Google Scholar

    Huang H X, Xu P, Ruan S C, Yang T, Yuan X, Huang Y Y 2015 Acta Phys. Sin. 64 154212Google Scholar

    [5]

    徐平, 袁霞, 杨拓, 黄海漩, 唐少拓, 黄燕燕, 肖钰斐, 彭文达 2017 物理学报 66 124201Google Scholar

    Xu P, Yuan X, Yang T, Huang H X, Tang S T, Huang Y Y, Xiao Y F, Peng W D 2017 Acta Phys. Sin. 66 124201Google Scholar

    [6]

    徐平, 唐少拓, 袁霞, 黄海漩, 杨拓, 罗统政, 喻珺 2018 物理学报 67 024202Google Scholar

    Xu P, Tang S T, Yuan X, Huang H X, Yang T, Luo T Z, Yu J 2018 Acta Phys. Sin. 67 024202Google Scholar

    [7]

    Thomschke M, Reineke S, Lüssem B, Leo K 2012 Nano Lett. 12 424Google Scholar

    [8]

    Siitonen S, Laakkonen P, Vahimaa P, Kuittinen M, Tossavainen N 2006 Appl. Opt. 45 2623Google Scholar

    [9]

    Zhao X N, Hu J P, Lin Y, Xu F, Zhu X J, Pu D L, Chen L S, Wang C H 2016 Sci. Rep. 6 28319Google Scholar

    [10]

    Xue C X, Cui Q F 2010 Opt. Lett. 35 986Google Scholar

    [11]

    Tsukamoto H, Nishiyama M 2006 Jpn. J. Appl. Phys. 45 6678Google Scholar

    [12]

    Xu P, Huang Y Y, Zhang X L, Huang J F, Li B B, Ye E, Duan S F, Su Z J 2013 Opt. Express 21 20159Google Scholar

    [13]

    Xu P, Huang Y Y, Su Z J, Zhang X L, Luo T Z, Peng W D 2015 Opt. Express 23 4887Google Scholar

    [14]

    Xu P, Yan Z L, Wan L L, Huang H X 2004 Proceedings of SPIE Holography Diffractive Optics and Applications Ⅱ Beijing, China, November 8−11, 2004 p66

    [15]

    Park S R, Kwon O J, Shin D, Song S H, Lee H S, Choi H Y 2007 Opt. Express 15 2888Google Scholar

    [16]

    Yang X P, Yan Y B, Jin G F 2005 Opt. Express 13 8349Google Scholar

    [17]

    Caputo R, Sio L D, Jak M J J, Hornix E J, Boer D K G, Cornelissen H J 2007 Opt. Express 15 10540Google Scholar

    [18]

    Xu M, Urbach H P, Boer D K G 2007 Opt. Express 15 5789Google Scholar

    [19]

    张以谟 2008 应用光学 (北京:电子工业出版社) 第7章

    Zhang Y M 2008 Applied Optics (Beijing: Publishing House of Electronics Industry) Chapter 7 (in Chinese)

    [20]

    吕乃光 2006 傅里叶光学 (北京:机械工业出版社)第70−113页

    Lü N G 2006 Fourier Optics (Beijing: China Machine Press) pp70−113 (in Chinese)

    [21]

    苏显渝, 李继陶 1999 信息光学 (北京:科学出版社) 第44页

    Su X Y, Li J T 1999 Information Optics (Beijing: Science Press) p44 (in Chinese)

  • [1] 陈波, 刘进, 李俊韬, 王雪华. 轨道角动量量子光源的集成化研究. 物理学报, 2024, 73(16): 164204. doi: 10.7498/aps.73.20240791
    [2] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [3] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211254
    [4] 田梓聪, 郭遗敏, 胡晨岩, 王慧琴, 路翠翠. 宽带高效聚焦的片上集成纳米透镜. 物理学报, 2020, 69(24): 244201. doi: 10.7498/aps.69.20200948
    [5] 曹渊, 田兴, 程刚, 刘锟, 王贵师, 朱公栋, 高晓明. 基于光纤耦合宽带LED光源的Herriott池 测量NO2的研究. 物理学报, 2019, 68(16): 164201. doi: 10.7498/aps.68.20190243
    [6] 徐平, 杨伟, 张旭琳, 罗统政, 黄燕燕. 集成化导光板下表面微棱镜二维分布设计. 物理学报, 2019, 68(3): 038502. doi: 10.7498/aps.68.20181684
    [7] 张旭琳, 杨伟, 罗统政, 黄燕燕, 雷蕾, 李贵君, 徐平. 集成化导光板下表面微棱镜二维分布公式探究. 物理学报, 2019, 68(21): 218501. doi: 10.7498/aps.68.20190854
    [8] 程丽君, 杨苏辉, 赵长明, 张海洋. 高功率宽带射频调制连续激光源. 物理学报, 2018, 67(3): 034203. doi: 10.7498/aps.67.20172017
    [9] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法. 物理学报, 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [10] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [11] 刘双龙, 陈丹妮, 刘伟, 牛憨笨. 基于全正色散光子晶体光纤的超连续谱光源. 物理学报, 2013, 62(18): 184210. doi: 10.7498/aps.62.184210
    [12] 凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清. 基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2. 物理学报, 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [13] 邓玉强, 孙青, 于靖. 光学元件群延迟的直接测量. 物理学报, 2011, 60(2): 028102. doi: 10.7498/aps.60.028102
    [14] 沈宏君, 田慧平, 纪越峰. 一种新型无色散慢光光子晶体薄板波导. 物理学报, 2010, 59(4): 2820-2826. doi: 10.7498/aps.59.2820
    [15] 刘 丹, 马仁敏, 王菲菲, 张增星, 张振生, 张学进, 王 笑, 白永强, 朱 星, 戴 伦, 章 蓓. 纳米集成光路中的光源、光波导和光增强. 物理学报, 2008, 57(1): 371-381. doi: 10.7498/aps.57.371
    [16] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究. 物理学报, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [17] 梁艳梅, 周大川, 孟凡勇, 王明伟. 一种新型的专用于光学相干层析系统的宽带光纤光源. 物理学报, 2007, 56(6): 3246-3250. doi: 10.7498/aps.56.3246
    [18] 赵 谦, 潘教青, 张 靖, 李宝霞, 周 帆, 王宝军, 王鲁峰, 边 静, 赵玲娟, 王 圩. 用于10Gb/s传输系统的电吸收调制器与分布反馈激光器集成光源. 物理学报, 2006, 55(3): 1259-1263. doi: 10.7498/aps.55.1259
    [19] 朱传贵, 薛鸣球, 刘德森, 高应俊. 光学元件阵列的衍射理论分析. 物理学报, 1993, 42(3): 394-399. doi: 10.7498/aps.42.394
    [20] 陶世荃, 凌德洪. 使用全息透镜作色散和聚焦元件的摄谱仪器. 物理学报, 1984, 33(3): 285-293. doi: 10.7498/aps.33.285
计量
  • 文章访问数:  7410
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-10
  • 修回日期:  2019-08-02
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回