搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚乙烯陷阱特性对真空直流沿面闪络性能的影响

聂永杰 赵现平 李盛涛

引用本文:
Citation:

聚乙烯陷阱特性对真空直流沿面闪络性能的影响

聂永杰, 赵现平, 李盛涛

Influence of trap characteristics on DC surface flashover performance of low density polyethylene in vacuum

Nie Yong-Jie, Zhao Xian-Ping, Li Sheng-Tao
PDF
HTML
导出引用
  • 本文在低密度聚乙烯(LDPE)中添加成核剂酚酞, 研究半结晶聚合物的结晶行为、显微结构、陷阱参数以及真空直流沿面闪络性能之间的关联. 显微红外测试结果表明, 酚酞存在于LDPE基体中. 扫描电镜及差式扫描量热测试结果表明, 酚酞掺杂明显改变了LDPE的结晶行为及显微结构, 增加了结晶度及片晶厚度, 减小了球晶尺寸, 并使球晶分布更加均匀. 热刺激电流结果表明, 酚酞掺杂在低密度聚乙烯中引入了更多的深陷阱, 随酚酞浓度增加, α陷阱深度从0.81 eV增加到0.99 eV, γ陷阱深度从0.19 eV增加到0.65 eV. 分析LDPE结晶行为与陷阱参数之间的关系表明, LDPE的陷阱深度随球晶尺寸减小而增大, 陷阱密度随结晶度增大而减小. 酚酞改性后试样的真空沿面闪络电压整体有所提升, 最高提升了48.42%. 分析陷阱深度及陷阱密度与闪络电压之间的“U”型关系表明, 陷阱深度及陷阱密度在影响闪络性能过程中起着相互协调、配合及转化的作用.
    Surface flashover is the primary limitation to the development of power system and the increase of voltage level. Previous work has proved that the trap can greatly influence flashover performances, but the relationship between trap parameters and surface flashover voltage is not clear. In the paper, we study the effects of crystallization behavior, microstructure, and trap parameters on DC surface flashover performance of semi-crystallinity polymer through adding phenolphthalein which is regarded as nucleating agent in low density polyethylene (LDPE). Micro-IR spectroscopy result proves that phenolphthalein exactly exists in LDPE/phenolphthalein composite. Differential scanning calorimeter (DSC) and scanning electron microscope (SEM) are used to investigate the effect of nucleating agent (phenolphthalein) on crystallinity behavior and microstructure of LDPE, and their results indicate that the phenolphthalein modification greatly changes the crystallization behavior of LDPE. The SEM results show that the spherulite size of LDPE decreases and is distributed more uniformly with the increase of phenolphthalein concentration. The DSC results show that the crystallinity and lamella thickness increase. Thermally stimulated depolarization current (TSDC) is used to characterize the trap parameters of LDPE/phenolphthalein composites. The TSDC results indicate that the shallow trap level (γ peak) increases from 0.19 eV to 0.65 eV and the deep trap (α peak) increases from 0.81 eV to 0.99 eV with the increase of phenolphthalein concentration. Relationship between microstructure and trap parameters shows that the smaller spherulite size indicates the deeper trap level (for LDPE, the trap level increases from 0.81 eV to 0.99 eV when the spherulite size decreases from 23.2 μm to 14.9 μm), and larger crystallinity means smaller trap density (for LDPE, the trap density decreases from 1404 pC to 612 pC when the crystallinity increases from 34.51% to 43.25%). The DC surface flashover performance increases with the increase of phenolphthalein concentration, and reaches a highest value: when the concentration is 1 wt%, the highest value is increased by 48.42%. Finally, it is concluded that the microstructure of semi-crystallinity polymerinfluences the trap parameters, which affects the surface flashover performance through affecting the carrier transport process in the development process of surface flashover. The trap level and trap density play complementary, cooperation and mutual transformation roles in improving the surface flashover performances as indicated by the analysis of the " U-shaped” relationship between trap parameters and flashover voltage.
      通信作者: 聂永杰, nieyongjie@stu.xjtu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号: 51337008)和中国博士后科学基金(批准号: 43 XB3801 XB)资助的课题
      Corresponding author: Nie Yong-Jie, nieyongjie@stu.xjtu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51337008), and the China Postdoctoral Science Foundation (Grant No. 43 XB3801 XB)
    [1]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414Google Scholar

    [2]

    Blaise G, Gressus C L 1991 J. Appl. Phys. 69 6334Google Scholar

    [3]

    Miller H C 2015 IEEE Trans. Electr. Insul. 22 3641Google Scholar

    [4]

    Shao T, Kong F, Lin H F, Ma YY, Xie Q, Zhang C 2018 IEEE Trans. Electr. Insul. 25 1267Google Scholar

    [5]

    Yang X, Zeng L L, Tang X, Song M 2017 IEEE Trans. Electr. Insul. 24 3452Google Scholar

    [6]

    Li C Y, H J, Lin C J, Zhang B Y, Zhang G X, He J L 2017 J. Phys. D: Appl. Phys. 50 065301Google Scholar

    [7]

    Li C Y, H J, Lin C J, He J L 2017 Sci. Rep. 7 03657-1

    [8]

    李盛涛, 黄奇峰, 孙健, 张拓, 李建英 2010 物理学报 59 422Google Scholar

    Li S T, Huang Q F, Sun J, Zhang T, Li J Y 2010 Acta Phys. Sin. 59 422Google Scholar

    [9]

    Yu S H, Li S T, Wang S H, Huang Y, Nazir T M, Phung B T 2018 IEEE Trans. Electr. Insul. 25 1567Google Scholar

    [10]

    董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 067901Google Scholar

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 067901Google Scholar

    [11]

    Shao T, Yang W J, Zhang C, Niu Z, Yan P, Schamiloglu E 2014 Appl. Phys. Lett. 105 071607Google Scholar

    [12]

    Huang Y, Min D M, Li S T, Li Z, Xie D R, Wang X 2017 Appl. Surf. Sci. 406 39Google Scholar

    [13]

    Zhao W, Xu R, Ren C Y, Wang J, Yan P 2018 IEEE Trans. Plasma Sci. 46 3450Google Scholar

    [14]

    Cheng Y H, Wang Z B, Wu K 2012 IEEE Trans. Plasma Sci. 40 68Google Scholar

    [15]

    Li S T, Li Z, Niu H, Fréchette M, Wang W W, Huang Y 2018 IEEE Technol. Soc. Mag. 12 6

    [16]

    Zhao W B, Zhang G J, Yang Y, Yan Z 2007 IEEE Trans. Electr. Insul. 14 170Google Scholar

    [17]

    Jin L, Du B X, Xing Y Q, Jin J X 2016 IEEE Trans. Appl. Supercond. 26 1

    [18]

    Li C R, Ding L J, Lü Z J, Tu Y P 2006 IEEE Trans. Electr. Insul. 13 79Google Scholar

    [19]

    Chen Y, Chen Y H, Wu K, Nelson J K 2009 IEEE Trans. Plasma Sci. 37 195Google Scholar

    [20]

    Li S T, Nie Y J, Wang W W, Yang L Q, Min D M 2016 IEEE Trans. Electr. Insul. 23 3215Google Scholar

    [21]

    Kitis G, Pagonis V, Tzamarias S E 2017 Ra. Meas. 100 27Google Scholar

    [22]

    Mizutani T, Suzuoki Y, Ieda M 1977 J. Appl. Phys. 48 2408Google Scholar

  • 图 1  热刺激电流测试过程

    Fig. 1.  TSDC testing process.

    图 2  LDPE及LDPE-5显微红外 (a) LDPE显微红外; (b) LDPE-5显微红外

    Fig. 2.  Micro-IR spectroscopy of LDPE and LDPE-5 specimens: (a) LDPE; (b) LDPE-5.

    图 3  酚酞改性试样的SEM图片

    Fig. 3.  SEM images of phenolphthalein modified LDPE specimens.

    图 4  酚酞改性试样的DSC曲线

    Fig. 4.  DSC curves of phenolphthalein modified LDPE specimens.

    图 5  酚酞掺杂对LDPE结晶行为的影响

    Fig. 5.  Influence of phenolphthalein modification on crystallization behavior of LDPE.

    图 6  TSDC曲线

    Fig. 6.  TSDC curves of specimens.

    图 7  LDPE球晶尺寸与陷阱深度之间的关系

    Fig. 7.  Relationship between spherulite size and trap level of LDPE.

    图 8  LDPE结晶度与陷阱电荷量(陷阱密度)之间的关系

    Fig. 8.  Relationship between crystallinity and trap density of LDPE.

    图 9  陷阱参数与真空沿面闪络电压之间的关系 (a)陷阱深度、陷阱密度与闪络电压的关系; (b)陷阱对直流闪络电压的影响

    Fig. 9.  Relationship between trap parameters and surface flashover performance: (a) Trap depth, trap density and surface flashover voltage; (b) trap and surface flashover voltage.

    表 1  酚酞掺杂试样的DSC熔融温度、结晶度、片晶厚度、球晶尺寸

    Table 1.  DSC parameters, crystallinity, lamella thickness, spherulite size.

    试样LDPELDPE-0.03LDPE-0.1LDPE-0.4LDPE-1LDPE-5
    Tm/℃112.7112.9112.8113.1112.4112.1
    ΔH/J·g–1111.96117.72115.61124.26113.9299.16
    Xc/%38.9740.9740.2443.2539.6534.51
    L/nm6.176.226.206.266.116.05
    球晶尺寸/μm23.221.618.016.614.914.0
    下载: 导出CSV

    表 2  试样的真空直流沿面闪络电压

    Table 2.  DC surface flashover voltage in vacuum of specimens.

    试样LDPELDPE-0.03LDPE-0.1LDPE-0.4LDPE-1LDPE-5
    直流闪络电压/kV30.1731.3336.7041.6746.5043.60
    下载: 导出CSV

    表 3  酚酞改性LDPE试样的陷阱参数

    Table 3.  Trap parameters of phenolphthalein modified LDPE specimens.

    试样α 陷阱β 陷阱γ 陷阱Q/pC
    深度/eVQα/pC深度/eVQβ/pC深度/eVQγ/pC
    纯LDPE0.819000.503961296
    LDPE-0.030.794080.39492900
    LDPE-0.10.867680.516720.19211461
    LDPE-0.40.921650.413960.2251612
    LDPE-10.993240.554320.28136892
    LDPE-50.683480.6510561404
    下载: 导出CSV
  • [1]

    Anderson R A, Brainard J P 1980 J. Appl. Phys. 51 1414Google Scholar

    [2]

    Blaise G, Gressus C L 1991 J. Appl. Phys. 69 6334Google Scholar

    [3]

    Miller H C 2015 IEEE Trans. Electr. Insul. 22 3641Google Scholar

    [4]

    Shao T, Kong F, Lin H F, Ma YY, Xie Q, Zhang C 2018 IEEE Trans. Electr. Insul. 25 1267Google Scholar

    [5]

    Yang X, Zeng L L, Tang X, Song M 2017 IEEE Trans. Electr. Insul. 24 3452Google Scholar

    [6]

    Li C Y, H J, Lin C J, Zhang B Y, Zhang G X, He J L 2017 J. Phys. D: Appl. Phys. 50 065301Google Scholar

    [7]

    Li C Y, H J, Lin C J, He J L 2017 Sci. Rep. 7 03657-1

    [8]

    李盛涛, 黄奇峰, 孙健, 张拓, 李建英 2010 物理学报 59 422Google Scholar

    Li S T, Huang Q F, Sun J, Zhang T, Li J Y 2010 Acta Phys. Sin. 59 422Google Scholar

    [9]

    Yu S H, Li S T, Wang S H, Huang Y, Nazir T M, Phung B T 2018 IEEE Trans. Electr. Insul. 25 1567Google Scholar

    [10]

    董烨, 董志伟, 周前红, 杨温渊, 周海京 2014 物理学报 63 067901Google Scholar

    Dong Y, Dong Z W, Zhou Q H, Yang W Y, Zhou H J 2014 Acta Phys. Sin. 63 067901Google Scholar

    [11]

    Shao T, Yang W J, Zhang C, Niu Z, Yan P, Schamiloglu E 2014 Appl. Phys. Lett. 105 071607Google Scholar

    [12]

    Huang Y, Min D M, Li S T, Li Z, Xie D R, Wang X 2017 Appl. Surf. Sci. 406 39Google Scholar

    [13]

    Zhao W, Xu R, Ren C Y, Wang J, Yan P 2018 IEEE Trans. Plasma Sci. 46 3450Google Scholar

    [14]

    Cheng Y H, Wang Z B, Wu K 2012 IEEE Trans. Plasma Sci. 40 68Google Scholar

    [15]

    Li S T, Li Z, Niu H, Fréchette M, Wang W W, Huang Y 2018 IEEE Technol. Soc. Mag. 12 6

    [16]

    Zhao W B, Zhang G J, Yang Y, Yan Z 2007 IEEE Trans. Electr. Insul. 14 170Google Scholar

    [17]

    Jin L, Du B X, Xing Y Q, Jin J X 2016 IEEE Trans. Appl. Supercond. 26 1

    [18]

    Li C R, Ding L J, Lü Z J, Tu Y P 2006 IEEE Trans. Electr. Insul. 13 79Google Scholar

    [19]

    Chen Y, Chen Y H, Wu K, Nelson J K 2009 IEEE Trans. Plasma Sci. 37 195Google Scholar

    [20]

    Li S T, Nie Y J, Wang W W, Yang L Q, Min D M 2016 IEEE Trans. Electr. Insul. 23 3215Google Scholar

    [21]

    Kitis G, Pagonis V, Tzamarias S E 2017 Ra. Meas. 100 27Google Scholar

    [22]

    Mizutani T, Suzuoki Y, Ieda M 1977 J. Appl. Phys. 48 2408Google Scholar

  • [1] 李永军, 韩永森, 张文江琪, 郭文敏, 孙云龙, 李忠华. 辅助电场对低密度聚乙烯微观结构演变与直流电气特性的影响. 物理学报, 2024, 73(22): 227702. doi: 10.7498/aps.73.20241113
    [2] 李亚莎, 夏宇, 刘世冲, 瞿聪. 从聚酰亚胺单分子链电荷陷阱特性的改变探讨体材料的沿面放电现象. 物理学报, 2022, 71(5): 052101. doi: 10.7498/aps.71.20211611
    [3] 李亚莎, 夏宇, 刘世冲, 瞿聪. 从聚酰亚胺单分子链电荷陷阱特性的改变探讨体材料的沿面放电现象. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211611
    [4] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [5] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯. 聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性. 物理学报, 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [6] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 沿面闪络流体模型电离参数粒子模拟确定方法. 物理学报, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [7] 董烨, 董志伟, 周前红, 杨温渊, 周海京. 释气对介质沿面闪络击穿影响的粒子模拟. 物理学报, 2014, 63(2): 027901. doi: 10.7498/aps.63.027901
    [8] 段芳莉, 王源. 单个纳米粒子对聚合物结晶行为的影响. 物理学报, 2014, 63(13): 136102. doi: 10.7498/aps.63.136102
    [9] 李盛涛, 李国倡, 闵道敏, 赵妮. 入射电子能量对低密度聚乙烯深层充电特性的影响. 物理学报, 2013, 62(5): 059401. doi: 10.7498/aps.62.059401
    [10] 廖瑞金, 周天春, George Chen, 杨丽君. 聚合物材料空间电荷陷阱模型及参数. 物理学报, 2012, 61(1): 017201. doi: 10.7498/aps.61.017201
    [11] 朱智恩, 张冶文, 安振连, 郑飞虎. 用光刺激放电法研究纳米粉末掺杂低密度聚乙烯中陷阱能级. 物理学报, 2012, 61(6): 067701. doi: 10.7498/aps.61.067701
    [12] 夏俊峰, 张冶文, 郑飞虎, 雷清泉. 基于类耿氏效应的低密度聚乙烯中空间电荷包行为的模拟仿真. 物理学报, 2010, 59(1): 508-514. doi: 10.7498/aps.59.508
    [13] 谢伟, 王银海, 胡义华, 罗莉, 吴浩怡, 邓柳咏. Y2O3: Eu,Dy的制备与红色长余辉发光性能研究. 物理学报, 2010, 59(5): 3344-3349. doi: 10.7498/aps.59.3344
    [14] 李盛涛, 黄奇峰, 孙健, 张拓, 李建英. 聚集态和陷阱对交联聚乙烯真空沿面闪络特性的影响. 物理学报, 2010, 59(1): 422-429. doi: 10.7498/aps.59.422
    [15] 杨 强, 安振连, 郑飞虎, 张冶文. 线性低密度聚乙烯中空间电荷陷阱的能量分布与空间分布的关系. 物理学报, 2008, 57(6): 3834-3839. doi: 10.7498/aps.57.3834
    [16] 彭绍泉, 杜 磊, 庄奕琪, 包军林, 何 亮, 陈伟华. 基于辐照前1/f噪声的金属-氧化物-半导体场效应晶体管辐照退化模型. 物理学报, 2008, 57(8): 5205-5211. doi: 10.7498/aps.57.5205
    [17] 安振连, 杨 强, 郑飞虎, 张冶文. 低密度聚乙烯热压成型过程中的空间电荷. 物理学报, 2007, 56(9): 5502-5507. doi: 10.7498/aps.56.5502
    [18] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [19] 刘红侠, 郑雪峰, 郝跃. 薄栅氧化层中陷阱电荷密度的测量方法. 物理学报, 2002, 51(1): 163-166. doi: 10.7498/aps.51.163
    [20] 刘波, 施朝淑, 周东方, 戚泽明, 胡关钦, 汤洪高. 掺Gd3+,Y3+对PbWO_4低温热释光的影响. 物理学报, 2001, 50(8): 1627-1631. doi: 10.7498/aps.50.1627
计量
  • 文章访问数:  7338
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-17
  • 修回日期:  2019-07-30
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回