搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属开口环谐振器超构分子中二次谐波偏振态的调控

马明宇 吴晗 陈卓

引用本文:
Citation:

金属开口环谐振器超构分子中二次谐波偏振态的调控

马明宇, 吴晗, 陈卓

Polarization state of second harmonic generation in split ring resonator based meta-molecule

Ma Ming-Yu, Wu Han, Chen Zhuo
PDF
HTML
导出引用
  • 采用有限元法研究了由两个共振在基波处的金属开口环谐振器组成的立体“超构分子”中的二次谐波产生特性. 通过改变立体“超构分子”中两个金属开口环谐振器之间的相对取向角度, 使得在基波处共振的模式耦合发生变化, 从而调控了二次谐波中两个正交分量之间的振幅比和相位差, 获得了具有不同偏振态的二次谐波辐射.
    In this paper, we study the second harmonic generation (SHG) from the stero-stacked meta-molecules consisting of two vertically stacked split ring resonators (SRRs) that resonate at the fundamental wavelength. When pumped by the linearly polarized incident wave with the electric field direction along one of the SRRs’ arms, the meta-molecules emit the SHG that can have two non-zero orthogonal electric field components, provided that the top SRR and the bottom SRR are not arranged in mutually parallel or anti-parallel manner. Due to the strong coupling between the two SRRs, the plasmonic properties of the stero-stacked meta-molecules could be tuned by varying the twist angle between the two SRRs. In this process, we demonstrate that the amplitudes of the two orthogonal SHG field components, and the phase difference between these two components can be varied with changing the twist angle between two SRRs. Based on the concept of the light polarization, different polarization states can be achieved by changing the differences in phase and amplitude between the orthogonal field components. Therefore, the twist angle dependent amplitudes of and phase difference between two orthogonal SHG field components can be used to manipulate the polarization states of the emitted SHG. For the stero-stacked meta-molecules with a fixed twist angle of 60°, elliptically, near-circularly andnear-linearly polarized SHG emission can be obtained at different fundamental wavelengths. In addition, for the fundamental wave with a fixed wavelength of 1500 nm, the stero-stacked meta-molecules with different twist angles are demonstrated to be able to emit SHG with elliptical andnear-linear polarization states.
      通信作者: 陈卓, zchen@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674168)资助的课题
      Corresponding author: Chen Zhuo, zchen@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674168)
    [1]

    Wan P B,Wen X M, Sun C Z, Bevita K C, Zhang H, Sun X M, Chen X D 2015 Small 11 5409Google Scholar

    [2]

    Wang T, Guo Y L, Wan P B, Zhang H, Chen X D, Sun X M 2016 Small 12 3748Google Scholar

    [3]

    Ren X H, Li Z J, Huang Z Y, Sang D, Qiao H, Qi X, Li J Q, Zhong J X, Zhang H 2017 Adv. Funct. Mater. 27 1606834Google Scholar

    [4]

    Lu L, Liang Z M, Wu L M, Chen Y X, Song Y F, Dhanabalan S C, Ponraj J S, Dong B Q, Xiang Y J, Xing F, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar

    [5]

    Mu H R, Wang Z T, Yuan J, Xiao S, Chen C Y, Chen Y, Chen Y, Song J C, Wang Y S, Xue Y Z, Zhang H, Bao Q L 2015 ACS Photon. 2 832Google Scholar

    [6]

    殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠 2019 物理学报 68 024203Google Scholar

    Yin Y L, Sun X B, Song M X, Chen W, Chen F N 2019 Acta Phys. Sin. 68 024203Google Scholar

    [7]

    林贤, 金钻明, 李炬赓, 郭飞云, 庄乃锋, 陈建中, 戴晔, 阎晓娜, 马国宏 2018 物理学报 67 237801Google Scholar

    Lin X, Jin Z M, Li J G, Guo F Y, Zhuang N F, Chen J Z, Dai Y, Yan X N, Ma G H 2018 Acta Phys. Sin. 67 237801Google Scholar

    [8]

    Nicholls L H, Rodríguez-Fortuño F J, Nasir M E, Córdova-Castro R M, Olivier N, Wurtz G A, Zayats A V 2017 Nat. Photon. 11 628Google Scholar

    [9]

    Norrman A, Blomstedt K, Setala T, Friberg A T 2017 Phys. Rev. Lett. 119 040401Google Scholar

    [10]

    Laudari A, Mazza A R, Daykin A, Khanra S, Ghosh K, Cummings F, Muller T, Miceli P F, Guha S 2018 Phys. Rev. Appl. 10 014011Google Scholar

    [11]

    Xiong X, Xue Z H, Meng C, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Phys. Rev. B 88 115105Google Scholar

    [12]

    Wu P C, Tsai W Y, Chen W T, Huang Y W, Chen T Y, Chen J W, Liao C Y, Chu C H, Sun G, Tsai D P 2017 Nano Lett. 17 445Google Scholar

    [13]

    Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X 2007 Phys. Rev. B 76 073101Google Scholar

    [14]

    Li Z Y, Kim M H, Wang C, Han Z H, Shrestha S, Overvig A C, Lu M, Stein A, Agarwal A M, Loncar M, Yu N F 2017 Nat. Nanotechnol. 12 675Google Scholar

    [15]

    Gao X, Singh L, Yang W 2017 Sci. Rep. 7 6817Google Scholar

    [16]

    Alam M Z, Schulz S A, Upham J, Leon I D, Boyd R W 2018 Nat. Photon. 12 79Google Scholar

    [17]

    Semmlinger M, Tseng M L, Yang J, Zhang M, Zhang C, Tsai W Y, Tsai D P, Nordlander P, Halas N J 2018 Nano Lett. 18 5738Google Scholar

    [18]

    Woerner M, Somma C, Reimann K, Elsaesser T, Liu P Q, Yang Y M, Reno J L, Brener I 2019 Phys. Rev. Lett. 122 107402Google Scholar

    [19]

    Liu N, Giessen H 2010 Angewandte Chemie International Edition 49 9838Google Scholar

    [20]

    Brettin A, Abolmaali F, Blanchette K F, McGinnis C L, Nesmelov Y E, Limberopoulos N I, Walker D E, Anisimov I, Urbas A M, Poffo L, Maslov A V, Astratov V N 2019 Appl. Phys. Lett. 114 131101Google Scholar

    [21]

    Wen Y Z, Zhou J 2017 Phys. Rev. Lett. 118 167401Google Scholar

    [22]

    Zhou J F, Koschny T, Soukoulis C M 2007 Opt. Express 15 17881Google Scholar

    [23]

    Segal N, Keren-Zur S, Hendler N, Ellenbogen T 2015 Nat. Photon. 9 180Google Scholar

    [24]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [25]

    Liu N, Liu H, Zhu S N, Giessen H 2009 Nat. Photon. 3 157Google Scholar

    [26]

    Ciracì C, Poutrina E, Scalora M, Smith D R 2012 Phys. Rev. B 85 201403Google Scholar

  • 图 1  (a)由两个金属SRR上下堆叠组成的超构分子结构示意图; (b)上下两个SRR相对开口朝向夹角为φ = 90°时超构分子的吸收谱; (c)与吸收谱中两个吸收峰对应的波长wl1和wl2处SRR表面的磁场垂直分量Hz分布图

    Fig. 1.  (a) Schematic diagram of SRR-based meta-molecule; (b) absorption spectrum of the meta-molecule consisting of two SRRs with a twist angle φ = 90°; (c) distributions of magnetic field component Hz on the surface of the SRRs at wavelengths corresponding to two absorption peaks wl1 and wl2.

    图 2  双层相对角度改变时, (a)吸收谱和(b) SHG强度的变化, 黑色划线代表每条线左右峰值的连线

    Fig. 2.  (a) Absorption spectrum and (b) the SHG intensity with the relative angle of the two layers changing. The black dash line represents the line connecting the left and right peaks of each line.

    图 3  双层相对角度为30°—150°时的远场SHG强度 (a)、SHG辐射的yx分量的振幅比Ey/Ex (b)和相位差δ (c)随着波长的变化; 双层相对角度为60°时的远场SHG强度 (d)、SHG辐射的yx分量的振幅比Ey/Ex (e)和相位差δ (f)随着波长的变化; 其中阴影区域表示SHG效率较大的一段波长区域

    Fig. 3.  When the relative angle of the two layers changes from 30° to 150°, (a) SHG intensity, (b) amplitude ratio of SHG in the y and x directions and (c) the phase difference of SHG in the y and x directions as a function of wavelength; when the relative angle of the two layers is 60°, (d) SHG intensity, (e) amplitude ratio of SHG in the y and x directions and (f) the phase difference of SHG in the y and x directions as a function of wavelength. The shaded area indicates a wavelength region where the SHG efficiency is relatively large.

    图 4  双层相对角度为60°、不同波长的基波入射时, 远场SHG偏振态的变化

    Fig. 4.  Polarization of the far-field SHG changes when the relative angle of the two layers is 60°, and the the fundamental wave of different wavelengths is incident.

    图 5  基波波长为1500 nm入射时, 不同相对角度的结构的远场SHG偏振态的变化

    Fig. 5.  When the incidentwavelengthis 1500 nm, the polarization of the far-field SHG changes with the relative angle of the two layers

  • [1]

    Wan P B,Wen X M, Sun C Z, Bevita K C, Zhang H, Sun X M, Chen X D 2015 Small 11 5409Google Scholar

    [2]

    Wang T, Guo Y L, Wan P B, Zhang H, Chen X D, Sun X M 2016 Small 12 3748Google Scholar

    [3]

    Ren X H, Li Z J, Huang Z Y, Sang D, Qiao H, Qi X, Li J Q, Zhong J X, Zhang H 2017 Adv. Funct. Mater. 27 1606834Google Scholar

    [4]

    Lu L, Liang Z M, Wu L M, Chen Y X, Song Y F, Dhanabalan S C, Ponraj J S, Dong B Q, Xiang Y J, Xing F, Fan D Y, Zhang H 2018 Laser Photonics Rev. 12 1700221Google Scholar

    [5]

    Mu H R, Wang Z T, Yuan J, Xiao S, Chen C Y, Chen Y, Chen Y, Song J C, Wang Y S, Xue Y Z, Zhang H, Bao Q L 2015 ACS Photon. 2 832Google Scholar

    [6]

    殷玉龙, 孙晓兵, 宋茂新, 陈卫, 陈斐楠 2019 物理学报 68 024203Google Scholar

    Yin Y L, Sun X B, Song M X, Chen W, Chen F N 2019 Acta Phys. Sin. 68 024203Google Scholar

    [7]

    林贤, 金钻明, 李炬赓, 郭飞云, 庄乃锋, 陈建中, 戴晔, 阎晓娜, 马国宏 2018 物理学报 67 237801Google Scholar

    Lin X, Jin Z M, Li J G, Guo F Y, Zhuang N F, Chen J Z, Dai Y, Yan X N, Ma G H 2018 Acta Phys. Sin. 67 237801Google Scholar

    [8]

    Nicholls L H, Rodríguez-Fortuño F J, Nasir M E, Córdova-Castro R M, Olivier N, Wurtz G A, Zayats A V 2017 Nat. Photon. 11 628Google Scholar

    [9]

    Norrman A, Blomstedt K, Setala T, Friberg A T 2017 Phys. Rev. Lett. 119 040401Google Scholar

    [10]

    Laudari A, Mazza A R, Daykin A, Khanra S, Ghosh K, Cummings F, Muller T, Miceli P F, Guha S 2018 Phys. Rev. Appl. 10 014011Google Scholar

    [11]

    Xiong X, Xue Z H, Meng C, Jiang S C, Hu Y H, Peng R W, Wang M 2013 Phys. Rev. B 88 115105Google Scholar

    [12]

    Wu P C, Tsai W Y, Chen W T, Huang Y W, Chen T Y, Chen J W, Liao C Y, Chu C H, Sun G, Tsai D P 2017 Nano Lett. 17 445Google Scholar

    [13]

    Liu H, Genov D A, Wu D M, Liu Y M, Liu Z W, Sun C, Zhu S N, Zhang X 2007 Phys. Rev. B 76 073101Google Scholar

    [14]

    Li Z Y, Kim M H, Wang C, Han Z H, Shrestha S, Overvig A C, Lu M, Stein A, Agarwal A M, Loncar M, Yu N F 2017 Nat. Nanotechnol. 12 675Google Scholar

    [15]

    Gao X, Singh L, Yang W 2017 Sci. Rep. 7 6817Google Scholar

    [16]

    Alam M Z, Schulz S A, Upham J, Leon I D, Boyd R W 2018 Nat. Photon. 12 79Google Scholar

    [17]

    Semmlinger M, Tseng M L, Yang J, Zhang M, Zhang C, Tsai W Y, Tsai D P, Nordlander P, Halas N J 2018 Nano Lett. 18 5738Google Scholar

    [18]

    Woerner M, Somma C, Reimann K, Elsaesser T, Liu P Q, Yang Y M, Reno J L, Brener I 2019 Phys. Rev. Lett. 122 107402Google Scholar

    [19]

    Liu N, Giessen H 2010 Angewandte Chemie International Edition 49 9838Google Scholar

    [20]

    Brettin A, Abolmaali F, Blanchette K F, McGinnis C L, Nesmelov Y E, Limberopoulos N I, Walker D E, Anisimov I, Urbas A M, Poffo L, Maslov A V, Astratov V N 2019 Appl. Phys. Lett. 114 131101Google Scholar

    [21]

    Wen Y Z, Zhou J 2017 Phys. Rev. Lett. 118 167401Google Scholar

    [22]

    Zhou J F, Koschny T, Soukoulis C M 2007 Opt. Express 15 17881Google Scholar

    [23]

    Segal N, Keren-Zur S, Hendler N, Ellenbogen T 2015 Nat. Photon. 9 180Google Scholar

    [24]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [25]

    Liu N, Liu H, Zhu S N, Giessen H 2009 Nat. Photon. 3 157Google Scholar

    [26]

    Ciracì C, Poutrina E, Scalora M, Smith D R 2012 Phys. Rev. B 85 201403Google Scholar

  • [1] 张晓莉, 王庆伟, 姚文秀, 史少平, 郑立昂, 田龙, 王雅君, 陈力荣, 李卫, 郑耀辉. 热透镜效应对半整块腔型中二次谐波过程的影响. 物理学报, 2022, 71(18): 184203. doi: 10.7498/aps.71.20220575
    [2] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [3] 王明照, 王少杰, 许河秀. 基于剪纸方法的一种可重构线极化转换空间序构超表面. 物理学报, 2021, 70(15): 154101. doi: 10.7498/aps.70.20210188
    [4] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [5] 张萌徕, 覃赵福, 陈卓. 基于开口环阵列结构的表面晶格共振产生及二次谐波增强. 物理学报, 2021, 70(5): 054206. doi: 10.7498/aps.70.20201424
    [6] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [7] 关晓通, 傅文杰, 鲁钝, 杨同斌, 鄢扬, 袁学松. 双共焦波导结构二次谐波太赫兹回旋管谐振腔设计. 物理学报, 2020, 69(6): 068401. doi: 10.7498/aps.69.20191222
    [8] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [9] 张世功, 吴先梅, 张碧星, 安志武. 一维非线性声波传播特性. 物理学报, 2016, 65(10): 104301. doi: 10.7498/aps.65.104301
    [10] 张晓青, 贺号, 胡明列, 颜鑫, 张霞, 任晓敏, 王清月. 多波长飞秒激光激发下GaAs纳米线SHG特性研究. 物理学报, 2013, 62(7): 076102. doi: 10.7498/aps.62.076102
    [11] 周胜, 王选章, 付淑芳, 励强华, 曲秀荣, 梁爽, 张强. Voigt位型下电介质/反铁磁/电介质结构二次谐波生成非倒易性研究. 物理学报, 2012, 61(18): 187501. doi: 10.7498/aps.61.187501
    [12] 李宁, 翁春生. 非标定波长调制吸收光谱气体测量研究. 物理学报, 2011, 60(7): 070701. doi: 10.7498/aps.60.070701
    [13] 戴玉蓉, 丁德胜. 小瓣数贝塞尔声束的二次谐波. 物理学报, 2011, 60(12): 124302. doi: 10.7498/aps.60.124302
    [14] 周城, 高艳侠, 王培吉, 张仲, 李萍. 负折射率材料中二次谐波转换效率的理论分析. 物理学报, 2009, 58(2): 914-918. doi: 10.7498/aps.58.914
    [15] 来国军, 刘濮鲲. W波段二次谐波回旋行波管放大器的模拟与设计. 物理学报, 2007, 56(8): 4515-4522. doi: 10.7498/aps.56.4515
    [16] 陈 亮, 梁昌洪, 党晓杰. 非线性左手材料中的二次谐波. 物理学报, 2007, 56(11): 6398-6402. doi: 10.7498/aps.56.6398
    [17] 薛洪惠, 刘晓宙, 龚秀芬, 章 东. 聚焦超声波在层状生物媒质中的二次谐波声场的理论与实验研究. 物理学报, 2005, 54(11): 5233-5238. doi: 10.7498/aps.54.5233
    [18] 马 晶, 章若冰, 刘 博, 朱 晨, 柴 路, 张伟力, 张志刚, 王清月. 飞秒BBO光参量放大中闲频光二次谐波的产生. 物理学报, 2005, 54(8): 3675-3679. doi: 10.7498/aps.54.3675
    [19] 倪培根, 马博琴, 程丙英, 张道中. 二维LiNbO3非线性光子晶体. 物理学报, 2003, 52(8): 1925-1928. doi: 10.7498/aps.52.1925
    [20] 郑仰东, 李俊庆, 李淳飞. 双振子模型手性分子介质的二次谐波理论. 物理学报, 2003, 52(2): 372-376. doi: 10.7498/aps.52.372
计量
  • 文章访问数:  8412
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-29
  • 修回日期:  2019-07-15
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回