搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

忆容器多谐振荡器及其实验

顾梅园 刘敬彪 王光义 梁燕 李付鹏

引用本文:
Citation:

忆容器多谐振荡器及其实验

顾梅园, 刘敬彪, 王光义, 梁燕, 李付鹏

Memcapacitor-based multivibrator and its experiments

Gu Mei-Yuan, Liu Jing-Biao, Wang Guang-Yi, Liang Yan, Li Fu-Peng
PDF
HTML
导出引用
  • 忆容器是一种具有记忆性的非线性电容, 为研究忆容器的电路特性, 提出了一种压控型忆容器的二次曲线模型, 利用电流反馈型运放等器件构建了能够动态模拟忆容器q-v特性的仿真器. 通过仿真和实验观测到忆容器的滞回曲线, 以及随外加激励频率增加而收缩的特性. 分析了周期性激励信号的参数对忆容值取值范围的影响, 并对忆容器的非易失性和平衡点的稳定性进行了研究. 基于该忆容仿真器设计了一种多谐振荡器, 分析了振荡器的工作原理, 对振荡器的输出电压、忆容器的端电压、忆容器的磁通和电荷, 以及忆容器的滞回曲线进行了测试. 通过实验中观测到的各种振荡波形, 分析了振荡器的频率、占空比以及忆容器的非线性特性随电路参数变化的规律.
    Memcapacitor is a kind of non-linear capacitor with memory capability. In order to study the electrical characteristics of memcapacitor and its application circuit, a quadratic model of voltage-controlled memcapacitor is proposed, and an emulator which can dynamically simulate the qv characteristics of the memcapacitor is designed by using a current feedback operational amplifier, multiplier and other devices. The emulator does not need to be converted by any memristor or meminductor. It can work in floating or grounding state. The constitutive relation of the memcapacitor emulator is deduced, and the circuit parameters of the emulator are designed. Based on the simulations and experimental results, the pinched hysteresis loop and its dependence on frequency are verified. In addition, the range of the memcapacitance under periodic signal excitation is discussed and the influence of periodic excitation signal on the range of memcapacitance is analyzed. Through observing the dynamic route map (DRM) of the memcapacitor, its nonvolatility and the stability of the equilibrium point are also studied. The simulation results show that the memcapacitor can exhibit infinite stable equilibrium points and can be stabilized at any equilibrium state. With respect to pulse excitation signal, the effects of pulse width and amplitude on the switching on or off of the state for the memcapacitor is analyzed, and the corresponding switching method and rule are proposed. This characteristic of memcapacitor makes it have potential applications in non-volatile memory, neural network and other fields. Based on the proposed memcapacitor model, a multivibrator circuit is designed. Then, the working principle of the oscillator is analyzed, and the equation of oscillator is derived. The output voltage of the oscillator, the terminal voltage of the memcapacitor, the flux and the charge of the memcapacitor, and the pinched hysteretic curve of the memcapacitor during oscillation are tested experimentally. Besides, various oscillation waveforms whose frequency and duty cycle are different are observed and further analyzed. The circuit structure of the memcapacitor multivibrator designed in this paper is very simple. It can generate stable rectangular wave signals with controllable frequency and duty cycle, and it can be used in testing signal or driving the device.
      通信作者: 刘敬彪, ab@hdu.edn.cn
    • 基金项目: 国家自然科学基金(批准号: 61771176, 61801154)和浙江省装备电子研究重点实验室(批准号: 2019E10009)资助的课题
      Corresponding author: Liu Jing-Biao, ab@hdu.edn.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771176, 61801154) and Zhejiang Provincial Key Lab of Equipment Electronics, China (Grant No. 2019E10009)
    [1]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717Google Scholar

    [2]

    Wang G Y, Cai B Z, Jin P P, Hu T L 2017 Chin. Phys. B 25 010503

    [3]

    Pershin Y V, Di Ventra M 2012 Proc. IEEE 100 2071Google Scholar

    [4]

    Driscoll T, Quinn J, Klein S, Kim H T, Kim B J 2010 Appl. Phys. Lett. 97 093502Google Scholar

    [5]

    Li Y F, Yang C Y, Yu Y B 2017 Proceedings of the 36th Chinese Control Conference Dalian, China, July 26−28, 2017 p5110

    [6]

    Flak J, Lehtonen E, Laiho M, Rantala A, Prunnila M, Haatainen T 2014 Semicond. Sci. Technol. 29 104012Google Scholar

    [7]

    Noh Y J, Baek Y J, Hu Q, Kang C J, Choi Y J, Lee H H 2015 IEEE Trans. Nanotechnol. 14 798Google Scholar

    [8]

    Yuan F, Wang G Y, Shen Y R, Wang X Y 2016 Nonlinear Dyn. 86 37Google Scholar

    [9]

    Fouda M E, Khatib M A, Radwan A G 2013 25th International Conference on Microelectronics Beirut, Lebanon, December 15−18, 2013 p978

    [10]

    Biolek D, Biolek Z, Biolkova V 2010 Electron. Lett. 46 520Google Scholar

    [11]

    Biolek D, Biolkova V, Kolka Z 2010 IEEE Asia Pacific Conference on Circuits and Systems Kuala, Lumpur, Malaysia, December 6−9, 2010 p800

    [12]

    Yu D S, Liang Y, Chen H 2013 IEEE Trans. Circuits Syst. II, Exp. Briefs 60 207Google Scholar

    [13]

    Yu D S, Liang Y, Herbert H C I 2014 IEEE Trans. Circuits Syst. II, Exp. Briefs 61 758Google Scholar

    [14]

    Yu D S, Zhou Z, Herbert H C I 2016 IEEE Trans. Circuits Syst. II, Exp. Briefs 63 1101Google Scholar

    [15]

    李志军, 向林波, 肖文润 2017 电子与信息学报 39 1626

    Li Z J, Xiang L B, Xiao W R 2017 J. Electron. Inform. Technol. 39 1626

    [16]

    Chua L O 2015 Radioengineering 24 319Google Scholar

    [17]

    Jin P P, Wang G Y, Herbert H C I 2018 IEEE Trans. Circuits Syst. II, Exp. Briefs 65 246Google Scholar

    [18]

    Chua L O 2018 Appl. Phys. A-Mater. 124 563Google Scholar

    [19]

    Yu D S, Herbert H C I 2014 IEEE Trans. Circuits Syst. I, Reg. Papers 61 2888Google Scholar

    [20]

    Pershin Y V, Massimiliano D V 2011 Electron. Lett. 47 243Google Scholar

  • 图 1  忆容器的q-v特性曲线

    Fig. 1.  q-v pinched hysteresis loops of memcapacitor

    图 2  正弦交流电激励下忆容器${C_{\rm{m}}}$${v_{\rm C}}$$\phi $的时域波形(a) ${C_{\rm{m}}}$; (b) ${v_C}$; (c) $\phi $

    Fig. 2.  Time domain waveforms of Cm, vC and flux under periodic excitation signal: (a) ${C_{\rm{m}}}$; (b) ${v_C}$; (c) $\phi $.

    图 3  忆容器的动态路径图(${\rm{d}}\phi /{\rm{d}}t \text- \phi $) (a)动态路径图; (b)忆容器电路和Vs波形

    Fig. 3.  Dynamic path map of memcapacitor (${\rm{d}}\phi /{\rm{d}}t \text- \phi $): (a)Dynamic path map ; (b) Memcapacitor circuit and Vs waveform.

    图 4  压控型忆容器仿真器

    Fig. 4.  A voltage-controlled memcapacitor emulator

    图 5  忆容器仿真器的$q \text- v$曲线(横坐标和纵坐标分别对应于${v_{AB}}$${v_w}$) (a)仿真电路的测试结果图, 纵坐标显示范围[–10, 10] V, 横坐标显示范围[–5, 5] V; (b)硬件实验电路的测试结果, 横坐标和纵坐标显示分别为1 V/格和2 V/格

    Fig. 5.  q-v pinched hysteresis loops of the memcapacitor simulator: the abscissa and ordinate correspond to ${v_{AB}}$ and ${v_w}$, respectively: (a) Results of circuit simulation.The display range of ordinates is [–10, 10] V, and the display range of abscissa is [–5, 5] V; (b) result of hardware experiment circuit; the abscissa and ordinates are shown as 1 V/lattice and 2 V/lattice, respectively.

    图 6  基于忆容器的多谐振荡器

    Fig. 6.  Multivibrator based on memcapacitor.

    图 7  ${R_{10}}{C_{\rm{m}}}$回路中忆容器的磁通、电压和${v_R}$的时域波形 (a) $\phi $; (b) vC; (c) vO; (d) vR

    Fig. 7.  In R10Cm circuit, the time-domain waveforms of flux and voltage of the memcapacitor and voltage vR: (a) $\phi $; (b) vC; (c) vO; (d) vR.

    图 8  忆容器多谐振荡器仿真电路波形(${v_{\rm{O}}}$${v_w}$${v_C}$纵坐标的显示范围均为$[-5.0, 5.0]\;{\rm{V}}$, ${v_{{\rm{U}}3}}$纵坐标的显示范围是$[ - 2.0, 2.0]\;{\rm{V}}$)

    Fig. 8.  Simulation waveforms of memcapacitor multivibrator: The display range of vertical coordinates ${v_{\rm{O}}}$${v_w}$ and ${v_C}$ are all $[ - 5.0, 5.0]\;{\rm{V}}$, but the display range of vertical coordinates of ${v_{{\rm{U}}3}}$ is $[ - 2.0, 2.0]\;{\rm{V}}$.

    图 9  硬件电路实测振荡波形(${v_{\rm{o}}}$${v_C}$${v_w}$幅值均为2 V/格, ${v_{{\rm{U}}3}}$为500 mV/格, 时间轴均为100 ms/格)

    Fig. 9.  Measurement of oscillating waveforms in hardware circuit: (The vertical axes of ${v_{\rm{o}}}$, ${v_C}$ and ${v_w}$ are both 2 V/lattice, the vertical axes of ${v_{{\rm{U}}3}}$ is 500 mV/lattice, The horizontal axes of all voltages are 100 ms/lattice).

    图 10  ${R_{12}}/{R_{11}}$作为参变量时, 振荡器性能参数随电路参数变化的曲线 (a) T; (b) f; (c) D

    Fig. 10.  Curve of Oscillator Performance Parameters with Circuit parameter changes (${R_{12}}/{R_{11}}$ as a parameter variable): (a) T; (b) f; (c) D.

    图 11  ${R_{10}}$作为参变量时, 振荡器性能参数随电路参数变化的曲线 (a) T; (b) f; (c) D

    Fig. 11.  Curve of oscillator performance parameters with circuit parameter changes (${R_{10}}$ as a parameter variable): (a) T; (b) f; (c) D.

    图 12  ${C_2}$作为参变量时, 振荡器性能参数随电路参数变化的曲线 (a) T; (b) f; (c) D

    Fig. 12.  Curve of Oscillator Performance Parameters with Circuit parameter changes (${C_2}$ as a parameter variable): (a) T; (b) f; (c) D.

    图 13  忆容器振荡器硬件电路实验振荡波形(图(a)和(b)中${v_{\rm{O}}}$${v_C}$${v_w}$的纵轴均为2 V/格) (a) ${R_{12}}/{R_{11}} = 5$, 其中${v_{{\rm{U}}3}}$纵轴为100 mV/格, 时间轴为50 ms/格; (b) ${R_{12}}/{R_{11}} = 2.427$, 其中${v_{{\rm{U}}3}}$纵轴为5 V/格, 时间轴为100 ms/格

    Fig. 13.  Experimental oscillation waveforms of memcapacitor multivibrator: (a) ${R_{12}}/{R_{11}} = 5$; (b) ${R_{12}}/{R_{11}} = 2.427$. The vertical axes of ${v_{\rm{O}}}$${v_C}$ and ${v_w}$ in Fig(a) and Fig (b) are both 2 V/lattice. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig(a) are 100 mV/lattice and 50 ms/lattice, respectively. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig(b) are 5 V/lattice and 100 ms/lattice, respectively.

    图 14  忆容振荡器硬件电路实验振荡波形(图中${v_{\rm{O}}}$${v_C}$${v_w}$纵轴均为2 V/格, 图(a)中${v_{{\rm{U}}3}}$纵轴为500 mV/格, 时间轴为50 ms/格, 图(b)中${v_{{\rm{U}}3}}$纵轴为5 V/格, 时间轴为100 ms/格) (a) ${R_{10}} = 202\;{\rm{k}}\Omega$; (b) ${R_{10}} = 324\;{\rm{k}}\Omega$

    Fig. 14.  Experimental oscillation waveforms of memcapacitor multivibrator: (a) ${R_{10}} = 202\;{\rm{k}}\Omega$; (b) ${R_{10}} = 324\;{\rm{k}}\Omega$. The vertical axis of ${v_{\rm{O}}}$${v_C}$ and ${v_w}$ in Fig. (a) and Fig. (b) are both 2 V/lattice. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig. (a) are 500 mV/lattice and 50 ms/lattice, respectively. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig. (b) are 5 V/lattice and 100 ms/lattice, respectively.

    图 15  忆容振荡器硬件电路实验振荡波形(图中${v_{\rm{O}}}$${v_C}$${v_w}$纵轴均为2 V/格, 图(a)中${v_{{\rm{U3}}}}$纵轴为500 mV/格, 时间轴为50 ms/格, 图(b)中${v_{{\rm{U3}}}}$纵轴为2 V/格, 时间轴为100 ms/格) (a) C2 = 146 nF; (b) C2 = 256 nF

    Fig. 15.  Experimental oscillation waveforms of memcapacitor multivibrator: (a) C2 = 146 nF; (b) C2 = 256 nF. The vertical axes of ${v_{\rm{O}}}$${v_C}$ and ${v_w}$ in Fig. (a) and Fig. (b) are both 2 V/lattice. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig. (a) are 500 mV/lattice and 50 ms/lattice, respectively. The vertical and horizontal axes of ${v_{{\rm{U}}3}}$ in Fig. (b) are 2 V/lattice and 100 ms/lattice, respectively.

    图 16  ${R_{10}}$为不同值时振荡电路中忆容器的滞回曲线(横坐标和纵坐标分别对应于${v_{AB}}$${v_w}$) (a) ${R_{10}} = 202\;{\rm{k}}\Omega$; (b) ${R_{10}} = 324\;{\rm{k}}\Omega$

    Fig. 16.  The pinched hysteresis loops of memcapacitor with different values of R10 in oscillating circuit: (a) ${R_{10}} = 202\;{\rm{k}}\Omega$; (b) ${R_{10}} = 324\;{\rm{k}}\Omega$. The horizontal and vertical axes correspond to ${v_{AB}}$ and ${v_w}$, respectively.

  • [1]

    Di Ventra M, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717Google Scholar

    [2]

    Wang G Y, Cai B Z, Jin P P, Hu T L 2017 Chin. Phys. B 25 010503

    [3]

    Pershin Y V, Di Ventra M 2012 Proc. IEEE 100 2071Google Scholar

    [4]

    Driscoll T, Quinn J, Klein S, Kim H T, Kim B J 2010 Appl. Phys. Lett. 97 093502Google Scholar

    [5]

    Li Y F, Yang C Y, Yu Y B 2017 Proceedings of the 36th Chinese Control Conference Dalian, China, July 26−28, 2017 p5110

    [6]

    Flak J, Lehtonen E, Laiho M, Rantala A, Prunnila M, Haatainen T 2014 Semicond. Sci. Technol. 29 104012Google Scholar

    [7]

    Noh Y J, Baek Y J, Hu Q, Kang C J, Choi Y J, Lee H H 2015 IEEE Trans. Nanotechnol. 14 798Google Scholar

    [8]

    Yuan F, Wang G Y, Shen Y R, Wang X Y 2016 Nonlinear Dyn. 86 37Google Scholar

    [9]

    Fouda M E, Khatib M A, Radwan A G 2013 25th International Conference on Microelectronics Beirut, Lebanon, December 15−18, 2013 p978

    [10]

    Biolek D, Biolek Z, Biolkova V 2010 Electron. Lett. 46 520Google Scholar

    [11]

    Biolek D, Biolkova V, Kolka Z 2010 IEEE Asia Pacific Conference on Circuits and Systems Kuala, Lumpur, Malaysia, December 6−9, 2010 p800

    [12]

    Yu D S, Liang Y, Chen H 2013 IEEE Trans. Circuits Syst. II, Exp. Briefs 60 207Google Scholar

    [13]

    Yu D S, Liang Y, Herbert H C I 2014 IEEE Trans. Circuits Syst. II, Exp. Briefs 61 758Google Scholar

    [14]

    Yu D S, Zhou Z, Herbert H C I 2016 IEEE Trans. Circuits Syst. II, Exp. Briefs 63 1101Google Scholar

    [15]

    李志军, 向林波, 肖文润 2017 电子与信息学报 39 1626

    Li Z J, Xiang L B, Xiao W R 2017 J. Electron. Inform. Technol. 39 1626

    [16]

    Chua L O 2015 Radioengineering 24 319Google Scholar

    [17]

    Jin P P, Wang G Y, Herbert H C I 2018 IEEE Trans. Circuits Syst. II, Exp. Briefs 65 246Google Scholar

    [18]

    Chua L O 2018 Appl. Phys. A-Mater. 124 563Google Scholar

    [19]

    Yu D S, Herbert H C I 2014 IEEE Trans. Circuits Syst. I, Reg. Papers 61 2888Google Scholar

    [20]

    Pershin Y V, Massimiliano D V 2011 Electron. Lett. 47 243Google Scholar

  • [1] 苟立丹. 二维耦合谐振子的非对易能谱. 物理学报, 2021, 70(20): 200301. doi: 10.7498/aps.70.20210092
    [2] 任宽, 张珂嘉, 秦溪子, 任焕鑫, 朱守辉, 杨峰, 孙柏, 赵勇, 张勇. 基于忆容器件的神经形态计算研究进展. 物理学报, 2021, 70(7): 078701. doi: 10.7498/aps.70.20201632
    [3] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析. 物理学报, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [4] 韩秀峰, 万蔡华. 一种数据非易失性、多功能和可编程的自旋逻辑研究进展. 物理学报, 2018, 67(12): 127201. doi: 10.7498/aps.67.20180906
    [5] 王晓媛, 俞军, 王光义. 忆阻器、忆容器和忆感器的Simulink建模及其特性分析. 物理学报, 2018, 67(9): 098501. doi: 10.7498/aps.67.20172674
    [6] 许碧荣, 王光义. 忆感器文氏电桥振荡器. 物理学报, 2017, 66(2): 020502. doi: 10.7498/aps.66.020502
    [7] 黄港膑, 王菊, 王文睿, 贾石, 于晋龙. 一种基于串联谐振腔的高性能光电振荡器. 物理学报, 2016, 65(4): 044204. doi: 10.7498/aps.65.044204
    [8] 米尔阿里木江, 艾力, 买买提热夏提, 买买提, 亚森江, 吾甫尔. 非对易相空间中谐振子体系热力学性质的探讨. 物理学报, 2015, 64(14): 140201. doi: 10.7498/aps.64.140201
    [9] 李红霞, 江阳, 白光富, 单媛媛, 梁建惠, 马闯, 贾振蓉, 訾月姣. 有源环形谐振腔辅助滤波的单模光电振荡器. 物理学报, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [10] 袁方, 王光义, 靳培培. 一种忆感器模型及其振荡器的动力学特性研究. 物理学报, 2015, 64(21): 210504. doi: 10.7498/aps.64.210504
    [11] 黄丽萍, 洪斌斌, 刘畅, 唐昌建. 220GHz三次谐波光子带隙谐振腔回旋管振荡器的研究. 物理学报, 2014, 63(11): 118401. doi: 10.7498/aps.63.118401
    [12] 俞清, 包伯成, 胡丰伟, 徐权, 陈墨, 王将. 基于一阶广义忆阻器的文氏桥混沌振荡器研究. 物理学报, 2014, 63(24): 240505. doi: 10.7498/aps.63.240505
    [13] 柴玉华, 郭玉秀, 卞伟, 李雯, 杨涛, 仪明东, 范曲立, 解令海, 黄维. 柔性有机非易失性场效应晶体管存储器的研究进展. 物理学报, 2014, 63(2): 027302. doi: 10.7498/aps.63.027302
    [14] 罗尧天, 唐昌建. 光子带隙谐振腔回旋管振荡器的自洽非线性理论. 物理学报, 2011, 60(1): 014104. doi: 10.7498/aps.60.014104
    [15] 张秀兰, 刘恒, 余海军, 张文海. 非对易空间的三模谐振子能谱. 物理学报, 2011, 60(4): 040303. doi: 10.7498/aps.60.040303
    [16] 包伯成, 刘中, 许建平. 忆阻混沌振荡器的动力学分析. 物理学报, 2010, 59(6): 3785-3793. doi: 10.7498/aps.59.3785
    [17] 吴 波, 蔡双双, 沈剑威, 沈永行. 基于镁掺杂的周期性畴反转铌酸锂的宽调谐光参量振荡器. 物理学报, 2007, 56(5): 2684-2688. doi: 10.7498/aps.56.2684
    [18] 张显斌, 施 卫. 用短谐振腔结构优化THz电磁波参量振荡器的输出特性. 物理学报, 2006, 55(10): 5237-5241. doi: 10.7498/aps.55.5237
    [19] 冯秉铨, 许鹏飞. 强力振荡器之相角补偿. 物理学报, 1950, 7(6): 59-71. doi: 10.7498/aps.7.59-2
    [20] 冯秉铨. 强力振荡器之板极效率. 物理学报, 1949, 7(4): 249-257. doi: 10.7498/aps.7.43
计量
  • 文章访问数:  9790
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-31
  • 修回日期:  2019-08-29
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回