搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光冷却KCl阴离子的理论研究

万明杰 罗华锋 袁娣 李松

引用本文:
Citation:

激光冷却KCl阴离子的理论研究

万明杰, 罗华锋, 袁娣, 李松

Theoretical study of laser cooling of potassium chloride anion

Wan Ming-Jie, Luo Hua-Feng, Yuan Di, Li Song
PDF
HTML
导出引用
  • 本文采用多组态相互作用方法计算了KCl阴离子前两个离解极限K(2Sg) + Cl(1Sg)和K(2Pu) + Cl(1Sg)所对应的3个电子态(X2Σ+, A2Π和B2Σ+)的电子结构. 在计算中考虑了Davidson修正, 核-价电子关联效应及自旋轨道耦合效应. 预测了KCl阴离子的光谱常数和跃迁性质. 计算得到(2)1/2(ν′)↔(1)1/2(ν′′)和(1)3/2(ν′)↔(1)1/2(ν′′) 跃迁具有高对角分布的弗兰克-康登因子, 分别为0.8816和0.8808; 并且(2)1/2和(1)3/2激发态的自发辐射寿命分别为45.7和45.5 ns. 分别利用(2)1/2(ν′)↔(1)1/2(ν′′)和(1)3/2(ν′)↔(1)1/2(ν′′)跃迁构建了准闭合的能级系统, 冷却KCl阴离子所需的主激光波长分别为1065.77和1064.24 nm. 同时预测了激光冷却KCl阴离子能达到的多普勒温度和反冲温度. 计算结果为进一步激光冷却KCl阴离子的实验提供了理论参数.
    The potential energy curves and transition dipole moments (TDMs) for three Λ-S states (X2Σ+, A2Π, and B2Σ+) of potassium chloride anion (KCl) are investigated by using multi-reference configuration interaction (MRCI) method. The def2-AQZVPP-JKFI of K atom and AV5Z-DK all-electron basis set of Cl atom are used in all calculations. The Davidson correction, core-valence (CV) correction, and spin-orbit coupling effect (SOC) are also considered. In the complete active self-consistent field (CASSCF) calculations, eight molecular orbitals are selected as active orbitals, which includ K 4s4p and Cl 3s3p shells; K 3p shell is closed orbital, and the remaining shells (K 1s2s3s and Cl 1s2s2p) are frozen orbitals. In the MRCI+Q calculations, K 3p shell is used for the CV correction. There are 15 electrons in the correlation energy calculations. Then, their spectroscopic parameters, Einstein coefficients, Franck-Condon factors, and radiative lifetimes are obtained by solving the radial Schrödinger equation. The spectroscopic properties and transition properties for the Ω states are predicted. Highly diagonally distributed Franck-Condon factor f00 values for the (2)1/2↔(1)1/2 and (1)3/2↔(1)1/2 transition are 0.8816 and 0.8808, respectively. And the short radiative lifetimes for the (2)1/2 and (1)3/2 excited states are also obtained, i.e. τ[(2)1/2] = 45.7 ns and τ[(1)3/2] = 45.5 ns, which can ensure laser cooling of KCl anion rapidly. The results indicate that the (2)1/2↔(1)1/2 and (1)3/2↔(1)1/2 quasicycling transitions are suitable to the building of laser cooling projects. For driving the (2)1/2↔(1)1/2 transition, a main pump laser (λ00) and two repumping lasers (λ10 and λ21) are required. Their wavelengths are λ00 = 1065.77 nm, λ10 = 1090.13 nm and λ21 = 1087.76 nm. For driving the (1)3/2↔(1)1/2 transition, the wavelengths are λ00 = 1064.24 nm, λ10 = 1088.54 nm, and λ21 = 1086.17 nm. The cooling wavelengths of KCl- anion for two transitions are both deep in the infrared range. Finally, the Doppler temperature and recoil temperature for two transitions are also calculated, respectively. The Doppler temperatures for (2)1/2↔(1)1/2 and (1)3/2(1)1/2 transitions are 83.57 μK and 83.93 μK, and the recoil temperatures for two transitions are 226 nK and 227 nK, respectively. for two transitions are 226 nK and 227 nK, respectively.
      通信作者: 万明杰, wanmingjie1983@sina.com
    • 基金项目: 国家自然科学基金理论物理专项(批准号: 11647075)和计算物理四川省高等学校重点实验室开放课题基金(批准号: JSWL2018KFZ03)资助的课题.
      Corresponding author: Wan Ming-Jie, wanmingjie1983@sina.com
    • Funds: Project supported by the Special Foundation for Theoretical Physics Research Program of China (Grant No. 11647075) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University, China (Grant No. JSWL2018KFZ03).
    [1]

    van Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A, Meijer G 2004 Eur. Phys. J. D 31 337Google Scholar

    [2]

    Micheli A, Brennen G K, Zoller P 2006 Nat. Phys. 2 341Google Scholar

    [3]

    Willitsch S, Bell M T, Gingell A D, Procter S R, Softley T P 2008 Phys. Rev. Lett. 100 043203Google Scholar

    [4]

    Shuman E S, Barry J F, de Mille D 2010 Nature 467 820Google Scholar

    [5]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [6]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [7]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar

    [8]

    张云光, 张华, 窦戈, 徐建刚 2017 物理学报 66 233101Google Scholar

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101Google Scholar

    [9]

    Cui J, Xu J G, Qi J X, Dou G, Zhang Y G 2018 Chin. Phys. B 27 103101Google Scholar

    [10]

    Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001Google Scholar

    [11]

    Wan M, Huang D, Yu Y, Zhang Y 2017 Phys. Chem. Chem. Phys. 19 27360Google Scholar

    [12]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103Google Scholar

    [13]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 182 130Google Scholar

    [14]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 185 365Google Scholar

    [15]

    Huber K P, Herzberg G 1979 Constants of Diatomic Molecules (Vol. IV): Molecular Spectra and Molecular Structure (New York: Van Nostrand Reinhold) p358

    [16]

    Ram R S, Dulick M, Guo B, Zhang K Q, Bernath P F 1997 J. Mol. Spectrosc. 183 360Google Scholar

    [17]

    Seth M, Pernpointner M, Bowmaker G A, Schwerdtfeger P 1999 Mol. Phys. 96 1767

    [18]

    Wan M J, Shao J X, Huang D H, Jin C G, Yu Y, Wang F H 2015 Phys. Chem. Chem. Phys. 17 26731Google Scholar

    [19]

    Wan M J, Shao J X, Gao Y F, Huang D H, Yang J S, Cao Q L, Jin C G, Wang F H 2015 J. Chem. Phys. 143 024302Google Scholar

    [20]

    Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302Google Scholar

    [21]

    Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309Google Scholar

    [22]

    Yuan X, Yin S, Shen Y, Liu Y, Lian Y, Xu H F, Yan B 2018 J. Chem. Phys. 149 094306Google Scholar

    [23]

    Werner H J, Knowles P J, Lindh R, et al. 2010 MOLPRO, version 2010.1, A Package of ab initio Programs, http://www.molpro.net

    [24]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [25]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [26]

    Xiao K L, Yang C L, Wang M S, Ma X G, Liu W W 2013 J. Chem. Phys. 139 074305Google Scholar

    [27]

    Weigend F 2008 J. Comput. Chem. 29 167Google Scholar

    [28]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358Google Scholar

    [29]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [30]

    Le Roy R J Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Research Report CP-663. http://leroy.uwaterloo.ca/programs

    [31]

    Hotop H, Lineberger 1985 J. Phys. Chem. Ref. Data 14 731Google Scholar

    [32]

    Berzinsh U, Gustafsson M, Hanstorp D, Klinkmueller A E, Ljungblad U, Maartensson-Pendrill A M 1995 Phys. Rev. A 51 231Google Scholar

    [33]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) Natl. Stand Ref. Data Ser. Natl. Bur. Stand. No. 35 (Washington, DC: U.S. GPO) p228

    [34]

    Kobayashi J, Aikawa K, Oasa K, Inouye S 2014 Phys. Rev. A 89 021401Google Scholar

    [35]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707Google Scholar

  • 图 1  KCl-阴离子的势能曲线 (a) Λ-S态; (b) Ω态

    Fig. 1.  Potential energy curves of KCl anion: (a) Λ-S states; (b) Ω states.

    图 2  KCl-阴离子的偶极矩

    Fig. 2.  Dipole moments (DMs) of KCl- anion.

    图 3  KCl阴离子的跃迁偶极矩

    Fig. 3.  Transition dipole moments (TDMs) of KCl anion

    图 4  激光冷却KCl阴离子的方案 (a) (2)1/2↔(1)1/2准闭合循环跃迁系统; (b) (1)3/2↔(1)1/2准闭合循环跃迁系统

    Fig. 4.  Proposed laser cooling scheme of KCl anion: (a) Using (2)1/2↔(1)1/2 transition; (b) using (1)3/2↔(1)1/2 transition.

    表 1  KCl阴离子Ω电子态的离解极限

    Table 1.  The dissociation relationship for the Ω states of KCl anion.

    原子态Ω态ΔE/cm–1
    计算值实验值[33]
    K(2S1/2) + Cl(1S0)(1)1/200
    K(2P1/2) + Cl(1S0)(2)1/212997.9412985.17
    K(2P3/2) + Cl(1S0)(3)1/2, (1)3/213046.2313042.89
    下载: 导出CSV

    表 2  KCl阴离子的Ω态的光谱常数

    Table 2.  Spectroscopic parameters for the Ω states of KCl anion.

    Ω态对应的Λ-S态Reωe/cm–1Be/cm–1De/eVTe/cm–1
    (1)1/2X2Σ+2.8290212.340.11431.34830
    (2)1/2A2Π2.7839229.640.11801.79769375.30
    (1)3/2A2Π2.7836229.650.11801.80189388.68
    (3)1/2B2Σ+2.7550235.480.12051.386512746.21
    下载: 导出CSV

    表 3  (2)1/2↔(1)1/2和(1)3/2↔(1)1/2跃迁的FCFs, Aν′ν′′τ

    Table 3.  FCFs, spontaneous emission rates Aν′ν′′ and spontaneous radiative lifetime τ for the (2)1/2↔(1)1/2 and (1)3/2↔(1)1/2 transitions.

    跃迁ν′′0123
    (2)1/2↔(1)1/2Aν′ν′′/s–11.9384(7)a2.3044(6)1.7867(5)1.1906(4)
    ν′ = 0fν′ν′′0.88160.10900.00880.0006
    τ/ns45.7
    Aν′ν′′/s–12.5793(6)1.4757(7)4.0633(6)5.0295(5)
    ν′ = 1fν′ν′′0.11280.66870.19140.0246
    τ/ns45.5
    Aν′ν′′/s–11.3368(5)4.7122(6)1.0816(7)5.3057(6)
    ν′ = 2fν′ν′′0.00560.20520.48830.2490
    τ/ns45.4
    (1)3/2↔(1)1/2Aν′ν′′/s–11.9451(7)2.3276(6)1.8184(5)1.2242(4)
    ν′ = 0fν′ν′′0.88080.10960.00890.0006
    τ/ns45.5
    Aν′ν′′/s–12.6063(6)1.4777(7)5.1089(5)4.7631(4)
    ν′ = 1fν′ν′′0.11340.66680.19240.0249
    τ/ns45.4
    Aν′ν′′/s–11.3578(5)4.7578(6)1.0803(7)5.3483(6)
    ν′ = 2fν′ν′′0.00570.20630.48570.2499
    τ/ns45.2
    注: a1.9384(7)表示1.9384 × 107.
    下载: 导出CSV

    表 4  (3)1/2↔(1)1/2, (3)1/2↔(2)1/2和(3)1/2↔(1)3/2跃迁的FCF, 总辐射速率A0和辐射寿命

    Table 4.  FCFs, total emission rates A0 and τ for the (3)1/2↔(1)1/2, (3)1/2↔(2)1/2 and (3)1/2↔(1)3/2 transitions.

    跃迁f00A0/s–1τ0/s
    (3)1/2↔(1)1/20.71222.6535(7)3.77(–8)
    (3)1/2↔(2)1/20.94842.3716(5)4.22(–6)
    (3)1/2↔(1)3/20.94902.3435(5)4.27(–6)
    注: a1.9384(7)表示1.9384 × 107.
    下载: 导出CSV
  • [1]

    van Veldhoven J, Küpper J, Bethlem H L, Sartakov B, van Roij A J A, Meijer G 2004 Eur. Phys. J. D 31 337Google Scholar

    [2]

    Micheli A, Brennen G K, Zoller P 2006 Nat. Phys. 2 341Google Scholar

    [3]

    Willitsch S, Bell M T, Gingell A D, Procter S R, Softley T P 2008 Phys. Rev. Lett. 100 043203Google Scholar

    [4]

    Shuman E S, Barry J F, de Mille D 2010 Nature 467 820Google Scholar

    [5]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [6]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [7]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar

    [8]

    张云光, 张华, 窦戈, 徐建刚 2017 物理学报 66 233101Google Scholar

    Zhang Y G, Zhang H, Dou G, Xu J G 2017 Acta Phys. Sin. 66 233101Google Scholar

    [9]

    Cui J, Xu J G, Qi J X, Dou G, Zhang Y G 2018 Chin. Phys. B 27 103101Google Scholar

    [10]

    Yzombard P, Hamamda M, Gerber S, Doser M, Comparat D 2015 Phys. Rev. Lett. 114 213001Google Scholar

    [11]

    Wan M, Huang D, Yu Y, Zhang Y 2017 Phys. Chem. Chem. Phys. 19 27360Google Scholar

    [12]

    万明杰, 李松, 金成国, 罗华锋 2019 物理学报 68 063103Google Scholar

    Wan M J, Li S, Jin C G, Luo H F 2019 Acta Phys. Sin. 68 063103Google Scholar

    [13]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 182 130Google Scholar

    [14]

    Zhang Q, Yang C, Wang M, Ma X, Liu W 2017 Spectrochim. Acta, Part A 185 365Google Scholar

    [15]

    Huber K P, Herzberg G 1979 Constants of Diatomic Molecules (Vol. IV): Molecular Spectra and Molecular Structure (New York: Van Nostrand Reinhold) p358

    [16]

    Ram R S, Dulick M, Guo B, Zhang K Q, Bernath P F 1997 J. Mol. Spectrosc. 183 360Google Scholar

    [17]

    Seth M, Pernpointner M, Bowmaker G A, Schwerdtfeger P 1999 Mol. Phys. 96 1767

    [18]

    Wan M J, Shao J X, Huang D H, Jin C G, Yu Y, Wang F H 2015 Phys. Chem. Chem. Phys. 17 26731Google Scholar

    [19]

    Wan M J, Shao J X, Gao Y F, Huang D H, Yang J S, Cao Q L, Jin C G, Wang F H 2015 J. Chem. Phys. 143 024302Google Scholar

    [20]

    Fu M K, Ma H T, Cao J W, Bian W S 2016 J. Chem. Phys. 144 184302Google Scholar

    [21]

    Wan M J, Yuan D, Jin C G, Wang F H, Yang Y J, Yu Y, Shao J X 2016 J. Chem. Phys. 145 024309Google Scholar

    [22]

    Yuan X, Yin S, Shen Y, Liu Y, Lian Y, Xu H F, Yan B 2018 J. Chem. Phys. 149 094306Google Scholar

    [23]

    Werner H J, Knowles P J, Lindh R, et al. 2010 MOLPRO, version 2010.1, A Package of ab initio Programs, http://www.molpro.net

    [24]

    Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053Google Scholar

    [25]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [26]

    Xiao K L, Yang C L, Wang M S, Ma X G, Liu W W 2013 J. Chem. Phys. 139 074305Google Scholar

    [27]

    Weigend F 2008 J. Comput. Chem. 29 167Google Scholar

    [28]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358Google Scholar

    [29]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [30]

    Le Roy R J Level 8.0: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Research Report CP-663. http://leroy.uwaterloo.ca/programs

    [31]

    Hotop H, Lineberger 1985 J. Phys. Chem. Ref. Data 14 731Google Scholar

    [32]

    Berzinsh U, Gustafsson M, Hanstorp D, Klinkmueller A E, Ljungblad U, Maartensson-Pendrill A M 1995 Phys. Rev. A 51 231Google Scholar

    [33]

    Moore C E 1971 Atomic Energy Levels (Vol. 1) Natl. Stand Ref. Data Ser. Natl. Bur. Stand. No. 35 (Washington, DC: U.S. GPO) p228

    [34]

    Kobayashi J, Aikawa K, Oasa K, Inouye S 2014 Phys. Rev. A 89 021401Google Scholar

    [35]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707Google Scholar

  • [1] 冯卓, 索兵兵, 韩慧仙, 李安阳. CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析. 物理学报, 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [2] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS电子基态及激发态势能曲线和振动能级的理论研究. 物理学报, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [3] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl阴离子的光谱性质和跃迁性质. 物理学报, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [4] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰. AsH+离子的电子结构和跃迁性质. 物理学报, 2022, 71(21): 213101. doi: 10.7498/aps.71.20221104
    [5] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰. AsH+离子的电子结构和跃迁性质. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221104
    [6] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS 电子基态及激发态的势能曲线和振动能级的理论研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211441
    [7] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211688
    [8] 尹俊豪, 杨涛, 印建平. 基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究. 物理学报, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [9] 万明杰, 柳福提, 黄多辉. 考虑自旋-轨道耦合效应下SeH阴离子的光谱和跃迁性质. 物理学报, 2021, 70(3): 033101. doi: 10.7498/aps.70.20201413
    [10] 滑亚文, 刘以良, 万明杰. SeH+离子低激发态的电子结构和跃迁性质的理论研究. 物理学报, 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [11] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术. 物理学报, 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [12] 万明杰, 李松, 金成国, 罗华锋. 激光冷却SH阴离子的理论研究. 物理学报, 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [13] 罗华锋, 万明杰, 黄多辉. BH+离子基态及激发态的势能曲线和跃迁性质的研究. 物理学报, 2018, 67(4): 043101. doi: 10.7498/aps.67.20172409
    [14] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究. 物理学报, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [15] 张云光, 张华, 窦戈, 徐建刚. 激光冷却OH分子的理论研究. 物理学报, 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [16] 刘华兵, 袁丽, 李秋梅, 谌晓洪, 杜泉, 金蓉, 陈雪连, 王玲. 6Li32S双原子分子的光谱和辐射跃迁理论研究. 物理学报, 2016, 65(3): 033101. doi: 10.7498/aps.65.033101
    [17] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱. 物理学报, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [18] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真. 物理学报, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [19] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用. 物理学报, 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [20] 谢 旻, 凌 琳, 杨国建. 非简并Λ型三能级原子的速度选择相干布居俘获. 物理学报, 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
计量
  • 文章访问数:  11082
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-04
  • 修回日期:  2019-06-13
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回