搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电离层回波谱展宽机理分析及频谱锐化方法

罗欢 肖卉

引用本文:
Citation:

电离层回波谱展宽机理分析及频谱锐化方法

罗欢, 肖卉

Analysis of broadening mechanism of ionospheric echo spectrum and spectrum sharpening method

Luo Huan, Xiao Hui
PDF
HTML
导出引用
  • 高频天波探测设备在执行早期预警和海态遥感等任务时必须依靠电离层作为传播媒质, 而电离层具有时变、不稳定的特性, 会改变经过它传播的高频电磁波的特征, 导致回波频谱展宽, 严重影响了对目标的探测和海态参数的反演. 从色散效应、相位污染和多模传播等方面详细分析了回波谱展宽的原因和机理, 利用多层准抛物线电离层模型讨论了避免多模传播的选频措施. 针对在实际中较难解决的相位污染问题, 提出了一种不用估计回波瞬时频率的污染校正方法. 该方法利用了信号子空间与信号导频矢量张成空间的一致性原理, 能够较准确地估计出相位污染项, 实测数据处理表明新方法能够使展宽的回波谱得到有效锐化.
    High-frequency sky wave detection equipment must rely on the ionosphere as the propagation medium in the early warning and sea state remote sensing tasks. The ionosphere is time-varying and unstable, which will change the characteristics of the high-frequency electromagnetic wave propagating through it, resulting in the broadening of the echo spectrum, thus seriously affecting the detection of targets and the inversion of sea state parameters. The reason and mechanism of the echo spectrum expansion are analyzed in detail from the dispersion effect, phase contamination and multimode propagation. The bandwidth of the dispersion effect is different from that of the high frequency detection equipment. When the bandwidth of the sky wave equipment is 3–30 MHz, the bandwidths of the dispersion effect are 41.6–57.4 kHz and 0.17–10.8 MHz. The multi-quasi-parabolic ionospheric model is used to discuss the frequency selection measures to avoid multimode propagation. The modulation process of ionospheric contamination to echo is studied theoretically. It is shown that the non-linear phase contamination will cause the energy of echo to diffuse in frequency domain and to be unable to accumulate. To solve the problem of phase contamination which is difficult to solve in practice, a contamination correction method without estimating the instantaneous frequency of the echo is proposed. In the method the consistency principle of signal subspace and signal frequency vector expansion space is used, and therefore the phase contamination term can be well estimated. Based on the real data, the contamination correction results from the proposed method, phase gradient autofocus method, maximum entropy spectral analysis method and time-frequency processing method are given. The results show that the new method is a better method and can effectively sharpen the broadened echo spectrum.
      通信作者: 罗欢, luohuan5566@sina.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 51309232)
      Corresponding author: Luo Huan, luohuan5566@sina.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51309232)
    [1]

    Frazer G J 2017 IEEE Aerosp. Electron. Syst. Mag. 32 52Google Scholar

    [2]

    罗欢, 肖卉 2018 物理学报 67 079401Google Scholar

    Luo H, Xiao H 2018 Acta Phys. Sin. 67 079401Google Scholar

    [3]

    毛媛, 郭立新, 丁慧芬, 刘伟 2012 物理学报 61 044201Google Scholar

    Mao Y, Guo L X, Ding H F, Liu W 2012 Acta Phys. Sin. 61 044201Google Scholar

    [4]

    Forbes J M, Palo S E, Zhang X 2000 J. Atmosph. Solar Terr. Phys. 62 685Google Scholar

    [5]

    郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林 2017 物理学报 66 119401Google Scholar

    Hao S J, Zhang W C, Zhang Y B, Yang J T, Ma G L 2017 Acta Phys. Sin. 66 119401Google Scholar

    [6]

    邢孟道, 保铮 2002 电波科学学报 17 129Google Scholar

    Xing M D, Bao Z 2002 Chin. J. Radio Sci. 17 129Google Scholar

    [7]

    Anderson S J, Abramovich Y I 1998 Radio Sci. 33 1055Google Scholar

    [8]

    Lu K, Wang J, Liu X Z 2003 Proceedings of ICASSP Hongkong, China, April 6−10, 2003 p405

    [9]

    Li Y J, Wei Y S, Zhu Y P, Wang Z Q, Xu R Q 2015 IET Signal Process. 9 562Google Scholar

    [10]

    Luo H, Xiao H 2019 J. Chin. Inst. Eng. 42 200Google Scholar

    [11]

    罗欢, 陈建文, 鲍拯 2013 电子与信息学报 35 2829

    Luo H, Chen J W, Bao Z 2013 J. Electron. Inform. Technol. 35 2829

    [12]

    Bilitza D, Brown S A, Wang M Y 2012 J. Atmosph. Solar -Terr. Phys. 86 99Google Scholar

    [13]

    Gordiyenko G I, Yakovets A F 2017 Adv. Space Res. 60 461Google Scholar

    [14]

    Dyson P L, Bennett J A 1988 J. Atmosph. Solar Terr. Phys. 50 251Google Scholar

    [15]

    Park I, Yeh K C 1990 Radio Sci. 25 1167Google Scholar

    [16]

    周芳 2014 博士学位论文 (西安: 西安电子科技大学)

    Zhou F 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [17]

    周文瑜, 焦培南 2008 超视距雷达技术 (北京: 电子工业出版社) 第120—122页

    Zhou W Y, Jiao P N 2008 Over-the-Horizon Radar Technology (Beijing: Publishing House of Electronics Industry) pp120−122 (in Chinese)

    [18]

    Skolnik M I 1990 Radar Handbook (New York: McGraw-Hill Book Company) pp18−19

    [19]

    郭文玲, 蔚娜, 李雪, 李吉宁, 鲁转侠 2014 中国电子科学研究院学报 9 629Google Scholar

    Guo W L, Wei N, Li X, Li J N, Lu Z X 2014 J. CAEIT 9 629Google Scholar

    [20]

    李辉, 车海琴, 吴健, 吴军, 徐彬 2011 电波科学学报 26 311

    Li H, Che H Q, Wu J, Wu J, Xu B 2011 Chin. J. Radio Sci. 26 311

    [21]

    柳文, 焦培南, 王世凯, 王俊江 2008 电波科学学报 25 41Google Scholar

    Liu W, Jiao P N, Wang S K, Wang J J 2008 Chin. J. Radio Sci. 25 41Google Scholar

    [22]

    Li M, He Q, Li K, He Z S 2014 IEICE Electron. Express 11 1

    [23]

    姚天任, 孙洪 1999 现代数字信号处理(武汉: 华中理工大学出版社) 第156, 157页

    Yao T R, Sun H 1999 Modern Digital Signal Processing (Wuhan: Huazhong University of Technology Press) pp156, 157 (in Chinese)

    [24]

    徐青 2011 博士学位论文 (西安: 西安电子科技大学)

    Xu Q 2011 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

  • 图 1  色散系数与探测频率的关系

    Fig. 1.  Relationship between dispersion coefficient and detection frequency.

    图 2  不同时刻的电离层电子浓度曲线

    Fig. 2.  Ionospheric electron concentration curves at different times.

    图 3  线性和非线性相位污染的回波谱比较

    Fig. 3.  Comparison of echo spectra contaminated by the linear and nonlinear phases.

    图 4  多模传播的路径示意图

    Fig. 4.  Path schematic of the multimode propagation.

    图 5  射线群距离与探测频率的关系

    Fig. 5.  Relationship between radiation group distance and detection frequency.

    图 6  相位污染前后的实测频谱

    Fig. 6.  Real spectrum before and after phase contamination.

    图 7  相位污染的估计误差

    Fig. 7.  Estimation error of the phase contamination.

    图 8  相位污染校正前后的距离-多普勒谱(颜色条表示归一化功率, 单位是dB)

    Fig. 8.  Range-Doppler spectra before and after phase contamination correction (color bar represents normalized power, and the unit is dB).

  • [1]

    Frazer G J 2017 IEEE Aerosp. Electron. Syst. Mag. 32 52Google Scholar

    [2]

    罗欢, 肖卉 2018 物理学报 67 079401Google Scholar

    Luo H, Xiao H 2018 Acta Phys. Sin. 67 079401Google Scholar

    [3]

    毛媛, 郭立新, 丁慧芬, 刘伟 2012 物理学报 61 044201Google Scholar

    Mao Y, Guo L X, Ding H F, Liu W 2012 Acta Phys. Sin. 61 044201Google Scholar

    [4]

    Forbes J M, Palo S E, Zhang X 2000 J. Atmosph. Solar Terr. Phys. 62 685Google Scholar

    [5]

    郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林 2017 物理学报 66 119401Google Scholar

    Hao S J, Zhang W C, Zhang Y B, Yang J T, Ma G L 2017 Acta Phys. Sin. 66 119401Google Scholar

    [6]

    邢孟道, 保铮 2002 电波科学学报 17 129Google Scholar

    Xing M D, Bao Z 2002 Chin. J. Radio Sci. 17 129Google Scholar

    [7]

    Anderson S J, Abramovich Y I 1998 Radio Sci. 33 1055Google Scholar

    [8]

    Lu K, Wang J, Liu X Z 2003 Proceedings of ICASSP Hongkong, China, April 6−10, 2003 p405

    [9]

    Li Y J, Wei Y S, Zhu Y P, Wang Z Q, Xu R Q 2015 IET Signal Process. 9 562Google Scholar

    [10]

    Luo H, Xiao H 2019 J. Chin. Inst. Eng. 42 200Google Scholar

    [11]

    罗欢, 陈建文, 鲍拯 2013 电子与信息学报 35 2829

    Luo H, Chen J W, Bao Z 2013 J. Electron. Inform. Technol. 35 2829

    [12]

    Bilitza D, Brown S A, Wang M Y 2012 J. Atmosph. Solar -Terr. Phys. 86 99Google Scholar

    [13]

    Gordiyenko G I, Yakovets A F 2017 Adv. Space Res. 60 461Google Scholar

    [14]

    Dyson P L, Bennett J A 1988 J. Atmosph. Solar Terr. Phys. 50 251Google Scholar

    [15]

    Park I, Yeh K C 1990 Radio Sci. 25 1167Google Scholar

    [16]

    周芳 2014 博士学位论文 (西安: 西安电子科技大学)

    Zhou F 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [17]

    周文瑜, 焦培南 2008 超视距雷达技术 (北京: 电子工业出版社) 第120—122页

    Zhou W Y, Jiao P N 2008 Over-the-Horizon Radar Technology (Beijing: Publishing House of Electronics Industry) pp120−122 (in Chinese)

    [18]

    Skolnik M I 1990 Radar Handbook (New York: McGraw-Hill Book Company) pp18−19

    [19]

    郭文玲, 蔚娜, 李雪, 李吉宁, 鲁转侠 2014 中国电子科学研究院学报 9 629Google Scholar

    Guo W L, Wei N, Li X, Li J N, Lu Z X 2014 J. CAEIT 9 629Google Scholar

    [20]

    李辉, 车海琴, 吴健, 吴军, 徐彬 2011 电波科学学报 26 311

    Li H, Che H Q, Wu J, Wu J, Xu B 2011 Chin. J. Radio Sci. 26 311

    [21]

    柳文, 焦培南, 王世凯, 王俊江 2008 电波科学学报 25 41Google Scholar

    Liu W, Jiao P N, Wang S K, Wang J J 2008 Chin. J. Radio Sci. 25 41Google Scholar

    [22]

    Li M, He Q, Li K, He Z S 2014 IEICE Electron. Express 11 1

    [23]

    姚天任, 孙洪 1999 现代数字信号处理(武汉: 华中理工大学出版社) 第156, 157页

    Yao T R, Sun H 1999 Modern Digital Signal Processing (Wuhan: Huazhong University of Technology Press) pp156, 157 (in Chinese)

    [24]

    徐青 2011 博士学位论文 (西安: 西安电子科技大学)

    Xu Q 2011 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

  • [1] 杨利霞, 刘超, 李清亮, 闫玉波. 斜入射非线性电离层Langmuir扰动的电磁波传播特性. 物理学报, 2022, 71(6): 064101. doi: 10.7498/aps.71.20211204
    [2] 赵海生, 许正文, 徐朝辉, 薛昆, 郑延帅, 谢守志, 冯杰, 吴健. 基于化学物质释放的电离层闪烁抑制方法研究. 物理学报, 2019, 68(10): 109401. doi: 10.7498/aps.68.20182281
    [3] 赵海生, 徐朝辉, 高敬帆, 许正文, 吴健, 冯杰, 徐彬, 薛昆, 李辉, 马征征. 电离层中性气体释放的早期试验效应研究. 物理学报, 2018, 67(1): 019401. doi: 10.7498/aps.67.20171620
    [4] 罗欢, 肖卉. 含突发E层的电离层模型建立及其在测高中的应用. 物理学报, 2018, 67(7): 079401. doi: 10.7498/aps.67.20172575
    [5] 魏乔菲, 尹成友, 范启蒙. 存在障碍物时电波传播抛物线方程分析及其验证. 物理学报, 2017, 66(12): 124102. doi: 10.7498/aps.66.124102
    [6] 郝书吉, 张文超, 张雅彬, 杨巨涛, 马广林. 中低纬度电离层偶发E层电波传播建模. 物理学报, 2017, 66(11): 119401. doi: 10.7498/aps.66.119401
    [7] 赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉. 电离层中释放六氟化硫效应的三维精细模拟研究. 物理学报, 2016, 65(20): 209401. doi: 10.7498/aps.65.209401
    [8] 吴静, 周志为, 闫旭. 电力线谐波辐射在分层各向异性电离层中的传播特点. 物理学报, 2015, 64(19): 194101. doi: 10.7498/aps.64.194101
    [9] 胡耀垓, 赵正予, 张援农. 不同释放高度的化学物质的电离层扰动特性. 物理学报, 2013, 62(20): 209401. doi: 10.7498/aps.62.209401
    [10] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟. 物理学报, 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [11] 盛峥. 电离层电子总含量不同时间尺度的预报模型研究. 物理学报, 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [12] 汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东. 低纬电离层人工调制所激发的ELF波射线追踪. 物理学报, 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [13] 洪振杰, 刘荣建, 郭鹏, 董乃铭. 非球对称电离层掩星数据反演. 物理学报, 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [14] 胡耀垓, 赵正予, 项薇, 张援农. 人工电离层洞形态调制及其对短波传播的影响. 物理学报, 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [15] 徐贤胜, 洪振杰, 郭鹏, 刘荣建. COSMIC掩星电离层资料反演以及结果验证. 物理学报, 2010, 59(3): 2163-2168. doi: 10.7498/aps.59.2163
    [16] 胡耀垓, 赵正予, 张援农. 几种典型化学物质的电离层释放效应研究. 物理学报, 2010, 59(11): 8293-8303. doi: 10.7498/aps.59.8293
    [17] 石润, 赵正予. 磁倾角对电离层Alfven谐振器影响的初步研究. 物理学报, 2009, 58(7): 5111-5117. doi: 10.7498/aps.58.5111
    [18] 黄朝松, 李钧, M .C. KELLEY. 大气重力波产生中纬电离层不均匀体的理论. 物理学报, 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [19] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响. 物理学报, 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [20] 陈茂康, 张煦. 研究中国天空电离层之初草报告. 物理学报, 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
计量
  • 文章访问数:  7410
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-09
  • 修回日期:  2019-08-07
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回