搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

薄膜底面Helmholtz腔声学超材料的隔声性能

贺子厚 赵静波 姚宏 陈鑫

引用本文:
Citation:

薄膜底面Helmholtz腔声学超材料的隔声性能

贺子厚, 赵静波, 姚宏, 陈鑫

Sound insulation performance of Helmholtz cavity with thin film bottom

He Zi-Hou, Zhao Jing-Bo, Yao Hong, Chen Xin
PDF
HTML
导出引用
  • 针对低频噪声的隔离问题, 设计了一种薄膜底面Helmholtz腔声学超材料, 该超材料由薄膜底面Helmholtz腔附加质量单元构成. 使用有限元法, 计算了超材料在20—1200 Hz频段内的传输损失曲线与各阶共振频率, 并在实验中验证了数值计算的真实性. 研究结果表明, 超材料在20—1200 Hz频段内隔声性能良好, 出现了6个隔声峰, 其中100 Hz以下的2个隔声峰传输损失分别高达44.29 dB与67.43 dB, 整个频段内的最高传递损失为90.18 dB. 相较于单一的Helmholtz腔、薄膜声学超材料或传统材料, 本超材料的隔声性能有了较大提升. 结合共振频率与隔声峰处的振动模式图, 进一步分析了超材料的隔声机理. 计算了超材料的透射系数与反射系数, 使用等效参数提取法, 得到了超材料的等效模量与等效密度, 在隔声峰处发现了负等效密度, 同时发现其等效模量接近于零, 并由能量角度进一步分析了异常等效参数的产生机理. 通过等效电路法, 得到了超材料的声阻抗, 较精确地计算了超材料的首阶共振频率, 并分析了产生误差的原因. 研究了附加偏心质量单元对超材料隔声性能的影响, 发现附加偏心质量单元可以抑制反对称共振模态的出现, 同时大大增加了超材料的隔声峰数量, 在实验中这一说法得以验证.
    Aiming at the isolation of low-frequency noise, an acoustic metamaterial is designed based on Helmholtz cavity and thin film structure. It consists of a Helmholtz cavity with film bottom and the mass block attached to the cavity. By the finite element method, the transmission losses and resonance frequencies of metamaterials in a frequency range of 20-1200 Hz are calculated and also verified experimentally. The results show that the metamaterial has great sound insulation performance in the frequency range. There are six sound insulation peaks, of which the two sound insulation peaks below 100 Hz have the transmission losses of 44.29 dB and 67.43 dB, respectively. The maximum transmission loss in the whole frequency range is 90.18 dB. Comparing with the normal Helmholtz cavity or thin film acoustic metamaterial or traditional material, the sound insulation performance of the metamaterial is improved greatly. By analyzing the resonance and vibration mode diagram at the sound insulation peaks comprehensively, the sound insulation mechanism of the metamaterial is further explored. The results show that many resonance modes have no effect on transmission loss only when the resonance mode can be coupled with the incident wave and is not an antisymmetric mode which can affect the transmission loss. The transmission and reflection coefficient of the metamaterial are calculated by the finite element method, and through the method for retrieving effective properties, the effective mass density and effective modulus are obtained. It is found that there is a negative effective mass density at the sound insulation peak, meanwhile the effective modulus is close to zero. The generation mechanism of abnormal equivalent parameters is analyzed from the energy view point. The acoustic impedance of the metamaterial is obtained by an equivalent circuit method, through which the first resonance frequency is calculated relatively accurately. According to the results of the previous study on sound insulation mechanism, the effect of the eccentric mass unit on the sound insulation performance of metamaterial is studied. It is found that the eccentric mass can greatly reduce the antisymmetric resonance mode and increase the sound insulation peak of the structure, which is also verified experimentally. The results provide a reference for designing the acoustic metamaterials.
      通信作者: 赵静波, chjzjb@163.com
    • 基金项目: 国家自然科学基金(批准号: 11504429)和空军工程大学基础部预研项目(批准号: YNJC119070602)资助的课题
      Corresponding author: Zhao Jing-Bo, chjzjb@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504429) and the Pre-research Project of Department of Basic Sciences, Air Force Engineering University, China (Grant No. YNJC19070602)
    [1]

    William B A, Lisa M M, Kelsey B, Stephen B, John L A 2019 Environ. Sci. Technol. 53 7126Google Scholar

    [2]

    周榕 2017 硕士学位论文 (南京: 江苏大学)

    Zhou Y 2017 M. S. Thesis (Nanjing: Jiangsu University) (in Chinese)

    [3]

    Wu J H, Ma F Y, Zhang S W, Shen L 2006 J. Mech. Eng. 52 68

    [4]

    丁昌林, 董仪宝, 赵晓鹏 2018 物理学报 67 194301

    Ding C L, Dong Y B, Zhao X P 2018 Acta Phys. Sin. 67 194301

    [5]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301Google Scholar

    [6]

    沈惠杰, 郁殿龙, 汤智胤, 苏永生, 李雁飞, 刘江伟 2019 物理学报 68 144301

    Shen H J, Yu D L, Tang Z Y, Su Y S, Li Y F, Liu J W 2019 Acta Phys. Sin. 68 144301

    [7]

    Chen H J, Zhai S L, Ding C L, Liu S, Luo C R, Zhao X P 2015 J. Appl. Phys. 118 094901Google Scholar

    [8]

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nat. Commun. 3 756Google Scholar

    [9]

    Nemat-Nasser S, Willis J R, Srivastava A, Amirkhizi A V 2011 Phys. Rev. B 83 104103Google Scholar

    [10]

    丁昌林, 赵晓鹏 2009 物理学报 58 6351Google Scholar

    Ding C L, Zhao X P 2009 Acta Phys. Sin. 58 6351Google Scholar

    [11]

    Liu Z, Zhang X X, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [12]

    贺子厚, 赵静波, 姚宏, 蒋娟娜, 张帅, 陈鑫 2018 硅酸盐学报 47 983

    He Z H, Zhao J B, Yao H, Jiang J N, Zhang S Chen X 2018 J. Chin. Ceramic Soc. 47 983

    [13]

    高南沙, 侯宏 2018 材料导报 32 322Google Scholar

    Gao N S, Hou H 2018 Mater. Rev. 32 322Google Scholar

    [14]

    王莎, 林书玉 2019 物理学报 68 024303

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 024303

    [15]

    刘娇, 侯志林, 傅秀军 2015 物理学报 64 154302

    Liu J, Hou Z L, Fu X J 2015 Acta Phys. Sin. 64 154302

    [16]

    Cheng Y, Xu J Y, Liu X J 2008 Appl. Phys. Lett. 92 051913Google Scholar

    [17]

    贾晓珍 2018 硕士学位论文 (西安: 陕西师范大学)

    Jia X Z 2018 M. S. Thesis (Xi′an: Shaanxi Normal Univer-sity) (in Chinese)

    [18]

    Chen Y, Huang G, Zhou X, Hu G, Sun C 2014 J. Acoust. Soc. Am. 136 969Google Scholar

    [19]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nature Mater. 5 452Google Scholar

    [20]

    姜久龙, 姚宏, 杜军, 赵静波, 邓涛 2017 物理学报 66 064301

    Jiang J L, Yao H, Du J, Zhao J B, Deng T 2017 Acta Phys. Sin. 66 064301

    [21]

    Naify C J, Chang C M, Mcknight G, Nutt S 2011 J. Appl. Phys. 110 751

    [22]

    梅军, 马冠聪, 杨旻, 杨志宇, 温维佳, 沈平 2012 物理 41 425

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Shen P 2012 Physics 41 425

    [23]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nature Mater. 14 1013Google Scholar

    [24]

    周榕, 吴卫国, 闻轶凡 2017 声学技术 36 297

    Zhou Y, Wu W G, Wen Y F 2017 Tech. Acoust. 36 297

    [25]

    Abbad A 2016 SAE International 9th International Styrian Noise, Vibration & Harshness Congress Warrendale, United States, June 22, 2016 p2011

    [26]

    Long H, Cheng Y, Liu X 2018 Sci. Rep. 8 15678Google Scholar

    [27]

    陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜 2019 物理学报 68 084302

    Chen X, Yao H, Zhao J B, Zhang S, He Z H, Jiang J N 2019 Acta Phys. Sin. 68 084302

    [28]

    杜功焕, 朱哲民, 龚秀芬 2012 声学基础 (南京: 南京大学出版社) 第84页

    Du G H, Zhu Z M, Gong X F 2012 Acoustic Basis (Nanjing: Nanjing University Press) p84

    [29]

    Fokin V, Ambati M, Sun C, Zhang X 2007 Phys. Rev. B 76 144302Google Scholar

    [30]

    贺子厚, 赵静波, 姚宏, 张帅, 蒋娟娜, 陈鑫 2019 物理学报 68 134302Google Scholar

    He Z H, Zhao J B, Yao H, Zhang S, Jiang J N, Chen X 2019 Acta Phys. Sin. 68 134302Google Scholar

  • 图 1  材料结构 (a)结构示意图; (b)结构参数

    Fig. 1.  Material structure: (a) Structural sketch; (b) structure parameter.

    图 2  腔体结构

    Fig. 2.  Cavity structure.

    图 3  传输损失曲线

    Fig. 3.  Transmission loss curves.

    图 4  共振模态(颜色条表示位移的取值, 单位为mm, 其余图同) (a) 69.44 Hz; (b) 325.40 Hz

    Fig. 4.  Resonance mode (color bar represents the displacement values, unit: mm): (a) 69.44 Hz; (b) 325.40 Hz.

    图 5  共振模态 (a) 25.05 Hz; (b) 68.53 Hz; (c) 420.72 Hz; (d) 622.76 Hz; (e) 944.71 Hz; (f) 1075.80 Hz

    Fig. 5.  Resonance mode: (a) 25.05 Hz; (b) 68.53 Hz; (c) 420.72 Hz; (d) 622.76 Hz; (e) 944.71 Hz; (f) 1075.80 Hz.

    图 6  隔声峰处振动模式图 (a) 25.10 Hz; (b) 67.43 Hz; (c) 415.49 Hz; (d) 626.30 Hz; (e) 952.81 Hz; (f) 1080.08 Hz

    Fig. 6.  Vibration mode diagrams at sound insulation peak: (a) 25.10 Hz; (b) 67.43 Hz; (c) 415.49 Hz; (d) 626.30 Hz; (e) 952.81 Hz; (f) 1080.08 Hz.

    图 7  Helmholtz腔(a)及其等价电路模型(b)

    Fig. 7.  Helmholtz cavity (a) and its equivalent circuit model

    图 8  薄膜底面Helmholtz腔(a)及其等价电路模型(b)

    Fig. 8.  Helmholtz cavity with thin film bottom (a) and its equivalent circuit model.

    图 9  首阶共振频率

    Fig. 9.  First resonance frequency.

    图 10  实验示意图 (a), (b)样件实物图; (c)实验装置

    Fig. 10.  Experimental schematic diagrams: (a), (b) Sample structure; (c) experimental facility.

    图 11  实验测得的传输损失曲线与数值计算结果的对比

    Fig. 11.  Comparison between experimentally measured transmission loss curve and the results obtained by the finite element method.

    图 12  (a)透射系数; (b)反射系数

    Fig. 12.  (a) Transmission coefficient; (b) reflection coefficient.

    图 13  等效参数 (a)等效密度; (b)等效模量

    Fig. 13.  Effective parameters: (a) Effective mass density; (b) effective modulus.

    图 14  结构示意图

    Fig. 14.  Structural sketch.

    图 15  (a)偏心质量单元与中心质量单元的传输损失曲线; (b)当 l 值不同时, 超材料的传输损失曲线

    Fig. 15.  (a) Comparison of transmission loss between eccentric mass unit and central mass unit; (b) transmission loss curves when l is different.

    图 16  振动模式图 (a) 28.03 Hz; (b) 61.27 Hz; (c) 71.29 Hz; (d) 328.22 Hz; (e) 396.30 Hz; (f) 466.81 Hz

    Fig. 16.  Vibration mode: (a) 28.03 Hz; (b) 61.27 Hz; (c) 71.29 Hz; (d) 328.22 Hz; (e) 396.30 Hz; (f) 466.81 Hz.

    图 17  中心质量单元设计时, 68.83 Hz共振频率所对应共振模态图

    Fig. 17.  Resonance modal diagram with the resonance frequency of 68.83 Hz when the mass unit is at the center.

    图 18  实验验证 (a)样件图; (b)传输损失曲线

    Fig. 18.  Experimental verification: (a) Sample structure; (b) transmission loss curves.

    表 1  材料参数

    Table 1.  Material parameters.

    Materialρ/kg·m–3E/1010 PaPossion rate
    Tungsten1910035.410.35
    Silastic13001.175 × 10–50.469
    Steel778021.060.3
    下载: 导出CSV
  • [1]

    William B A, Lisa M M, Kelsey B, Stephen B, John L A 2019 Environ. Sci. Technol. 53 7126Google Scholar

    [2]

    周榕 2017 硕士学位论文 (南京: 江苏大学)

    Zhou Y 2017 M. S. Thesis (Nanjing: Jiangsu University) (in Chinese)

    [3]

    Wu J H, Ma F Y, Zhang S W, Shen L 2006 J. Mech. Eng. 52 68

    [4]

    丁昌林, 董仪宝, 赵晓鹏 2018 物理学报 67 194301

    Ding C L, Dong Y B, Zhao X P 2018 Acta Phys. Sin. 67 194301

    [5]

    Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K 2010 Phys. Rev. Lett. 104 054301Google Scholar

    [6]

    沈惠杰, 郁殿龙, 汤智胤, 苏永生, 李雁飞, 刘江伟 2019 物理学报 68 144301

    Shen H J, Yu D L, Tang Z Y, Su Y S, Li Y F, Liu J W 2019 Acta Phys. Sin. 68 144301

    [7]

    Chen H J, Zhai S L, Ding C L, Liu S, Luo C R, Zhao X P 2015 J. Appl. Phys. 118 094901Google Scholar

    [8]

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nat. Commun. 3 756Google Scholar

    [9]

    Nemat-Nasser S, Willis J R, Srivastava A, Amirkhizi A V 2011 Phys. Rev. B 83 104103Google Scholar

    [10]

    丁昌林, 赵晓鹏 2009 物理学报 58 6351Google Scholar

    Ding C L, Zhao X P 2009 Acta Phys. Sin. 58 6351Google Scholar

    [11]

    Liu Z, Zhang X X, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [12]

    贺子厚, 赵静波, 姚宏, 蒋娟娜, 张帅, 陈鑫 2018 硅酸盐学报 47 983

    He Z H, Zhao J B, Yao H, Jiang J N, Zhang S Chen X 2018 J. Chin. Ceramic Soc. 47 983

    [13]

    高南沙, 侯宏 2018 材料导报 32 322Google Scholar

    Gao N S, Hou H 2018 Mater. Rev. 32 322Google Scholar

    [14]

    王莎, 林书玉 2019 物理学报 68 024303

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 024303

    [15]

    刘娇, 侯志林, 傅秀军 2015 物理学报 64 154302

    Liu J, Hou Z L, Fu X J 2015 Acta Phys. Sin. 64 154302

    [16]

    Cheng Y, Xu J Y, Liu X J 2008 Appl. Phys. Lett. 92 051913Google Scholar

    [17]

    贾晓珍 2018 硕士学位论文 (西安: 陕西师范大学)

    Jia X Z 2018 M. S. Thesis (Xi′an: Shaanxi Normal Univer-sity) (in Chinese)

    [18]

    Chen Y, Huang G, Zhou X, Hu G, Sun C 2014 J. Acoust. Soc. Am. 136 969Google Scholar

    [19]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nature Mater. 5 452Google Scholar

    [20]

    姜久龙, 姚宏, 杜军, 赵静波, 邓涛 2017 物理学报 66 064301

    Jiang J L, Yao H, Du J, Zhao J B, Deng T 2017 Acta Phys. Sin. 66 064301

    [21]

    Naify C J, Chang C M, Mcknight G, Nutt S 2011 J. Appl. Phys. 110 751

    [22]

    梅军, 马冠聪, 杨旻, 杨志宇, 温维佳, 沈平 2012 物理 41 425

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Shen P 2012 Physics 41 425

    [23]

    Cheng Y, Zhou C, Yuan B G, Wu D J, Wei Q, Liu X J 2015 Nature Mater. 14 1013Google Scholar

    [24]

    周榕, 吴卫国, 闻轶凡 2017 声学技术 36 297

    Zhou Y, Wu W G, Wen Y F 2017 Tech. Acoust. 36 297

    [25]

    Abbad A 2016 SAE International 9th International Styrian Noise, Vibration & Harshness Congress Warrendale, United States, June 22, 2016 p2011

    [26]

    Long H, Cheng Y, Liu X 2018 Sci. Rep. 8 15678Google Scholar

    [27]

    陈鑫, 姚宏, 赵静波, 张帅, 贺子厚, 蒋娟娜 2019 物理学报 68 084302

    Chen X, Yao H, Zhao J B, Zhang S, He Z H, Jiang J N 2019 Acta Phys. Sin. 68 084302

    [28]

    杜功焕, 朱哲民, 龚秀芬 2012 声学基础 (南京: 南京大学出版社) 第84页

    Du G H, Zhu Z M, Gong X F 2012 Acoustic Basis (Nanjing: Nanjing University Press) p84

    [29]

    Fokin V, Ambati M, Sun C, Zhang X 2007 Phys. Rev. B 76 144302Google Scholar

    [30]

    贺子厚, 赵静波, 姚宏, 张帅, 蒋娟娜, 陈鑫 2019 物理学报 68 134302Google Scholar

    He Z H, Zhao J B, Yao H, Zhang S, Jiang J N, Chen X 2019 Acta Phys. Sin. 68 134302Google Scholar

  • [1] 胥强荣, 朱洋, 林康, 沈承, 卢天健. 一种具有动态磁负刚度薄膜声学超材料的低频隔声特性. 物理学报, 2022, 71(21): 214301. doi: 10.7498/aps.71.20221058
    [2] 徐琦, 孙小伟, 宋婷, 温晓东, 刘禧萱, 王羿文, 刘子江. 不同缺陷态下具有高光力耦合率的新型一维光力晶体纳米梁. 物理学报, 2021, 70(22): 224210. doi: 10.7498/aps.70.20210925
    [3] 曹明鹏, 吴晓鹏, 管宏山, 单光宝, 周斌, 杨力宏, 杨银堂. 基于对偶单元法的三维集成微系统电热耦合分析. 物理学报, 2021, 70(7): 074401. doi: 10.7498/aps.70.20201628
    [4] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [5] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫. 基于压电材料的薄膜声学超材料隔声性能研究. 物理学报, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [6] 董伟, 王志斌. 改进型混合表面等离子体微腔激光器的研究. 物理学报, 2018, 67(19): 195204. doi: 10.7498/aps.67.20180242
    [7] 赵运进, 田锰, 黄勇刚, 王小云, 杨红, 米贤武. 基于有限元法的光子并矢格林函数重整化及其在自发辐射率和能级移动研究中的应用. 物理学报, 2018, 67(19): 193102. doi: 10.7498/aps.67.20180898
    [8] 陈艳, 周桂耀, 夏长明, 侯峙云, 刘宏展, 王超. 具有双模特性的大模场面积微结构光纤的设计. 物理学报, 2014, 63(1): 014701. doi: 10.7498/aps.63.014701
    [9] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [10] 袁玲, 孙凯华, 崔一平, 沈中华, 倪晓武. 由于表面粗糙引起的激光声表面波色散的实验和理论研究. 物理学报, 2012, 61(1): 014210. doi: 10.7498/aps.61.014210
    [11] 于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析. 物理学报, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [12] 齐跃峰, 乔汉平, 毕卫红, 刘燕燕. 热激法光子晶体光纤光栅制备工艺中热传导特性研究. 物理学报, 2011, 60(3): 034214. doi: 10.7498/aps.60.034214
    [13] 刘全喜, 钟鸣. 激光二极管阵列端面抽运复合棒状激光器热效应的有限元法分析. 物理学报, 2010, 59(12): 8535-8541. doi: 10.7498/aps.59.8535
    [14] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场. 物理学报, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [15] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [16] 张俊兵, 林岳明, 柏 林, 曾祥华. AlGaInP LED电极形状的优化. 物理学报, 2008, 57(9): 5881-5886. doi: 10.7498/aps.57.5881
    [17] 张洪武, 王晋宝, 叶宏飞, 王 磊. 范德华力的广义参变本构模型及其在碳纳米管计算中的应用. 物理学报, 2007, 56(3): 1422-1428. doi: 10.7498/aps.56.1422
    [18] 郑 凯, 常德远, 傅永军, 魏 淮, 延凤平, 简 伟, 简水生. 掺铒孔辅助导光光纤的特性研究与优化设计. 物理学报, 2007, 56(2): 958-967. doi: 10.7498/aps.56.958
    [19] 袁 玲, 沈中华, 倪晓武, 陆 建. 激光在近表面弹性性质梯度变化的材料中激发超声波的数值分析. 物理学报, 2007, 56(12): 7058-7063. doi: 10.7498/aps.56.7058
    [20] 田进寿, 赵宝升, 吴建军, 赵 卫, 刘运全, 张 杰. 飞秒电子衍射系统中调制传递函数的理论计算. 物理学报, 2006, 55(7): 3368-3374. doi: 10.7498/aps.55.3368
计量
  • 文章访问数:  11336
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-22
  • 修回日期:  2019-08-22
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-05

/

返回文章
返回