搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅/锗基场效应晶体管沟道中载流子散射机制研究进展

赵毅 李骏康 郑泽杰

引用本文:
Citation:

硅/锗基场效应晶体管沟道中载流子散射机制研究进展

赵毅, 李骏康, 郑泽杰

Progress of the study on carrier scattering mechanisms of silicon/germanium field effect transistors

Zhao Yi, Li Jun-Kang, Zheng Ze-Jie
PDF
HTML
导出引用
  • 随着金属-氧化物-半导体场效应晶体管(Metal-Oxide-Semiconductor Field Effect Transistor, MOSFET)特征尺寸不断减小,应变技术、新沟道材料和新器件结构等技术被学术界及产业界认为是继续提升器件性能的有效方法。本文从应变技术、新沟道材料和新结构器件三个方面研究载流子在输运中的散射机制:(1)应变技术:双轴拉伸应变能够改变载流子在不同能级之间的分布以及沟道的表面粗糙度,从而影响库伦散射和表面粗糙度散射;(2)新沟道材料:在不同晶面的锗(Germanium, Ge)晶体管中,电子在高场条件下的散射存在差异,声子散射在Ge(100)晶体管中占主导,而表面粗糙度散射在Ge(110)、(111)晶体管中占主导。在SiGe晶体管中,合金散射主要作用于有效电场强度比较小的区域;(3)新结构器件:载流子超薄绝缘层上锗(Germanium-on-Insulator, GeOI)晶体管输运时,会同时受到上下界面的影响,库伦散射和表面粗糙度散射随着Ge层厚度降低而增加。Ge层厚度的降低会改变电子在不同能谷间的分布,进而影响电子的散射。
    As the feature size of Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) continues to decrease, large numbers of new problems appear. Techniques such as strain project, new channel materials and new device structures are considered by academics and industry to be effective ways to continue to improve device performance. In this paper, the scattering mechanism of carriers in the device channel is studied from three aspects: strain technique, new channel material and new structure device: (1) strain technique: Biaxial tensile strain can change carrier distribution among different energy levels, which affects Coulomb scattering and Coulomb mobility. Furthermore, from the TEM image, it is found that biaxial tensile reduces the channel surface roughness for Si nMOSFET, leading an enhancement of electron mobility. However, no such similar phenomena were observed in pMOSFET. Based on this, a new method for calculating the mobility of MOSFET surface roughness scattering using TEM image has been proposed. (2) New channel material: In the germanium (Ge) transistors with different crystal faces, the scattering mechanisms of electron under high field conditions are different. The phonon scattering dominates the Ge(100) transistor, while the surface roughness scattering dominates the Ge(110), (111) transistors. This result is quite different from Si MOSFET. Therefore, a unified model for the scattering mechanism of electron in Ge nMOSFET has been proposed. In SiGe transistors, alloy scattering mainly play a role in the region with relatively small effective electric field (Eeff). The strength of alloy scattering would be weakened in high field and could be decreased by reducing the thickness of SiGe layer. (3) New structure devices: In ultra-thin body germanium (GeOI) transistors, carrier transport is influenced by high- k /channel interfaces, as well as Ge channel/buried oxide (BOX) interface. As the Ge layer thickness decreases, carrier distribution is closer to the interfaces, which intensifies Coulomb scattering and surface roughness scattering. As a result, the mobility in GeOI transistor decreases as the thickness scaling. In addition, the distribution of electron in different energy valleys changes with the thickness decrease in Ge layer, which affects the scattering of electrons. When the Ge film is lower than 10 nm, a part of electron in the L valley will move to the Γ valley, causing the decrease of electron effective mass and increasing the electron mobility.
      通信作者: 赵毅, yizhao@zju.edu.cn
    • 基金项目: 浙江省自然科学基金重点项目(批准号: Z19F040002)和浙江省重点研发计划(批准号: 2019C01158)资助的课题.
      Corresponding author: Zhao Yi, yizhao@zju.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of Zhejiang province, China (Grant No. Z19F040002), and the Key Research and Development Program of Zhejiang province, China (Grant No. 2019C01158)
    [1]

    Uchida K, Takagi S 2003 Appl. Phys. Lett. 82 2916Google Scholar

    [2]

    Wu H, Wu W, Si M, Peide D Y 2015 IEEE International Electron Devices Meeting (IEDM) Washington DC, Dec. 7−9, 2015 p2.1.1

    [3]

    Nayak D K, Woo J C S, Park J S, Wang K L, MacWilliams K P 1993 Appl. Phys. Lett. 62 2853Google Scholar

    [4]

    刘畅、卢继武、吴汪然、唐晓雨、张睿、俞文杰、王曦、赵毅 2015 物理学报 62 167305

    Liu C, Lu J W, Wu W R, Tang X Y, Zhang R, Yu W J, Wang X, Zhao Y 2015 Acta Phys. Sin. 62 167305

    [5]

    赵毅、万星拱 2006 物理学报 55 3003

    Zhao Y, Wan X G 2006 Acta Phys. Sin. 55 3003

    [6]

    Lee C H, Nishimura T, Tabata T, Lu C, Zhang W F, Nagashio K, Toriumi A 2013 IEEE International Electron Devices Meeting (IEDM) Washington DC, Dec. 9−11, 2013 p2.3.1

    [7]

    Cheng R, Yin L, Wu H, Yu X, Zhang Y, Zheng Z, Wu W, Chen B, Peide D Y, Liu X, Zhao Y 2017 IEEE Elec. Devi. Lett. 38 434Google Scholar

    [8]

    Chu M, Sun Y, Aghoram U, Thompson S E 2009 Annu. Rev. Mater. Res. 39 203Google Scholar

    [9]

    Antoniadis D A, Aberg I, Chleirigh C N, Nayfeh O M, Khakifirooz A, Hoyt J L 2006 IBM J. Res. Dev. 50 363Google Scholar

    [10]

    Lee C H, Nishimura T, Tabata T, Kita K, Toriumi A 2011 IEEE Trans. Elec. Dev. 58 1295

    [11]

    Zhang, R, Huang P C, Lin J C, Taoka N, Takenaka M, Takagi S 2013 IEEE Trans. Elec.n Dev. 60 927

    [12]

    Zhang R, Chern W, Yu X, Takenaka, M, Hoyt J L, Takagi, S 2013 IEEE International Electron Devices Meeting (IEDM) Washington DC, Dec. 9−11 2013 p26.1.1

    [13]

    Yeo Y C, Gong X, van Dal M J H, Vellianitis G, Passlack M 2015 IEEE International Electron Devices Meeting (IEDM) Washington D C, Dec. 7−9,2015 p2.4.1

    [14]

    van Dal M J H, Duriez B, Vellianitis G, Doornbos G, Oxland R, Holland M, Diaz C H 2014 IEEE International Electron Devices Meeting (IEDM) San Francisco, Dec. 7−9, 2014 p9.5.1

    [15]

    Choi Y K, Asano K, Lindert N, Subramanian V, King T J, Bokor J, Hu C 1999 IEEE International Electron Devices Meeting (IEDM) Washington D C, Dec. 5−8, 1999 p919

    [16]

    Ernst T, Cristoloveanu S, Ghibaudo G, Ouisse T, Horiguchi S, Ono Y, Takahashi Y, Murase K 2003 IEEE Trans. Elec. Dev. 50 830

    [17]

    Zhao Y, Takenaka M, Takagi S 2009 IEEE Trans. Elec. Dev. 56 1152Google Scholar

    [18]

    Weber O, Takagi S 2008 IEEE Trans. Elec. Dev. 55 2386

    [19]

    Takagi S, Toriumi A, Iwase M, Tango H 1994 IEEE Trans. Elec. Dev. 41 2357Google Scholar

    [20]

    Zhao Y, Takenaka M, Takagi S 2009 IEEE Elec. Dev. Lett. 30 987Google Scholar

    [21]

    Zhao Y, Matsumoto H, Sato T, Koyama S, Takenaka M, Takagi S 2010 IEEE Trans. Elec. Dev. 57 2057Google Scholar

    [22]

    Wu W, Li X, Sun J, Zhang R, Shi Y, Zhao Y 2015 IEEE Trans. Elec. Dev. 62 1136Google Scholar

    [23]

    Yu W, Wu W, Zhang B, Liu C, Sun J, Zhai D, Yu Y, Shi Y, Zhao Y, Zhao Q T 2014 IEEE Trans. Elec. Dev. 61 950Google Scholar

    [24]

    Yu X, Kang J, Takenaka M, Takagi S 2015 IEEE International Electron Devices Meeting (IEDM) Washington D C, Dec. 7−9, 2015 p2.2.1

    [25]

    Zheng Z, Yu X, Zhang Y, Xie M, Cheng R, Zhao Y 2018 IEEE Trans. Elec. Dev. 65 895Google Scholar

    [26]

    Chang W H, Irisawa T, Ishii H, Hattori H, Ota H, Takagi H, Kurashima Y, Uchida K, Maeda T 2017 IEEE Trans. Elec. Dev. 64 4615Google Scholar

  • 图 1  集成电路技术节点随时间的演进, 图中提取了90 nm到10 nm技术节点

    Fig. 1.  Evolution of integrated circuit technology nodes: from 90 nm to 10 nm.

    图 2  (a) 拉伸应变和衬底浓度对空穴子能带结构的影响; (b) 双轴拉伸应变对电子空穴μit影响的示意图[17]

    Fig. 2.  (a) Effects of tensile biaxial strain and Nsub on the hole subband structure; (b) schematic diagram of the interpretation for the effect of biaxial tensile strain on μit of electrons and holes[17].

    图 3  (a) 应变对电子和空穴表面粗糙度散射的影响; (b) 无应变硅和应变硅沟道表面粗糙度[20]

    Fig. 3.  (a) Low-temperature electron and hole mobility versus Ns for Si and s-Si with different amounts of strain; (b) TEM photographs of Si and s-Si (10% Ge and 35% Ge) Si/SiO2 interfaces[20].

    图 4  不同晶面的Si及Ge nMOSFET中的电子输运模型[20]

    Fig. 4.  Electron transport models in Si and Ge nMOSFETs with different crystal faces[20].

    图 5  (a) SiGe量子阱pMOSFET在300 K和15 K下的迁移率; (b) 根据实验结果计算出的SiGe量子阱pMOSFET中空穴μalloy+phononNinv的变化[23]

    Fig. 5.  (a) Extracted effective hole mobilities of the QW p-MOSFET at 15 and 300 K; (b) μphonon+alloy obtained from the extracted hole mobility at 300 and 15 K[23].

    图 6  超薄GeOI 晶体管中的载流子输运模型[24]

    Fig. 6.  Carrier transport model in ultra-thin GeOI MOSFETs[24].

    图 7  GeOI pMOSFET空穴有效迁移率随VBG的变化情况[23]

    Fig. 7.  Hole mobility of UTB GeOI pMOSFETs with applying different VBG[23].

    图 8  (a) 电子迁移率与Ge厚度关系; (b) 不同Ge厚度下电子在能级中的分布情况[26]

    Fig. 8.  (a) Tbody dependence of effective electron mobility characteristics; (b) band structure of UTB GeOI nMOSFET under different channel thickness[26].

  • [1]

    Uchida K, Takagi S 2003 Appl. Phys. Lett. 82 2916Google Scholar

    [2]

    Wu H, Wu W, Si M, Peide D Y 2015 IEEE International Electron Devices Meeting (IEDM) Washington DC, Dec. 7−9, 2015 p2.1.1

    [3]

    Nayak D K, Woo J C S, Park J S, Wang K L, MacWilliams K P 1993 Appl. Phys. Lett. 62 2853Google Scholar

    [4]

    刘畅、卢继武、吴汪然、唐晓雨、张睿、俞文杰、王曦、赵毅 2015 物理学报 62 167305

    Liu C, Lu J W, Wu W R, Tang X Y, Zhang R, Yu W J, Wang X, Zhao Y 2015 Acta Phys. Sin. 62 167305

    [5]

    赵毅、万星拱 2006 物理学报 55 3003

    Zhao Y, Wan X G 2006 Acta Phys. Sin. 55 3003

    [6]

    Lee C H, Nishimura T, Tabata T, Lu C, Zhang W F, Nagashio K, Toriumi A 2013 IEEE International Electron Devices Meeting (IEDM) Washington DC, Dec. 9−11, 2013 p2.3.1

    [7]

    Cheng R, Yin L, Wu H, Yu X, Zhang Y, Zheng Z, Wu W, Chen B, Peide D Y, Liu X, Zhao Y 2017 IEEE Elec. Devi. Lett. 38 434Google Scholar

    [8]

    Chu M, Sun Y, Aghoram U, Thompson S E 2009 Annu. Rev. Mater. Res. 39 203Google Scholar

    [9]

    Antoniadis D A, Aberg I, Chleirigh C N, Nayfeh O M, Khakifirooz A, Hoyt J L 2006 IBM J. Res. Dev. 50 363Google Scholar

    [10]

    Lee C H, Nishimura T, Tabata T, Kita K, Toriumi A 2011 IEEE Trans. Elec. Dev. 58 1295

    [11]

    Zhang, R, Huang P C, Lin J C, Taoka N, Takenaka M, Takagi S 2013 IEEE Trans. Elec.n Dev. 60 927

    [12]

    Zhang R, Chern W, Yu X, Takenaka, M, Hoyt J L, Takagi, S 2013 IEEE International Electron Devices Meeting (IEDM) Washington DC, Dec. 9−11 2013 p26.1.1

    [13]

    Yeo Y C, Gong X, van Dal M J H, Vellianitis G, Passlack M 2015 IEEE International Electron Devices Meeting (IEDM) Washington D C, Dec. 7−9,2015 p2.4.1

    [14]

    van Dal M J H, Duriez B, Vellianitis G, Doornbos G, Oxland R, Holland M, Diaz C H 2014 IEEE International Electron Devices Meeting (IEDM) San Francisco, Dec. 7−9, 2014 p9.5.1

    [15]

    Choi Y K, Asano K, Lindert N, Subramanian V, King T J, Bokor J, Hu C 1999 IEEE International Electron Devices Meeting (IEDM) Washington D C, Dec. 5−8, 1999 p919

    [16]

    Ernst T, Cristoloveanu S, Ghibaudo G, Ouisse T, Horiguchi S, Ono Y, Takahashi Y, Murase K 2003 IEEE Trans. Elec. Dev. 50 830

    [17]

    Zhao Y, Takenaka M, Takagi S 2009 IEEE Trans. Elec. Dev. 56 1152Google Scholar

    [18]

    Weber O, Takagi S 2008 IEEE Trans. Elec. Dev. 55 2386

    [19]

    Takagi S, Toriumi A, Iwase M, Tango H 1994 IEEE Trans. Elec. Dev. 41 2357Google Scholar

    [20]

    Zhao Y, Takenaka M, Takagi S 2009 IEEE Elec. Dev. Lett. 30 987Google Scholar

    [21]

    Zhao Y, Matsumoto H, Sato T, Koyama S, Takenaka M, Takagi S 2010 IEEE Trans. Elec. Dev. 57 2057Google Scholar

    [22]

    Wu W, Li X, Sun J, Zhang R, Shi Y, Zhao Y 2015 IEEE Trans. Elec. Dev. 62 1136Google Scholar

    [23]

    Yu W, Wu W, Zhang B, Liu C, Sun J, Zhai D, Yu Y, Shi Y, Zhao Y, Zhao Q T 2014 IEEE Trans. Elec. Dev. 61 950Google Scholar

    [24]

    Yu X, Kang J, Takenaka M, Takagi S 2015 IEEE International Electron Devices Meeting (IEDM) Washington D C, Dec. 7−9, 2015 p2.2.1

    [25]

    Zheng Z, Yu X, Zhang Y, Xie M, Cheng R, Zhao Y 2018 IEEE Trans. Elec. Dev. 65 895Google Scholar

    [26]

    Chang W H, Irisawa T, Ishii H, Hattori H, Ota H, Takagi H, Kurashima Y, Uchida K, Maeda T 2017 IEEE Trans. Elec. Dev. 64 4615Google Scholar

  • [1] 江风益, 刘军林, 张建立, 徐龙权, 丁杰, 王光绪, 全知觉, 吴小明, 赵鹏, 刘苾雨, 李丹, 王小兰, 郑畅达, 潘拴, 方芳, 莫春兰. 半导体黄光发光二极管新材料新器件新设备. 物理学报, 2019, 68(16): 168503. doi: 10.7498/aps.68.20191044
    [2] 黄诗浩, 谢文明, 汪涵聪, 林光杨, 王佳琪, 黄巍, 李成. 双能谷效应对N型掺杂Si基Ge材料载流子晶格散射的影响. 物理学报, 2018, 67(4): 040501. doi: 10.7498/aps.67.20171413
    [3] 宋洪胜, 刘桂媛, 张宁玉, 庄桥, 程传福. 大散射角散斑场中有关相位奇异新特性的研究. 物理学报, 2015, 64(8): 084210. doi: 10.7498/aps.64.084210
    [4] 康健彬, 郝智彪, 王磊, 刘志林, 罗毅, 汪莱, 王健, 熊兵, 孙长征, 韩彦军, 李洪涛, 王禄, 王文新, 陈弘. 红外波长上转换器件中载流子阻挡结构的研究. 物理学报, 2015, 64(17): 178502. doi: 10.7498/aps.64.178502
    [5] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇. 单轴应变SiNMOSFET热载流子栅电流模型. 物理学报, 2014, 63(19): 197103. doi: 10.7498/aps.63.197103
    [6] 石艳梅, 刘继芝, 姚素英, 丁燕红. 具有纵向漏极场板的低导通电阻绝缘体上硅横向双扩散金属氧化物半导体器件新结构. 物理学报, 2014, 63(10): 107302. doi: 10.7498/aps.63.107302
    [7] 李菁田, 王建录, 张邦强, 荣曦明, 宁西京. 一种预测材料蠕变速率的新模型. 物理学报, 2014, 63(2): 028101. doi: 10.7498/aps.63.028101
    [8] 石艳梅, 刘继芝, 姚素英, 丁燕红, 张卫华, 代红丽. 具有L型源极场板的双槽绝缘体上硅高压器件新结构. 物理学报, 2014, 63(23): 237305. doi: 10.7498/aps.63.237305
    [9] 哈斯乌力吉, 吕志伟, 公 胜, 何伟明, 林殿阳, 张 伟. 受激布里渊散射新介质——全氟胺的研究. 物理学报, 2008, 57(10): 6360-6364. doi: 10.7498/aps.57.6360
    [10] 李 琦, 张 波, 李肇基. 双面阶梯埋氧层部分SOI高压器件新结构. 物理学报, 2008, 57(10): 6565-6570. doi: 10.7498/aps.57.6565
    [11] 哈斯乌力吉, 吕志伟, 李 强, 巴德欣, 何伟明. 选用新介质的双池受激布里渊散射系统的研究. 物理学报, 2007, 56(3): 1385-1389. doi: 10.7498/aps.56.1385
    [12] 姚 飞, 薛春来, 成步文, 王启明. 重掺B对应变SiGe材料能带结构的影响. 物理学报, 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [13] 王 欢, 姚淑德, 潘尧波, 张国义. 用卢瑟福背散射/沟道技术及高分辨X射线衍射技术分析不同Al和In含量的AlInGaN薄膜的应变. 物理学报, 2007, 56(6): 3350-3354. doi: 10.7498/aps.56.3350
    [14] 潘教青, 赵 谦, 朱洪亮, 赵玲娟, 丁 颖, 王宝军, 周 帆, 王鲁峰, 王 圩. 长波长大应变InGaAs/InGaAsP分布反馈激光器的材料生长与器件制备. 物理学报, 2006, 55(10): 5216-5220. doi: 10.7498/aps.55.5216
    [15] 李 潇, 刘 亮, 张海英, 尹军舰, 李海鸥, 叶甜春, 龚 敏. 一种新的磷化铟复合沟道高电子迁移率晶体管小信号物理模型. 物理学报, 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
    [16] 王 坤, 姚淑德, 侯利娜, 丁志博, 袁洪涛, 杜小龙, 薛其坤. 用卢瑟福背散射/沟道技术研究ZnO/Zn0.9Mg0.1O/ZnO异质结的弹性应变. 物理学报, 2006, 55(6): 2892-2896. doi: 10.7498/aps.55.2892
    [17] 刘红侠, 郑雪峰, 韩晓亮, 郝 跃, 张 绵. 一种新的GaAs PHEMT器件可靠性评估方法研究. 物理学报, 2003, 52(10): 2576-2579. doi: 10.7498/aps.52.2576
    [18] 谢欣云, 林 青, 门传玲, 刘卫丽, 徐安怀, 林成鲁. SOIM新结构的制备及其性能的研究. 物理学报, 2003, 52(1): 207-210. doi: 10.7498/aps.52.207
    [19] 陈立春, 王向军, 徐叙瑢, 姚健铨. 电极处势垒对新结构器件电子输运的影响. 物理学报, 1996, 45(4): 709-714. doi: 10.7498/aps.45.709
    [20] 杜东生. 一种可能的强子结构新模型. 物理学报, 1976, 25(3): 265-267. doi: 10.7498/aps.25.265
计量
  • 文章访问数:  12097
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-28
  • 修回日期:  2019-08-14
  • 上网日期:  2019-08-19
  • 刊出日期:  2019-08-20

/

返回文章
返回