搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混合型碘系钙钛矿薄膜变温光致发光特性的研究

蒋泵 陈思良 崔晓磊 胡紫婷 李跃 张笑铮 吴康敬 王文贞 蒋最敏 洪峰 马忠权 赵磊 徐飞 徐闰 詹义强

引用本文:
Citation:

混合型碘系钙钛矿薄膜变温光致发光特性的研究

蒋泵, 陈思良, 崔晓磊, 胡紫婷, 李跃, 张笑铮, 吴康敬, 王文贞, 蒋最敏, 洪峰, 马忠权, 赵磊, 徐飞, 徐闰, 詹义强

Temperature-dependent photoluminescence in hybrid iodine-based perovskites film

Jiang Beng, Chen Si-Liang, Cui Xiao-Lei, Hu Zi-Ting, Li Yue, Zhang Xiao-Zheng, Wu Kang-Jing, Wang Wen-Zhen, Jiang Zui-Min, Hong Feng, Ma Zhong-Quan, Zhao Lei, Xu Fei, Xu Run, Zhan Yi-Qiang
PDF
HTML
导出引用
  • 研究了阴离子和阳离子混合型碘系钙钛矿薄膜材料的结构、光学性质及光致发光温度特性. 研究发现, 阴离子混合型碘系钙钛矿(MAPb(BrxI1–x)3, MA+ = $ {\rm{C}}{{\rm{H}}_{\rm{3}}}{\rm{NH}}_3^ + $)随着半径较小的Br离子的比例增加(x = 0—0.1), 薄膜择优取向生长更明显, 其光学带隙从1.43 eV到1.48 eV线性增加. 在光抽运下, 随着工作温度从10 K升高到125 K, 纯碘系钙钛矿(MAPbI3, 即x = 0)可见区光致发光(PL)的峰位轻微的红移; 之后至350 K, 发生蓝移. 而Br阴离子混合型钙钛矿薄膜的PL峰位只随温度升高持续蓝移. 并且在不同工作温度下, Br阴离子比例x与PL峰位呈现线性关系. 对于纯碘系钙钛矿, 其高温段激子结合能是37.5 meV; 随着Br的比例的增加, 高温段激子结合能会先增大后减小. 当x = 0.0333, 其薄膜PL半高宽随温度升高展宽幅度最小, 具有更好的温度稳定性. 通过进一步三重阳离子混合和阴离子调节, 获得更加优良的混合型碘系钙钛矿((Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3, FA+ = $ {\rm{HC}}({\rm{N}}{{\rm{H}}_2})_2^ +$)薄膜, 为进一步研制太阳能电池和发光器件奠定了实验基础.
    Lead halide perovskite has attracted much attention due to its high absorption coefficient, long carrier diffusion length, low binding energy, and low cost. The stability of intrinsic crystal structure in I-based perovskite can be theoretically estimated by calculating cubic structures factor and octahedral factor. Experimental methods to solve the stability of structure in I-based perovskite could be mainly to either incorporate anions (e.g. Cl, Br) or mix cations (e.g. Cs+) into I-based perovskite matrix. Moreover, incorporating Br into I-based perovskite leads its band gap to widen, which might be used as a top-cell material to tandem solar cell. However, in order to understand photo-physics process of anion-mixed and/or cation-mixed perovskites, it is essential to further investigate the optical properties such as absorption spectrum, photoluminescence (PL), temperature-dependent PL (TPL) behavior, etc. In this work, anion-mixed and/or cation-mixed perovskite thin films with high quality crystallization and (110) prereferral orientation are synthesized by one-step solution method. All mixed perovskite films are characterized by using X-ray diffraction (Rigaku D MAX-3C, Cu-Kα, λ = 1.54050 Å) and X-ray photoelectron spectroscopy (XPS) (Thermo Scientific Escalab 250Xi). A set of strong peaks of the mixed perovskite films at 14.12° and 28.48°, is assigned to (110) and (220) lattice plane of orthorhombic crystal structure of I-based perovskite, due to preferred orientation. The Pb 4f and I 3d doublet peaks, corresponding to Pb+2 and I states, are observed in XPS spectra. It should be noted that in the absence of other valence states of Pb and I component at lower/upper binding energy, the chemical element composition ratio of Pb+2 and I are close to stoichiometric proportion. For optical absorptionspectra, the optical bandgaps of the perovskite films increase with doping concentration of Br increasing. For TPL, the perovskite films with x = 0 and x = 0.05 show abnormal red-shifts in a temperature range from 10 to 100 K. The following blue shifts in a temperature range from 125 to 350 K emerge, which is mainly attributed to band gap widening. However, incorporating more Br into I-based perovskite leads the TPL spectra to monotonically blue-shift. A linear relationship between the TPL peak position and the doping concentration of Br ions is observed at the same temperatures. This indicates that the Br anion in I-based perovskite plays a crucial role in determining the optical properties. The low-temperature and high-temperature (HT) excitonic binding energy at x = 0 are 186 meV and 37.5 meV, respectively. The HT excitonic binding energy first increases and then decreases with the Br concentration in I-based perovskite film increasing. The minimal variation of TPL peak position and FWHM (full width at half maximum) at x = 0.0333 are 13 nm and (25.8 ± 0.5) meV, respectively, suggesting higher temperature stability in optical property. This should contribute to understanding the relationship between temperature-dependent electrical and optoelectronic performance for hybrid mixed perovskite materials and devices.
      通信作者: 徐飞, feixu@staff.shu.edu.cn ; 徐闰, runxu@staff.shu.edu.cn ; 詹义强, yqzhan@fudan.edu.cn
    • 基金项目: 上海市自然科学基金(批准号: 17ZR1409600)、国家自然科学基金(批准号: 61874027, 11527805, 61874070)和复旦大学应用表面物理国家重点实验室(批准号: KF2018_08)资助的课题
      Corresponding author: Xu Fei, feixu@staff.shu.edu.cn ; Xu Run, runxu@staff.shu.edu.cn ; Zhan Yi-Qiang, yqzhan@fudan.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 17ZR1409600), the National Natural Science Foundation of China (Grant Nos. 61874027, 11527805, 61874070), and State Key Laboratory of Surface Physics of Fudan University, China (Grant No. KF2018_08)
    [1]

    Robert S F 2014 Science 344 458Google Scholar

    [2]

    Hodes G, Cahen D 2014 Nat. Photon. 8 87Google Scholar

    [3]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [4]

    Zuo C, Bolink H J, Han H, Huang J, Cahen D, Ding L 2016 Adv. Sci. (Weinh) 3 1500324Google Scholar

    [5]

    Xu J, Li X, Xiong J, Yuan C, Semin S, Rasing T, Bu X H 2019 Adv. Mater. 31 1806736

    [6]

    Kumar J, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar

    [7]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [8]

    Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L, Huang J 2016 Nat. Photonics 10 333Google Scholar

    [9]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [10]

    Yuan Y, Xu R, Xu H, Hong F, Xu F, Wang L 2015 Chin. Phys. B 24 116302Google Scholar

    [11]

    Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kiessling J, Kohler A, Vaynzof Y, Huettner S 2016 Adv. Mater. 28 2446Google Scholar

    [12]

    Meloni S, Moehl T, Tress W, Franckevicius M, Saliba M, Lee Y H, Gao P, Nazeeruddin M K, Zakeeruddin S M, Rothlisberger U, Graetzel M 2016 Nat. Commun. 7 10334Google Scholar

    [13]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [14]

    Chen Q, De Marco N, Yang Y, Song T, Chen C, Zhao H, Hong Z, Zhou H, Yang Y 2015 Nano Today 10 355Google Scholar

    [15]

    Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y, Zhong J 2017 Energy Environ. Sci. 10 2509Google Scholar

    [16]

    Saliba M, Matsui T, Seo J Y, Domanski K, CorreaBaena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989Google Scholar

    [17]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Gratzel M 2016 Science 354 206Google Scholar

    [18]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [19]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [20]

    Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421Google Scholar

    [21]

    Xu Q, Shao W, Zhang X, Liu J, Ouyang X, Tang X, Jia W 2019 J. Alloys Compd. 792 185

    [22]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J 2016 Science 351 151Google Scholar

    [23]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nature Phys. 11 582Google Scholar

    [24]

    Sestu N, Cadelano M, Sarritzu V, Chen F, Marongiu D, Piras R, Mainas M, Quochi F, Saba M, Mura A, Bongiovanni G 2015 J. Phys. Chem. Lett. 6 4566Google Scholar

    [25]

    Stadler W, Hofmann D M, Alt H C, Muschik T, Meyer B K, Weigel E, Müller-Vogt G, Salk M, Rupp E, Benz K W 1995 Phys. Rev. B 51 10619Google Scholar

    [26]

    Li T, Lozykowski H J, Reno J L 1992 Phys. Rev. B 46 6961Google Scholar

    [27]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [28]

    Cao R, Xu F, Zhu J, Ge S, Wang W, Xu H, Xu R, Wu Y, Ma Z, Hong F, Jiang Z 2016 Adv. Energy Mater. 6 1600814Google Scholar

    [29]

    Ahmad Z, Najeeb M A, Shakoor R A, Alashraf A, Muhtaseb S A, Soliman A, Nazeeruddin M K 2017 Sci. Rep. 7 15406Google Scholar

    [30]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 (第7版) (北京: 电子工业出版社) 第278−310页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp278−310

    [31]

    Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214Google Scholar

    [32]

    Böer K W, Pohl U W 2014 Semiconductor Physics (Cham: Springer International Publishing) pp1−29

    [33]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [34]

    Wang M, Fei G T, Zhang Y G, Kong M G, Zhang L D 2007 Adv. Mater. 19 4491Google Scholar

    [35]

    ElShazly A A, ElNaby M M H, Kenawy M A, ElNahass M M, ElShair H T, Ebrahim A M 1985 Appl. Phys. A 36 51Google Scholar

    [36]

    Wright A D, Verdi C, Milot R L, Eperon G E, PérezOsorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M 2016 Nat. Commun. 7 11755Google Scholar

    [37]

    Feng J, JianTing J, Chao X, Wang Y M, He S N, Zhang L, Yang Z R, Yan F, Zhang Q M 2019 Chin. Phys. B 28 076102Google Scholar

    [38]

    Ruf F, Aygüler M F, Giesbrecht N, Rendenbach B, Magin A, Docampo P, Kalt H, Hetterich M 2019 APL Mater. 7 031113Google Scholar

  • 图 1  (a) 阴离子混合型钙钛矿MAPb(BrxI1–x)3的XRD谱; (b) (110)和(220)衍射峰强和晶面间距d随Br比例x的变化; (c) 不同Br比例的钙钛矿薄膜中Pb和I元素XPS谱

    Fig. 1.  (a) The XRD of hybrid anion mixed perovskite MAPb(BrxI1–x)3; (b) the diffraction intensity and plane distance obtained at different molar ratios of Br in lattice plane of (110) and (220); (c) the XPS spectra of Pb and I element inperovskite film for different Brratios.

    图 2  室温下的阴离子混合型钙钛矿$MA{\rm{Pb(B}}{{\rm{r}}_x}{{\rm{I}}_{1 - x}}{)_3}$ (a)吸收系数与入射光子能量的关系; (b) Tauc方差分析光学带隙; (c) 由(1)式拟合带隙Eg的变化

    Fig. 2.  Hybrid anion mixed perovskite $MA{\rm{Pb(B}}{{\rm{r}}_x}{{\rm{I}}_{1 - x}}{)_3}$ in room temperature: (a) Absorption coefficient change with incident photon energy; (b) the optical bandgap obtained by Tauc equation; (c) the change of Eg using Eq. (1) fitting.

    图 3  室温下阴离子混合型钙钛矿MAPb(BrxI1–x)3 PL图谱 (a)归一化PL谱; (b)峰位和峰强与Br比例x的关系

    Fig. 3.  Photoluminescence of hybrid anion mixed perovskite MAPb(BrxI1–x)3 at room temperature: (a) The photoluminescence spectra; (b) the change of peak position and intensity.

    图 4  阴离子混合型钙钛矿MAPb(BrxI1–x)3可见波段变温PL谱 (a) PL谱; (b) PL投影图; (c)通过Arrhenius拟合提取激子结合能; (d) PL的强度、峰位和半高宽

    Fig. 4.  Temperature-dependent photoluminescence of hybrid anion mixed perovskites MAPb(BrxI1–x)3 in visible region: (a) The photoluminescence spectra; (b) the projection mapping of photoluminescence; (c) the excitonic binding energy extract by Arrhenius equation fitting; (d) the intensity, peak position and full width at half maximum of photoluminescence.

    图 5  混合阳离子(Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3 薄膜 (a) PL谱; (b)归一化变温PL投影图; (c) 可见波段发光峰位和强度随温度的变化

    Fig. 5.  Photoluminescence dependent-temperature of mix cation (Cs0.05(FA0.85MA0.15)0.95)Pb(Br0.15I0.85)3 measured at temperature range from 10 K to 350 K: (a) The photoluminescence spectra; (b) the projection mapping of normalize photoluminescence; (c) the peak position and intensity evolution with temperature.

    表 1  样品化学式与XPS结果对比

    Table 1.  Chemical formula of sample compare with XPS.

    Pb/I原子比样品化学式XPS测得成分
    26.42/73.58 $ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9833}}{\rm{B}}{{\rm{r}}_{0.0167}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.97}}{\rm{B}}{{\rm{r}}_{0.03}}} \right)_3}$
    26.84/73.16$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9667}}{\rm{B}}{{\rm{r}}_{0.0333}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9467}}{\rm{B}}{{\rm{r}}_{0.0533}}} \right)_3}$
    27/73$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9333}}{\rm{B}}{{\rm{r}}_{0.0667}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9367}}{\rm{B}}{{\rm{r}}_{0.0633}}} \right)_3}$
    27.55/72.45$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9}}{\rm{B}}{{\rm{r}}_{0.1}}} \right)_3}$$ MA{\rm{Pb}}{\left( {{{\rm{I}}_{0.9133}}{\rm{B}}{{\rm{r}}_{0.0667}}} \right)_3}$
    下载: 导出CSV
  • [1]

    Robert S F 2014 Science 344 458Google Scholar

    [2]

    Hodes G, Cahen D 2014 Nat. Photon. 8 87Google Scholar

    [3]

    Snaith H J 2013 J. Phys. Chem. Lett. 4 3623Google Scholar

    [4]

    Zuo C, Bolink H J, Han H, Huang J, Cahen D, Ding L 2016 Adv. Sci. (Weinh) 3 1500324Google Scholar

    [5]

    Xu J, Li X, Xiong J, Yuan C, Semin S, Rasing T, Bu X H 2019 Adv. Mater. 31 1806736

    [6]

    Kumar J, Kulkarni A, Miyasaka T 2019 Chem. Rev. 119 3036Google Scholar

    [7]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [8]

    Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang H H, Wang C, Ecker B R, Gao Y, Loi M A, Cao L, Huang J 2016 Nat. Photonics 10 333Google Scholar

    [9]

    瞿子涵, 储泽马, 张兴旺, 游经碧 2019 物理学报 68 158504Google Scholar

    Qu Z H, Chu Z M, Zhang X W, You J B 2019 Acta Phys. Sin. 68 158504Google Scholar

    [10]

    Yuan Y, Xu R, Xu H, Hong F, Xu F, Wang L 2015 Chin. Phys. B 24 116302Google Scholar

    [11]

    Li C, Tscheuschner S, Paulus F, Hopkinson P E, Kiessling J, Kohler A, Vaynzof Y, Huettner S 2016 Adv. Mater. 28 2446Google Scholar

    [12]

    Meloni S, Moehl T, Tress W, Franckevicius M, Saliba M, Lee Y H, Gao P, Nazeeruddin M K, Zakeeruddin S M, Rothlisberger U, Graetzel M 2016 Nat. Commun. 7 10334Google Scholar

    [13]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [14]

    Chen Q, De Marco N, Yang Y, Song T, Chen C, Zhao H, Hong Z, Zhou H, Yang Y 2015 Nano Today 10 355Google Scholar

    [15]

    Bu T, Liu X, Zhou Y, Yi J, Huang X, Luo L, Xiao J, Ku Z, Peng Y, Huang F, Cheng Y, Zhong J 2017 Energy Environ. Sci. 10 2509Google Scholar

    [16]

    Saliba M, Matsui T, Seo J Y, Domanski K, CorreaBaena J P, Nazeeruddin M K, Zakeeruddin S M, Tress W, Abate A, Hagfeldt A, Gratzel M 2016 Energy Environ. Sci. 9 1989Google Scholar

    [17]

    Saliba M, Matsui T, Domanski K, Seo J Y, Ummadisingu A, Zakeeruddin S M, CorreaBaena J P, Tress W R, Abate A, Hagfeldt A, Gratzel M 2016 Science 354 206Google Scholar

    [18]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [19]

    Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar

    [20]

    Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Huttner S, Leijtens T, Stranks S D, Snaith H J, Atature M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421Google Scholar

    [21]

    Xu Q, Shao W, Zhang X, Liu J, Ouyang X, Tang X, Jia W 2019 J. Alloys Compd. 792 185

    [22]

    McMeekin D P, Sadoughi G, Rehman W, Eperon G E, Saliba M, Hörantner M T, Haghighirad A, Sakai N, Korte L, Rech B, Johnston M B, Herz L M, Snaith H J 2016 Science 351 151Google Scholar

    [23]

    Miyata A, Mitioglu A, Plochocka P, Portugall O, Wang J T W, Stranks S D, Snaith H J, Nicholas R J 2015 Nature Phys. 11 582Google Scholar

    [24]

    Sestu N, Cadelano M, Sarritzu V, Chen F, Marongiu D, Piras R, Mainas M, Quochi F, Saba M, Mura A, Bongiovanni G 2015 J. Phys. Chem. Lett. 6 4566Google Scholar

    [25]

    Stadler W, Hofmann D M, Alt H C, Muschik T, Meyer B K, Weigel E, Müller-Vogt G, Salk M, Rupp E, Benz K W 1995 Phys. Rev. B 51 10619Google Scholar

    [26]

    Li T, Lozykowski H J, Reno J L 1992 Phys. Rev. B 46 6961Google Scholar

    [27]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nat. Mater. 13 897Google Scholar

    [28]

    Cao R, Xu F, Zhu J, Ge S, Wang W, Xu H, Xu R, Wu Y, Ma Z, Hong F, Jiang Z 2016 Adv. Energy Mater. 6 1600814Google Scholar

    [29]

    Ahmad Z, Najeeb M A, Shakoor R A, Alashraf A, Muhtaseb S A, Soliman A, Nazeeruddin M K 2017 Sci. Rep. 7 15406Google Scholar

    [30]

    刘恩科, 朱秉升, 罗晋生 2011 半导体物理学 (第7版) (北京: 电子工业出版社) 第278−310页

    Liu E K, Zhu B S, Luo J S 2011 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp278−310

    [31]

    Swanepoel R 1983 J. Phys. E: Sci. Instrum. 16 1214Google Scholar

    [32]

    Böer K W, Pohl U W 2014 Semiconductor Physics (Cham: Springer International Publishing) pp1−29

    [33]

    Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar

    [34]

    Wang M, Fei G T, Zhang Y G, Kong M G, Zhang L D 2007 Adv. Mater. 19 4491Google Scholar

    [35]

    ElShazly A A, ElNaby M M H, Kenawy M A, ElNahass M M, ElShair H T, Ebrahim A M 1985 Appl. Phys. A 36 51Google Scholar

    [36]

    Wright A D, Verdi C, Milot R L, Eperon G E, PérezOsorio M A, Snaith H J, Giustino F, Johnston M B, Herz L M 2016 Nat. Commun. 7 11755Google Scholar

    [37]

    Feng J, JianTing J, Chao X, Wang Y M, He S N, Zhang L, Yang Z R, Yan F, Zhang Q M 2019 Chin. Phys. B 28 076102Google Scholar

    [38]

    Ruf F, Aygüler M F, Giesbrecht N, Rendenbach B, Magin A, Docampo P, Kalt H, Hetterich M 2019 APL Mater. 7 031113Google Scholar

  • [1] 吕行, 富容国, 常本康, 郭欣, 王芝. 透射式GaAs光电阴极性能提高以及结构优化. 物理学报, 2024, 73(3): 037801. doi: 10.7498/aps.73.20231542
    [2] 曾凡菊, 谭永前, 胡伟, 唐孝生, 张小梅, 尹海峰. 超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究. 物理学报, 2022, 71(4): 047401. doi: 10.7498/aps.71.20211895
    [3] 隋国民, 严桂俊, 杨光, 张宝, 冯亚青. 二维氟代苯甲胺钙钛矿结构和光电性能的理论研究. 物理学报, 2022, 71(20): 208801. doi: 10.7498/aps.71.20220802
    [4] 曾凡菊, 谭永前, Wei Hu, 唐孝生, 张小梅, 尹海峰. 超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211895
    [5] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究. 物理学报, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [6] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [7] 姜艳, 刘贵立. 剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响. 物理学报, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [8] 刘海永, 张敏, 林国强, 韩克昌, 张林. 脉冲偏压电弧离子镀Cr-O薄膜结构及光学性能研究. 物理学报, 2015, 64(13): 138104. doi: 10.7498/aps.64.138104
    [9] 黄小林, 侯丽珍, 喻博闻, 陈国良, 王世良, 马亮, 刘新利, 贺跃辉. Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究. 物理学报, 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [10] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [11] 章瑞铄, 刘涌, 滕繁, 宋晨路, 韩高荣. 锐钛矿相和金红石相TiO2:Nb的光电性能研究. 物理学报, 2012, 61(1): 017101. doi: 10.7498/aps.61.017101
    [12] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [13] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭. 高性能透射式GaAs光电阴极量子效率拟合与结构研究. 物理学报, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [14] 彭静, 徐智谋, 王双保, 董泽华. 非晶钛酸锶钡薄膜的金属有机分解法制备及其光学性能. 物理学报, 2011, 60(5): 057702. doi: 10.7498/aps.60.057702
    [15] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究. 物理学报, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [16] 吴雪炜, 吴大建, 刘晓峻. 硼(氮、氟)掺杂对TiO2纳米颗粒光学性能的影响. 物理学报, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [17] 张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤. 硼掺杂单壁碳纳米管吸附甲醛的电子结构和光学性能研究. 物理学报, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [18] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析. 物理学报, 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [19] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] 沈 健, 刘守华, 沈自才, 孔伟金, 黄建兵, 邵建达, 范正修. 基底微缺陷对介质薄膜光学性能影响的理论研究. 物理学报, 2005, 54(10): 4920-4925. doi: 10.7498/aps.54.4920
计量
  • 文章访问数:  14499
  • PDF下载量:  327
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-16
  • 修回日期:  2019-10-13
  • 上网日期:  2019-11-28
  • 刊出日期:  2019-12-01

/

返回文章
返回