搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声子系统中弹性波与热输运的拓扑与非互易现象

王子 张丹妹 任捷

引用本文:
Citation:

声子系统中弹性波与热输运的拓扑与非互易现象

王子, 张丹妹, 任捷

Topological and non-reciprocal phenomena in elastic waves and heat transport of phononic systems

Wang Zi, Zhang Dan-Mei, Ren Jie
PDF
HTML
导出引用
  • 声子是晶格集体振动模式二次量子化之后的准粒子激元. 在声子的框架下, 可以对固体中的力学、弹性波以及热现象进行统一描述. 随着对固体系统认识的提高, 声子成为补充和替代电子、光子的另一种操控固体器件的重要手段. 其中, 对声子体系中弹性波和热传导的调控在理论和应用上都具有非常巨大的价值. 弹性波作为信息载体具有构建新型芯片元件的潜力, 而调控以声子为能量载体的热则可以实现能量转化与器件优化. 该领域近些年来发展迅猛, 大量声子热二极管、弹性和热学超材料、热抽运等新奇材料与器件已经被科学家们预测并实现. 这些发展进一步得益于“拓扑”与“非互易性”概念在声子系统器件上的探究和应用.本文综述了声子体系中的拓扑和非互易性相关现象, 介绍部分最新研究成果并对发展趋势进行初步展望. 主要讨论弹性波和热传导中的拓扑和非互易性, 其中重点回顾了利用含时驱动实现的弹性波与热流的非互易传输现象. 这种动态调控手段的可调节性很大, 可广泛应用于各尺度多组分的声子弹性波与热输运体系之中.
    Phonon is a quasi-particle excitation after the second quantization of lattice vibration. In the phonon framework, we can describe mechanics, elastic wave and thermal phenomena in solid uniformly. With the development of our understanding about solid state systems, phonon has become an important method to control device in solid state, which can be seen as a supplement and replacement for electronics and photonics. Among them, the modulation of elastic wave and heat conduction in phonon system has great theoretical and practical value. Elastic wave as an information carrier has the potential to construct new chip elements, while manipulating thermal phonon as an energy carrier can achieve the goal of energy transformation and device optimization. These fields have developed rapidly in recent years. A large number of novel materials such as thermal diodes, elastic meta-materials, thermal meta-materials, and heat pumping devices have been predicted and obtained. These developments are inseparable from the application of the concept of "topology" to phonon systems and the realization of non-reciprocal devices on various scales. In this paper, the topological and nonreciprocal phenomena in phonon systems are tentatively summarized. Besides, the latest research results are introduced and the development trend is prospected. The non-reciprocity of elastic wave and heat flow realized by time-dependent driving is reviewed with emphasis. This method has a great flexibility and can be similarly applied to multi-component systems on all scales.
      通信作者: 任捷, xonics@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11775159, 11935010)、上海市自然科学基金(批准号: 18ZR1442800, 18JC1410900)、上海市特殊人工微结构材料与技术重点实验室项目和中央高校基本科研业务费专项资金资助的课题
      Corresponding author: Ren Jie, xonics@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775159, 11935010), the Natural Science Foundation of Shanghai Science and Technology Committee, China (Grant Nos. 18ZR1442800, 18JC1410900), the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, and the Fundamental Research Funds for the Central Universities, China
    [1]

    Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B 2012 Rev. Mod. Phys. 84 1045Google Scholar

    [2]

    Maldovan M 2013 Nature 503 209Google Scholar

    [3]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [4]

    Berry M V 1984 Proc. R. Soc. Lon. 392 45Google Scholar

    [5]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [6]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [7]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [8]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809Google Scholar

    [9]

    Li Y, Wu Y, Mei J 2014 Appl. Phys. Lett. 105 14107Google Scholar

    [10]

    Xiao M, Ma G, Yang Z, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240Google Scholar

    [11]

    Fleury R, Khanikaev A B, Alù A 2016 Nat. Commun. 7 11744Google Scholar

    [12]

    Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y, Zhang B 2015 Phys. Rev. Lett. 114 114301Google Scholar

    [13]

    He C, Ni X, Ge H, Sun X, Chen Y, Lu M, Liu X, Chen Y 2016 Nat. Phys. 12 1124Google Scholar

    [14]

    Peng Y, Qin C, Zhao D, Shen Y, Xu X, Bao M, Jia H, Zhu X 2016 Nat. Commun. 7 13368Google Scholar

    [15]

    Nassar H, Chen H, Norris A N, Haberman M R, Huang G L 2017 Proc. Math. Phys. Eng. Sci. 473 20170188Google Scholar

    [16]

    Nassar H, Chen H, Norris A N, Huang G L 2018 Phys. Rev. B 97 14305Google Scholar

    [17]

    Ren J, Hänggi P, Li B 2010 Phys. Rev. Lett. 104 170601Google Scholar

    [18]

    Xu H, Jiang L, Clerk A A, Harris J 2019 Nature 568 65Google Scholar

    [19]

    Torrent D, Poncelet O, Batsale J C 2018 Phys. Rev. Lett. 120 125501Google Scholar

    [20]

    Seif A, Degottardi W, Esfarjani K, Hafezi M 2018 Nat. Commun. 9 1207Google Scholar

    [21]

    邢玉恒, 徐锡方, 张力发 2017 物理学报 66 226601Google Scholar

    Xing Y H, Xu X F, Zhang L F 2017 Acta Phys. Sin. 66 226601Google Scholar

    [22]

    何程, 卢明辉, 陈延峰 2017 物理 46 12Google Scholar

    He C, Lu M H, Chen Y F 2017 Physics 46 12Google Scholar

    [23]

    Zhang X, Xiao M, Cheng Y, Lu M, Christensen J 2018 Commun. Phys. 1 97Google Scholar

    [24]

    Liu Y, Xu Y, Duan W 2017 Natl. Sci. Rev. 5 314

    [25]

    Zak J 1989 Phys. Rev. Lett. 62 2747Google Scholar

    [26]

    Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K, Deck-Léger Z 2018 Phys. Rev. Appl. 10 47001Google Scholar

    [27]

    Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popović M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R, Renner H 2013 Nat. Photonics 7 579Google Scholar

    [28]

    Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar

    [29]

    Tsakmakidis K L, Shen L, Schulz S A, Zheng X, Upham J, Deng X, Altug H, Vakakis A F, Boyd R W 2017 Science 356 1260Google Scholar

    [30]

    Gallavotti G 1996 Phys. Rev. Lett. 77 4334Google Scholar

    [31]

    Lorentz H A 1896 Amsterdammer Akademie der Wetenschappen 4 176

    [32]

    Onsager L 1931 Phys. Rev. 37 405Google Scholar

    [33]

    Onsager L 1931 Phys. Rev. 38 2265Google Scholar

    [34]

    Liu Y, Xu Y, Zhang S, Duan W 2017 Phys. Rev. B 96 64106Google Scholar

    [35]

    Ren J, Liu S, Li B 2012 Phys. Rev. Lett. 108 210603Google Scholar

    [36]

    Chen T, Wang X, Ren J 2013 Phys. Rev. B 87 144303Google Scholar

    [37]

    Kitagawa T, Berg E, Rudner M, Demler E 2010 Phys. Rev. B 82 235114Google Scholar

    [38]

    Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108Google Scholar

    [39]

    Ozawa T, Price H M 2019 Nat. Rev. Phys. 1 349Google Scholar

    [40]

    Goldman N, Dalibard J 2014 Phys. Rev. X 4 31027

    [41]

    Wu Y, Chen Z 2016 Phys. Rev. Appl. 5 54021Google Scholar

    [42]

    Roman S, Huber S D 2015 Science 349 47Google Scholar

    [43]

    Li S, Zhao D, Niu H, Zhu X, Zang J 2018 Nat. Commun. 9 1370Google Scholar

    [44]

    Brendel C, Peano V, Painter O, Marquardt F 2018 Phys. Rev. B 97 20102

    [45]

    Yu S, Sun X, Ni X, Wang Q, Yan X, He C, Liu X, Feng L, Lu M, Chen Y 2016 Nat. Mater. 15 1243Google Scholar

    [46]

    Lamberti F R, Senellart P, Favero I, Krebs O, Lanco L, Gomez Carbonell C, Lemaître A, Lanzillotti-Kimura N D, Esmann M 2018 Phys. Rev. B 97 155422Google Scholar

    [47]

    Süsstrunk R, Huber S D 2016 Proc. Natl. Acad. Sci. U S A 113 E4767Google Scholar

    [48]

    Wang P, Lu L, Bertoldi K 2015 Phys. Rev. Lett. 115 104302Google Scholar

    [49]

    Long Y, Ren J, Chen H 2018 Proc. Natl. Acad. Sci. U S A 115 9951Google Scholar

    [50]

    Yu S, He C, Wang Z, Liu F, Sun X, Li Z, Lu H, Lu M, Liu X, Chen Y 2018 Nat. Commun. 9 3072Google Scholar

    [51]

    Liu T, Semperlotti F 2018 Phys. Rev. Appl. 9 14001Google Scholar

    [52]

    Vila J, Pal R K, Ruzzene M 2017 Phys. Rev. B 96 134307Google Scholar

    [53]

    Yan M, Lu J, Li F, Deng W, Huang X, Ma J, Liu Z 2018 Nat. Mater. 17 993Google Scholar

    [54]

    Mousavi S H, Khanikaev A B, Wang Z 2015 Nat. Commun. 6 8682Google Scholar

    [55]

    Pal R K, Ruzzene M 2017 New J. Phys. 19 25001Google Scholar

    [56]

    Zhang D, Ren J, Zhou T, Li B 2019 New J. Phys. 21 093033Google Scholar

    [57]

    Guo Z, Jiang H, Long Y, Yu K, Ren J, Xue C, Chen H 2017 Sci. Rep. 7 7742Google Scholar

    [58]

    Wu G, Long Y, Ren J 2018 Phys. Rev. B 97 205423Google Scholar

    [59]

    Li Z, Yuan B, Wang Y, Shui G, Zhang C, Wang Y 2019 Mech. Mater. 133 85Google Scholar

    [60]

    Nassar H, Xu X C, Norris A N, Huang G L 2017 J. Mech. Phys. Solids 101 10Google Scholar

    [61]

    Wallen S P, Haberman M R 2019 Phys. Rev. E 99 13001Google Scholar

    [62]

    Attarzadeh M A, Al Ba Ba A H, Nouh M 2018 Appl. Acoust. 133 210Google Scholar

    [63]

    Li F, Chong C, Yang J, Kevrekidis P G, Daraio C 2014 Phys. Rev. E 90 53201Google Scholar

    [64]

    Swinteck N, Matsuo S, Runge K, Vasseur J O, Lucas P, Deymier P A 2015 J. Appl. Phys. 118 63103Google Scholar

    [65]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar

    [66]

    Strohm C, Rikken G, Wyder P 2005 Phys. Rev. Lett. 95 155901Google Scholar

    [67]

    Inyushkin A V, Taldenkov A N 2007 Jetp Lett. 86 379Google Scholar

    [68]

    Zhang L, Ren J, Wang J S, Li B 2011 J Phys. Condens. Matter 23 305402Google Scholar

    [69]

    Zhang L, Ren J, Wang J S, Li B 2010 Phys. Rev. Lett. 105 225901Google Scholar

    [70]

    Levitov L S, Lee H, Lesovik G B 1996 J. Math. Phys. 37 4845Google Scholar

    [71]

    Touchette H 2009 Phys. Rep. 478 1Google Scholar

    [72]

    Xu H, Mason D, Jiang L, Harris J 2016 Nature 537 80Google Scholar

    [73]

    Miri M, Alù A 2019 Science 363 eaar7709Google Scholar

    [74]

    Heiss W D 2012 J. Phys. A 45 444016Google Scholar

    [75]

    Li Y, Peng Y, Han L, Miri M, Li W, Xiao M, Zhu X, Zhao J, Alù A, Fan S 2019 Science 364 170

    [76]

    Wang Y, Yousefzadeh B, Chen H, Nassar H, Huang G, Daraio C 2018 Phys. Rev. Lett. 121 194301Google Scholar

    [77]

    Serra-Garcia M, Peri V, Süsstrunk R, Bilal O R, Larsen T, Villanueva L G, Huber S D 2018 Nature 555 342Google Scholar

    [78]

    Zangeneh-Nejad F, Fleury R 2019 Phys. Rev. Lett. 123 53902Google Scholar

    [79]

    Leykam D, Bliokh K Y, Huang C, Chong Y D, Nori F 2017 Phys. Rev. Lett. 118 40401Google Scholar

  • 图 1  (a)弹性波的内禀自旋轨道锁定[49]; (b)弹性波的赝自旋轨道锁定[50](由此都可以得到响应模式的单向通道)

    Fig. 1.  (a) Spin-momentum locking in elastic wave systems[49]; (b) pseudo-spin-orbital locking in elastic wave system[50] (One-direction channels are established).

    图 2  (a)弹性波的谷拓扑绝缘体, 它的每个边界上都可以支持不同谷的边界态; (b)有限带状材料中弹性波体态和边界态的能带, 其中色阶表示(a)中不同的纵向坐标, 蓝色和红色分别表示上下边界[51]; (c)拓扑相变过程中的能带反转[53]; (d)受拓扑保护的边界传输[51]

    Fig. 2.  (a) Valley topological insulator for elastic wave with different valleys supported on each edge; (b) bulk and edge band in a finite ribbon; the color bar implies the value of vertical coordinate, with pure blue (red) representing the upper (lower) edge[51]; (c) the band inversion during the topological phase transition[53]; (d) the topological edge state transmission is robust against disorder[51]

    图 3  (a)由有效负质量和有效负模量系统连接而成的有限长系统以及其界面态, 中间为系统的透射谱, 下面为带隙处共振峰频率下的振动模式; (b)不同参数情况下的系统色散关系以及较低两条能带的Zak 相位随着系统参数的变化[56]

    Fig. 3.  (a) Schematic spring-mass model of a finite 1D system connected by mass-negative and coupling-negative to achieve the topological interface state, the middle of the figure is the transmittance spectrum and the lower is the spatial profile of the eigenmodes of the interface state; (b) the dispersion relation of the system by changing the parameter of the system and the curve of the Zak phase for the lower two band with respect to the system parameter[56].

    图 4  (a)因时空调制, 空间周期势下的能带(左)对称性打破(右); (b)能带随时间变化中的体带和边界态; 体态和边界态具有体边对应[16]; (c)包含杂质的受驱动系统夹在两静态系统(S和D)中间; (d)从S到D传输弹性波的透射率, M是杂质大小, 而v是含时行波驱动的移动方向, 透射率的非互易性受到拓扑保护, 不受可能存在的杂质的影响[64]

    Fig. 4.  (a) Inversion of energy band is broken by spatiotemporal modulation; (b) edge states in temporally varying energy band; the edge-bulk correspondence is present[16]; (c) the modulated middle part contains disorder and sandwiched between two static parts (S and D); (d) the transmission from S to D. M is the size of disorder, while v is the velocity of moving modulation. The non-reciprocity of the transmission is topologically protected from the disorder[64].

    图 5  通过引入陀螺仪打破时间反演实现的非平凡拓扑 (a)声子晶体的格点模型, 其中黑色和红色的线代表不同劲度系数的弹簧; (b)单个格点上的力学单元; (c)系统的能带, 能带上所标的数字代表该带的陈数; (d)有限系统的能态, 红线和蓝线分别为上下边界上的态, 可以看到, 单个边界上的态具有单向性[48]

    Fig. 5.  Non-trivial topology induced by broken time reversal symmetry with gyroscopic degrees of freedom: (a) Lattice model of the phononic crystal, in which the black and red lines represent springs of different stiffness; (b) the mechanical unit set on each site; (c) the bulk energy bands with corresponding Chern numbers; (d) eigenstates of a finite system, with uni-directional edge states denoted by red (black) curves. The edge states are uni-directional[48].

    图 6  将声子系统放入非惯性系引入的量子霍尔效应 (a)系统示意图, 声子系统的旋转类似对电子系统施加的磁场; (b)中间是准一维纳米带的能带, 左右两图分别为系统左右边界上存在的传输模式; (c)利用边界态单向性来调控频率处于体带带隙内的弹性波的传输, 尤为重要的是, 使用右边的三端口器件, 可以实现完美的弹性波非互易传输, 这是应用非平凡拓扑实现完美二极管的一个例子[34]

    Fig. 6.  Elastic wave quantum Hall effect of phononic systems in non-inertial reference frame: (a) Diagram of the system, with rotation acting like an effective magnetic field in electronic systems; (b) energy band of a nano-ribbon in the middle panel, with available left (right) edge states on the left (right) panel; (c) using the uni-directionality of edge states to manipulate the transmission in band gap. Remarkably, a perfect wave diode is obtained with the three-terminal system[34].

    图 7  (a), (b), (c)非线性分子结中的热抽运, 中间系统的跃迁速率和所接的温度相关, 因而可以通过含时调制左右热库的温度, 实现热流的定向输运; (a)系统示意图; (b)参数(左右两端所接温度)空间内的Berry曲率; (c)在慢驱动极限下, 平均热流大小和驱动频率成正比; 因而每次回路驱动产生的输运热量大小相同, 这种情况下热流是纯几何量; [17] (d), (e)非厄密两态光力系统等效哈密顿量在EP点附近的本征值; (f), (g)在t < 0时向系统馈入能量, 在灰色区域对系统进行绝热含时驱动, 其中(f)的驱动不绕过EP点, 而(g)的驱动绕过EP点, 是否绕过EP拓扑性地决定了两模式之间的能量交换方向[72]

    Fig. 7.  (a), (b), (c) Heat pump effect in nonlinear quantum molecular junction. The state jumping rate of the junction is dependent on the temperature of two reservoirs, which can then be utilized to modulated temporally to achieve directional heat transfer. (a) The demonstrative diagram of the system; (b) berry curvature in the parameter (the temperature of reservoirs) space; (c) average heat transferring rate proportional to driving frequency, showing the pure geometric origin of pumped heat[17]; (d), (e) the eigenvalues around EP of the two state system’s effective optomechanical non-Hermitian Hamiltonian; (f), (g) the transient behavior of system’s energy on the two of states. The adiabatic driving in (f) does not circle around EP while that in (g) does. Whether circling around EP determines the energy transfer direction topologically.[72]

    图 8  (a)系统示意图与驱动方式; (b)对弹簧劲度系数进行时空调制, 实现的能带非互易, 驱动带来附加的准能量和准动量使得能带内出现模式耦合, 使能带在满足广义Bragg条件的位置打开带隙[76]

    Fig. 8.  (a) A schematic figure of the experimental system and the time modulation protocol; (b) the stiffness of springs is modulated spatiotemporally to achieve the non-reciprocal energy band. Periodical modulation brings mode coupling in the Bloch band, opening gaps in the position satisfying modified Bragg condition[76] .

    图 9  (a)静态热二极管的原理示意图[1], 关键在于, 调控热传导相关主要模式声子的能谱交叠; (b)含时驱动带来的温度分布非互易性, 上下两图中驱动方向相反, 而左右所接的温度不变. 其中Γ代表了时空调制移动速率, Γ = 0即为无时间调制; 非互易效果随调制移动速度先变大再变小[19]

    Fig. 9.  (a) A schematic static thermal diode obtained by manipulation of the spectrum overlap between the two nonlinear parts[1]; (b) non-reciprocal temperature distribution. The moving direction of the wave-like modulation is opposite between the upper and lower panels, while direction of temperature gradient is not altered. Gamma implies the velocity of modulation motion, which is zero when the modulation is independent of time. The degree of non-reciprocity first increases and then decreases when gamma monotonically grows[19] .

  • [1]

    Li N, Ren J, Wang L, Zhang G, Hänggi P, Li B 2012 Rev. Mod. Phys. 84 1045Google Scholar

    [2]

    Maldovan M 2013 Nature 503 209Google Scholar

    [3]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405Google Scholar

    [4]

    Berry M V 1984 Proc. R. Soc. Lon. 392 45Google Scholar

    [5]

    Haldane F D M 1988 Phys. Rev. Lett. 61 2015Google Scholar

    [6]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [7]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [8]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809Google Scholar

    [9]

    Li Y, Wu Y, Mei J 2014 Appl. Phys. Lett. 105 14107Google Scholar

    [10]

    Xiao M, Ma G, Yang Z, Sheng P, Zhang Z Q, Chan C T 2015 Nat. Phys. 11 240Google Scholar

    [11]

    Fleury R, Khanikaev A B, Alù A 2016 Nat. Commun. 7 11744Google Scholar

    [12]

    Yang Z, Gao F, Shi X, Lin X, Gao Z, Chong Y, Zhang B 2015 Phys. Rev. Lett. 114 114301Google Scholar

    [13]

    He C, Ni X, Ge H, Sun X, Chen Y, Lu M, Liu X, Chen Y 2016 Nat. Phys. 12 1124Google Scholar

    [14]

    Peng Y, Qin C, Zhao D, Shen Y, Xu X, Bao M, Jia H, Zhu X 2016 Nat. Commun. 7 13368Google Scholar

    [15]

    Nassar H, Chen H, Norris A N, Haberman M R, Huang G L 2017 Proc. Math. Phys. Eng. Sci. 473 20170188Google Scholar

    [16]

    Nassar H, Chen H, Norris A N, Huang G L 2018 Phys. Rev. B 97 14305Google Scholar

    [17]

    Ren J, Hänggi P, Li B 2010 Phys. Rev. Lett. 104 170601Google Scholar

    [18]

    Xu H, Jiang L, Clerk A A, Harris J 2019 Nature 568 65Google Scholar

    [19]

    Torrent D, Poncelet O, Batsale J C 2018 Phys. Rev. Lett. 120 125501Google Scholar

    [20]

    Seif A, Degottardi W, Esfarjani K, Hafezi M 2018 Nat. Commun. 9 1207Google Scholar

    [21]

    邢玉恒, 徐锡方, 张力发 2017 物理学报 66 226601Google Scholar

    Xing Y H, Xu X F, Zhang L F 2017 Acta Phys. Sin. 66 226601Google Scholar

    [22]

    何程, 卢明辉, 陈延峰 2017 物理 46 12Google Scholar

    He C, Lu M H, Chen Y F 2017 Physics 46 12Google Scholar

    [23]

    Zhang X, Xiao M, Cheng Y, Lu M, Christensen J 2018 Commun. Phys. 1 97Google Scholar

    [24]

    Liu Y, Xu Y, Duan W 2017 Natl. Sci. Rev. 5 314

    [25]

    Zak J 1989 Phys. Rev. Lett. 62 2747Google Scholar

    [26]

    Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K, Deck-Léger Z 2018 Phys. Rev. Appl. 10 47001Google Scholar

    [27]

    Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popović M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R, Renner H 2013 Nat. Photonics 7 579Google Scholar

    [28]

    Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar

    [29]

    Tsakmakidis K L, Shen L, Schulz S A, Zheng X, Upham J, Deng X, Altug H, Vakakis A F, Boyd R W 2017 Science 356 1260Google Scholar

    [30]

    Gallavotti G 1996 Phys. Rev. Lett. 77 4334Google Scholar

    [31]

    Lorentz H A 1896 Amsterdammer Akademie der Wetenschappen 4 176

    [32]

    Onsager L 1931 Phys. Rev. 37 405Google Scholar

    [33]

    Onsager L 1931 Phys. Rev. 38 2265Google Scholar

    [34]

    Liu Y, Xu Y, Zhang S, Duan W 2017 Phys. Rev. B 96 64106Google Scholar

    [35]

    Ren J, Liu S, Li B 2012 Phys. Rev. Lett. 108 210603Google Scholar

    [36]

    Chen T, Wang X, Ren J 2013 Phys. Rev. B 87 144303Google Scholar

    [37]

    Kitagawa T, Berg E, Rudner M, Demler E 2010 Phys. Rev. B 82 235114Google Scholar

    [38]

    Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 Phys. Rev. B 84 235108Google Scholar

    [39]

    Ozawa T, Price H M 2019 Nat. Rev. Phys. 1 349Google Scholar

    [40]

    Goldman N, Dalibard J 2014 Phys. Rev. X 4 31027

    [41]

    Wu Y, Chen Z 2016 Phys. Rev. Appl. 5 54021Google Scholar

    [42]

    Roman S, Huber S D 2015 Science 349 47Google Scholar

    [43]

    Li S, Zhao D, Niu H, Zhu X, Zang J 2018 Nat. Commun. 9 1370Google Scholar

    [44]

    Brendel C, Peano V, Painter O, Marquardt F 2018 Phys. Rev. B 97 20102

    [45]

    Yu S, Sun X, Ni X, Wang Q, Yan X, He C, Liu X, Feng L, Lu M, Chen Y 2016 Nat. Mater. 15 1243Google Scholar

    [46]

    Lamberti F R, Senellart P, Favero I, Krebs O, Lanco L, Gomez Carbonell C, Lemaître A, Lanzillotti-Kimura N D, Esmann M 2018 Phys. Rev. B 97 155422Google Scholar

    [47]

    Süsstrunk R, Huber S D 2016 Proc. Natl. Acad. Sci. U S A 113 E4767Google Scholar

    [48]

    Wang P, Lu L, Bertoldi K 2015 Phys. Rev. Lett. 115 104302Google Scholar

    [49]

    Long Y, Ren J, Chen H 2018 Proc. Natl. Acad. Sci. U S A 115 9951Google Scholar

    [50]

    Yu S, He C, Wang Z, Liu F, Sun X, Li Z, Lu H, Lu M, Liu X, Chen Y 2018 Nat. Commun. 9 3072Google Scholar

    [51]

    Liu T, Semperlotti F 2018 Phys. Rev. Appl. 9 14001Google Scholar

    [52]

    Vila J, Pal R K, Ruzzene M 2017 Phys. Rev. B 96 134307Google Scholar

    [53]

    Yan M, Lu J, Li F, Deng W, Huang X, Ma J, Liu Z 2018 Nat. Mater. 17 993Google Scholar

    [54]

    Mousavi S H, Khanikaev A B, Wang Z 2015 Nat. Commun. 6 8682Google Scholar

    [55]

    Pal R K, Ruzzene M 2017 New J. Phys. 19 25001Google Scholar

    [56]

    Zhang D, Ren J, Zhou T, Li B 2019 New J. Phys. 21 093033Google Scholar

    [57]

    Guo Z, Jiang H, Long Y, Yu K, Ren J, Xue C, Chen H 2017 Sci. Rep. 7 7742Google Scholar

    [58]

    Wu G, Long Y, Ren J 2018 Phys. Rev. B 97 205423Google Scholar

    [59]

    Li Z, Yuan B, Wang Y, Shui G, Zhang C, Wang Y 2019 Mech. Mater. 133 85Google Scholar

    [60]

    Nassar H, Xu X C, Norris A N, Huang G L 2017 J. Mech. Phys. Solids 101 10Google Scholar

    [61]

    Wallen S P, Haberman M R 2019 Phys. Rev. E 99 13001Google Scholar

    [62]

    Attarzadeh M A, Al Ba Ba A H, Nouh M 2018 Appl. Acoust. 133 210Google Scholar

    [63]

    Li F, Chong C, Yang J, Kevrekidis P G, Daraio C 2014 Phys. Rev. E 90 53201Google Scholar

    [64]

    Swinteck N, Matsuo S, Runge K, Vasseur J O, Lucas P, Deymier P A 2015 J. Appl. Phys. 118 63103Google Scholar

    [65]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301Google Scholar

    [66]

    Strohm C, Rikken G, Wyder P 2005 Phys. Rev. Lett. 95 155901Google Scholar

    [67]

    Inyushkin A V, Taldenkov A N 2007 Jetp Lett. 86 379Google Scholar

    [68]

    Zhang L, Ren J, Wang J S, Li B 2011 J Phys. Condens. Matter 23 305402Google Scholar

    [69]

    Zhang L, Ren J, Wang J S, Li B 2010 Phys. Rev. Lett. 105 225901Google Scholar

    [70]

    Levitov L S, Lee H, Lesovik G B 1996 J. Math. Phys. 37 4845Google Scholar

    [71]

    Touchette H 2009 Phys. Rep. 478 1Google Scholar

    [72]

    Xu H, Mason D, Jiang L, Harris J 2016 Nature 537 80Google Scholar

    [73]

    Miri M, Alù A 2019 Science 363 eaar7709Google Scholar

    [74]

    Heiss W D 2012 J. Phys. A 45 444016Google Scholar

    [75]

    Li Y, Peng Y, Han L, Miri M, Li W, Xiao M, Zhu X, Zhao J, Alù A, Fan S 2019 Science 364 170

    [76]

    Wang Y, Yousefzadeh B, Chen H, Nassar H, Huang G, Daraio C 2018 Phys. Rev. Lett. 121 194301Google Scholar

    [77]

    Serra-Garcia M, Peri V, Süsstrunk R, Bilal O R, Larsen T, Villanueva L G, Huber S D 2018 Nature 555 342Google Scholar

    [78]

    Zangeneh-Nejad F, Fleury R 2019 Phys. Rev. Lett. 123 53902Google Scholar

    [79]

    Leykam D, Bliokh K Y, Huang C, Chong Y D, Nori F 2017 Phys. Rev. Lett. 118 40401Google Scholar

  • [1] 李齐治, 张世龙, 彭莹莹. 铜氧超导材料电荷密度波和元激发的共振非弹性X射线散射研究. 物理学报, 2024, 73(19): 197401. doi: 10.7498/aps.73.20240983
    [2] 杨昆. 分数量子霍尔液体中的几何自由度及类引力子元激发. 物理学报, 2024, 73(17): 177801. doi: 10.7498/aps.73.20240994
    [3] 隋文杰, 张玉, 张紫瑞, 王小龙, 张洪方, 史强, 杨冰. 拓扑自旋光子晶体中螺旋边界态单向传输调控研究. 物理学报, 2022, 71(19): 194101. doi: 10.7498/aps.71.20220353
    [4] 王子, 任捷. 周期驱动系统的非平衡热输运与热力学几何. 物理学报, 2021, 70(23): 230503. doi: 10.7498/aps.70.20211723
    [5] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [6] 孔令尧. 磁斯格明子拓扑特性及其动力学微磁学模拟研究进展. 物理学报, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [7] 贾子源, 杨玉婷, 季立宇, 杭志宏. 类石墨烯复杂晶胞光子晶体中的确定性界面态. 物理学报, 2017, 66(22): 227802. doi: 10.7498/aps.66.227802
    [8] 孙晓晨, 何程, 卢明辉, 陈延峰. 人工带隙材料的拓扑性质. 物理学报, 2017, 66(22): 224203. doi: 10.7498/aps.66.224203
    [9] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
    [10] 周青春, 狄尊燕. 声子对隧穿量子点分子辐射场系统量子相位的影响. 物理学报, 2013, 62(13): 134206. doi: 10.7498/aps.62.134206
    [11] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算. 物理学报, 2013, 62(18): 186302. doi: 10.7498/aps.62.186302
    [12] 邓艳平, 吕彬彬, 田强. 非对称方势阱中的激子及其与声子的相互作用. 物理学报, 2010, 59(7): 4961-4966. doi: 10.7498/aps.59.4961
    [13] 吴延昭, 谢宁, 刘建静, 焦永芳. 单壁碳纳米管声子谱及比热计算. 物理学报, 2009, 58(11): 7787-7791. doi: 10.7498/aps.58.7787
    [14] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光. 物理学报, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [15] 丁凌云, 龚中良, 黄平. 声子摩擦能量耗散机理研究. 物理学报, 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [16] 贺梦冬, 龚志强. 多层异质结构中的声学声子输运. 物理学报, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [19] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算. 物理学报, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [20] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
计量
  • 文章访问数:  14875
  • PDF下载量:  575
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-26
  • 修回日期:  2019-11-06
  • 上网日期:  2019-11-19
  • 刊出日期:  2019-11-20

/

返回文章
返回