搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑半金属ZrSiSe器件中面内霍尔效应的观测

韦博元 步海军 张帅 宋凤麒

引用本文:
Citation:

拓扑半金属ZrSiSe器件中面内霍尔效应的观测

韦博元, 步海军, 张帅, 宋凤麒

Observation of planar Hall effect in topological semimetal ZrSiSe device

Wei Bo-Yuan, Bu Hai-Jun, Zhang Shuai, Song Feng-Qi
PDF
HTML
导出引用
  • 拓扑半金属中的手性反常通常是用负磁阻来检测. 然而, 手性反常导致的负磁阻对磁场和电流的夹角比较敏感, 这给测量带来了挑战. 最近, 作为一种新兴实验手段, 面内霍尔效应被越来越多地应用于拓扑半金属中手性反常的探测. 本文通过将拓扑Nodal-line半金属ZrSiSe块体机械剥离制备成的介观器件, 对其面内霍尔效应进行了测量并探究其起源. 尽管测量数据与拓扑半金属中手性反常导致的面内霍尔效应理论公式拟合得很好, 但各向异性磁电阻的分析结果表明, 负磁阻并不存在. 更进一步地, 根据最近报道提出手性反常存在的判据, 在一个手性反常主导的系统中, 以磁场和电流夹角为参数的RxxRyx 关系曲线呈现为随磁场变化的一系列同心圆, 而在本文ZrSiSe器件的输运实验中, 表现为非同心圆的形式. 结合分析, 本文排除了手性反常的存在, 并推断各向异性磁电阻才是其面内霍尔效应的起因.
    Planar Hall effect(PHE) is a newly emerging experimental tool to detect chiral anomaly and nontrivial Berry curvature in topological semimetals, as chiral-anomaly-induced negative magnetoresistance is sensitive to the angle between magnetic field B and current I. Here we demonstrate the PHE in a topological nodal-line semimetal ZrSiSe device by electric transport measurement. According to our analysis, we conclude that the PHE results from the trivial anisotropic magnetoresistance (AMR). We argue that there is no inevitability between PHE and chiral anomaly, and some other mechanisms can induce PHE. This work indicates that PHE cannot be considered as evidence of chiral anomaly and one may seek for non-topological origin in such studies.
      通信作者: 宋凤麒, songfengqi@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0303203)、国家自然科学基金(批准号: 91622115, 11522432, 11574217, U1732273, U1732159, 61822403, 11874203, 11904165, 11904166) 和江苏省自然科学基金(批准号: BK20160659)资助的课题
      Corresponding author: Song Feng-Qi, songfengqi@nju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0303203), the National Natural Science Foundation of China (Grant Nos. 91622115, 11522432, 11574217, U1732273, U1732159, 61822403, 11874203, 11904165, 11904166), and the National Science Fundation of Jiangsu Province, China (Grant No. BK20160659)
    [1]

    李兆国, 张帅, 宋凤麒 2015 物理学报 64 097202Google Scholar

    Li Z G, Zhang S, Song F Q 2015 Acta Phys. Sin. 64 097202Google Scholar

    [2]

    王青, 盛利 2015 物理学报 9 097302Google Scholar

    Wang Q, Sheng L 2015 Acta Phys. Sin. 9 097302Google Scholar

    [3]

    王怀强, 杨运友, 鞠艳, 盛利, 邢定钰 2013 物理学报 62 037202

    Wang H Q, Yang Y Y, Ju Y, Sheng L, Xing D Y 2013 Acta Phys. Sin. 62 037202

    [4]

    伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国 2015 物理学报 67 128102Google Scholar

    Yin C J, Wang L, Feng Z L, Yang M, Yan D Y, Wang C X, Sin Y G 2015 Acta Phys. Sin. 67 128102Google Scholar

    [5]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [6]

    Jiang G Y, Feng Y, Wu W X, Li S R, Bai Y H, Li Y X, Zhang Q H, Gu L, Feng X, Zhang D, Song C L, Wang L L, Li W, Ma X C, Xue Q K, Wang Y Y, He K 2018 Chin. Phys. Lett. 35 076802Google Scholar

    [7]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [8]

    Wang Z J, Weng H M, Wu Q S, Dai X, Fang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [9]

    Chang T R, Xu S Y, Sanchez D S, Tsai W F, Huang S M, Chang G Q, Hsu C H, Bian G, Belopolski I, Yu Z M, Yang S A, Neupert T, Jeng H T, Lin H, Hasan M Z 2017 Phys. Rev. Lett. 119 026404Google Scholar

    [10]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [11]

    Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G Q, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Zhang C L, Yuan Z J, Jia S, Bansil A, Chou F C, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556Google Scholar

    [12]

    Schoop L M, Ali M N, Straßer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696Google Scholar

    [13]

    Neupane M, Belopolski I, Hosen M M, Sanchez D S, Sankar R, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P, Oppeneer P M, Kaczorowski D, Chou F C, Hasan M Z, Durakiewicz T 2016 Phys. Rev. B 93 201104Google Scholar

    [14]

    Hu J, Tang Z J, Liu J Y, Liu X, Zhu Y L, Graf D, Myhro K, Tran S, Lau C N, Wei J, Mao Z Q 2016 Phys. Rev. Lett. 117 016602Google Scholar

    [15]

    Pan H Y, Tong B B, Yu J H, Wang J, Fu D Z, Zhang S, Wu B, Wan X G, Zhang C, Wang X F, Song F Q 2018 Sci. Rep. 8 9340Google Scholar

    [16]

    Bian G, Chang T R, Zheng H, Velury S, Xu S Y, Neupert T, Chiu C K, Huang S M, Sanchez D S, Belopolski I, Alidoust N, Chen P J, Chang G Q, Bansil A, Jeng H T, Lin H, Hasan M Z 2016 Phys. Rev. B 93 121113Google Scholar

    [17]

    Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724Google Scholar

    [18]

    Yang L X, Liu Z K, Sun Y, Peng H, Yang H F, Zhang T, Zhou B, Zhang Y, Guo Y F, Rahn M, Prabhakaran D, Hussain Z, Mo S K, Felser C, Yan B, Chen Y L 2015 Nat. Phys. 11 728Google Scholar

    [19]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [20]

    Young S M, Zaheer S, Teo J C, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405Google Scholar

    [21]

    Mañes J L 2012 Phys. Rev. B 85 155118Google Scholar

    [22]

    Xu S Y, Alidoust N, Belopolski I, Yuan Z J, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G Q, Zhang C L, Mou D X, Wu Y, Huang L N, Lee C C, Huang S M, Wang B K, Bansil A, Jeng H T, Neupert T, Kaminski A, Lin H, Jia S, Hasan M Z 2015 Nat. Phys. 11 748Google Scholar

    [23]

    Xu N, Weng H M, Lv B Q, Matt C E, Park J, Bisti F, Strocov V N, Gawryluk D, Pomjakushina E, Conder K, Plumb N C, Radovic M, Autès G, Yazyev O V, Fang Z, Dai X, Qian T, Mesot J, Ding H, Shi M 2016 Nat. Commun. 7 11006Google Scholar

    [24]

    Fukushima K, Kharzeev D E, Warringa H J 2008 Phys. Rev. D 78 074033Google Scholar

    [25]

    Son D T, Spivak B Z 2013 Phys. Rev. B 88 104412Google Scholar

    [26]

    Kharzeev D E 2014 Prog. Part. Nucl. Phys. 75 133Google Scholar

    [27]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023

    [28]

    Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Guang B, Nasser A, Lee C C, Huang S M, T Chang R, ChangG Q, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J F, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z, Jia S 2016 Nat. Commun. 7 10735Google Scholar

    [29]

    Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E, Yan B H 2016 Nat. Commun. 7 11615Google Scholar

    [30]

    Dos Reis R D, Ajeesh M O, Kumar N, Arnold F, Shekhar C, Naumann M, Schmidt M, Nicklas M, Hassinger E 2016 New J. Phys. 18 085006Google Scholar

    [31]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [32]

    Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103(R)Google Scholar

    [33]

    Liu Q Q, Fei F C, Chen B, Bo X Y, Wei B Y, Zhang S, Zhang M H, Xie F J, Naveed M, Wan X G, Song F Q, Wang B G 2019 Phys. Rev. B 99 155119Google Scholar

    [34]

    Liang S H, Lin J J, Kushwaha S, Xing J, Ni N, Cava R J, Ong N P 2018 Phys. Rev. X 8 031002

    [35]

    Li P, Zhang C H, Zhang J W, Wen Y, Zhang X X 2018 Phys. Rev. B 98 121108Google Scholar

    [36]

    Smit J 1951 Physica 17 612Google Scholar

    [37]

    Burkov A A 2017 Phys. Rev. B 96 041110Google Scholar

    [38]

    Nandy S, Sharma G, Taraphder A, Tewari S 2017 Phys. Rev. Lett. 119 176804Google Scholar

    [39]

    West F G 1963 J. Appl. Phys. 34 1171Google Scholar

    [40]

    Marsocci V A, Chen T T 1969 J. Appl. Phys. 40 3361Google Scholar

    [41]

    Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A, Ando Y 2017 Nat. Commun. 8 1340Google Scholar

    [42]

    Wu B, Pan X C, Wu W K, Fei F C, Chen B, Liu Q Q, Bu H J, Cao L, Song F Q, Wang B G 2018 Appl. Phys. Lett. 113 011902Google Scholar

    [43]

    Tang H X, Kawakami R K, Awschalom D D, Roukes M L 2003 Phys. Rev. Lett. 90 107201Google Scholar

    [44]

    Chiu Y C, Chen K W, Schoenemann R, Quito V L, Sur S, Zhou Q, Graf D, Kampert E, Förster T, Yang K, McCandless G T, Chan J Y, Baumbach R E, Johannes M D, Balicas L 2019 arXiv: 1904.10123

  • 图 1  ZrSiSe单晶及纳米片的表征 (a) ZrSiSe的晶体结构; (b) ZrSiSe晶体的EDS谱; (c) ZrSiSe晶体(00n)面的X射线衍射谱; (d) 零磁场下ZrSiSe纳米片电阻随温度的变化曲线. 内插图是纳米片器件的光学图, 其中白色基准尺为5 μm

    Fig. 1.  The characterization of the ZrSiSe single crystals and nanoflakes: (a) The crystal structure of ZrSiSe; (b) the EDS spectrum of ZrSiSe crystal; (c) the single crystal X-ray-diffraction data of the (00n) surfaces of the sample; (d) the resistance varies with temperature at zero field. The inset is the optical graph of ZrSiSe flake device, and the white scale bar is 5 μm.

    图 2  ZrSiSe纳米片的SdH振荡 (a) 垂直磁场下ZrSiSe纳米片在不同温度下的磁阻; (b) 提取到的磁阻关于1/B的SdH振荡; (c) 图(b)中振荡的快速傅里叶变换; (d) 图(c)中随温度变化的FFT振幅. 实线是利用Lifshitz-Kosevich公式进行的拟合, 得到有效质量为0.13 me

    Fig. 2.  The SdH oscillations of ZrSiSe nanoflakes: (a) Magnetoresistance of ZrSiSe nanoflakes under perpendicular magnetic field at different temperatures; (b) the extracted SdH oscillations of magnetoresistance verus 1/B; (c) fast Fourier transformation spectra of the oscillation in (b); (d) the temperature dependence of FFT amplitude in (c). The solid line is a fit to the Lifshitz-Kosevich formula and gives the cyclotron effective mass of 0.13 me.

    图 3  ZrSiSe纳米片中PHE的观测 (a) T = 2 K时, 不同磁场下的PHE以及相应的拟合曲线; (b) T = 2 K时, PHE振幅随磁场强度大小的变化. 内插图是PHE测量的器件示意图; (c) B = 9 T时, 不同温度下的PHE以及相应的拟合曲线; (d) B = 9 T时, PHE振幅随温度的变化

    Fig. 3.  PHE measurement in ZrSiSe nanoflakes: (a) The measured PHE and the corresponding fitting curves under different B fields when the temperature is 2 K; (b) the amplitude of PHE varies with magnetic field when temperature is 2 K. The inset displays the schematic of the device configuration for PHE measurement; (c) angle dependence of the planar Hall resistance taken at different temperatures when the field is 9 T; (d) the amplitude of PHE varies with temperature when the field is 9 T.

    图 4  ZrSiSe中PHE的起源 (a) T = 2 K时, 不同磁场下的平面AMR. 红色实线是利用公式拟合得到的曲线; (b) T = 2 K时, 平面AMR振幅随磁场的变化. 青色实线是对实验数据点进行的幂函数拟合曲线; (c) 从图(a)中提取的RR||随磁场的变化; (d) 不同磁场下, 以θ为参量得到的Rxx-Ryx关系曲线

    Fig. 4.  Origin of the measured PHE: (a) In-plane AMR verus angle θ at various fields when temperature is 2 K. Solid red curves represent the fitting curves; (b) the amplitude of AMR varies with field at 2 K. The cyan curve is the power law fit curve for the experimental data points; (c) R and R|| extracted from the experimental date in panel (a). the red and blue solid curves represent the power law fit curves for R and R||, respectively; (d) the orbits obtained by plotting Rxx and Ryx with θ as the parameter at specific magnetic field.

  • [1]

    李兆国, 张帅, 宋凤麒 2015 物理学报 64 097202Google Scholar

    Li Z G, Zhang S, Song F Q 2015 Acta Phys. Sin. 64 097202Google Scholar

    [2]

    王青, 盛利 2015 物理学报 9 097302Google Scholar

    Wang Q, Sheng L 2015 Acta Phys. Sin. 9 097302Google Scholar

    [3]

    王怀强, 杨运友, 鞠艳, 盛利, 邢定钰 2013 物理学报 62 037202

    Wang H Q, Yang Y Y, Ju Y, Sheng L, Xing D Y 2013 Acta Phys. Sin. 62 037202

    [4]

    伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国 2015 物理学报 67 128102Google Scholar

    Yin C J, Wang L, Feng Z L, Yang M, Yan D Y, Wang C X, Sin Y G 2015 Acta Phys. Sin. 67 128102Google Scholar

    [5]

    Gong Y, Guo J W, Li J H, Zhu K J, Liao M H, Liu X Z, Zhang Q H, Gu L, Tang L, Feng X, Zhang D, Li W, Song C L, Wang L L, Yu P, Chen X, Wang Y Y, Yao H, Duan W H, Xu Y, Zhang S C, Ma X C, Xue Q K, He K 2019 Chin. Phys. Lett. 36 076801Google Scholar

    [6]

    Jiang G Y, Feng Y, Wu W X, Li S R, Bai Y H, Li Y X, Zhang Q H, Gu L, Feng X, Zhang D, Song C L, Wang L L, Li W, Ma X C, Xue Q K, Wang Y Y, He K 2018 Chin. Phys. Lett. 35 076802Google Scholar

    [7]

    Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X, Fang Z 2012 Phys. Rev. B 85 195320Google Scholar

    [8]

    Wang Z J, Weng H M, Wu Q S, Dai X, Fang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [9]

    Chang T R, Xu S Y, Sanchez D S, Tsai W F, Huang S M, Chang G Q, Hsu C H, Bian G, Belopolski I, Yu Z M, Yang S A, Neupert T, Jeng H T, Lin H, Hasan M Z 2017 Phys. Rev. Lett. 119 026404Google Scholar

    [10]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864Google Scholar

    [11]

    Bian G, Chang T R, Sankar R, Xu S Y, Zheng H, Neupert T, Chiu C K, Huang S M, Chang G Q, Belopolski I, Sanchez D S, Neupane M, Alidoust N, Liu C, Wang B K, Lee C C, Jeng H T, Zhang C L, Yuan Z J, Jia S, Bansil A, Chou F C, Lin H, Hasan M Z 2016 Nat. Commun. 7 10556Google Scholar

    [12]

    Schoop L M, Ali M N, Straßer C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S, Lotsch B V, Ast C R 2016 Nat. Commun. 7 11696Google Scholar

    [13]

    Neupane M, Belopolski I, Hosen M M, Sanchez D S, Sankar R, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P, Oppeneer P M, Kaczorowski D, Chou F C, Hasan M Z, Durakiewicz T 2016 Phys. Rev. B 93 201104Google Scholar

    [14]

    Hu J, Tang Z J, Liu J Y, Liu X, Zhu Y L, Graf D, Myhro K, Tran S, Lau C N, Wei J, Mao Z Q 2016 Phys. Rev. Lett. 117 016602Google Scholar

    [15]

    Pan H Y, Tong B B, Yu J H, Wang J, Fu D Z, Zhang S, Wu B, Wan X G, Zhang C, Wang X F, Song F Q 2018 Sci. Rep. 8 9340Google Scholar

    [16]

    Bian G, Chang T R, Zheng H, Velury S, Xu S Y, Neupert T, Chiu C K, Huang S M, Sanchez D S, Belopolski I, Alidoust N, Chen P J, Chang G Q, Bansil A, Jeng H T, Lin H, Hasan M Z 2016 Phys. Rev. B 93 121113Google Scholar

    [17]

    Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M, Ding H 2015 Nat. Phys. 11 724Google Scholar

    [18]

    Yang L X, Liu Z K, Sun Y, Peng H, Yang H F, Zhang T, Zhou B, Zhang Y, Guo Y F, Rahn M, Prabhakaran D, Hussain Z, Mo S K, Felser C, Yan B, Chen Y L 2015 Nat. Phys. 11 728Google Scholar

    [19]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M Z 2015 Science 349 613Google Scholar

    [20]

    Young S M, Zaheer S, Teo J C, Kane C L, Mele E J, Rappe A M 2012 Phys. Rev. Lett. 108 140405Google Scholar

    [21]

    Mañes J L 2012 Phys. Rev. B 85 155118Google Scholar

    [22]

    Xu S Y, Alidoust N, Belopolski I, Yuan Z J, Bian G, Chang T R, Zheng H, Strocov V N, Sanchez D S, Chang G Q, Zhang C L, Mou D X, Wu Y, Huang L N, Lee C C, Huang S M, Wang B K, Bansil A, Jeng H T, Neupert T, Kaminski A, Lin H, Jia S, Hasan M Z 2015 Nat. Phys. 11 748Google Scholar

    [23]

    Xu N, Weng H M, Lv B Q, Matt C E, Park J, Bisti F, Strocov V N, Gawryluk D, Pomjakushina E, Conder K, Plumb N C, Radovic M, Autès G, Yazyev O V, Fang Z, Dai X, Qian T, Mesot J, Ding H, Shi M 2016 Nat. Commun. 7 11006Google Scholar

    [24]

    Fukushima K, Kharzeev D E, Warringa H J 2008 Phys. Rev. D 78 074033Google Scholar

    [25]

    Son D T, Spivak B Z 2013 Phys. Rev. B 88 104412Google Scholar

    [26]

    Kharzeev D E 2014 Prog. Part. Nucl. Phys. 75 133Google Scholar

    [27]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023

    [28]

    Zhang C L, Xu S Y, Belopolski I, Yuan Z J, Lin Z Q, Tong B B, Guang B, Nasser A, Lee C C, Huang S M, T Chang R, ChangG Q, Hsu C H, Jeng H T, Neupane M, Sanchez D S, Zheng H, Wang J F, Lin H, Zhang C, Lu H Z, Shen S Q, Neupert T, Hasan M Z, Jia S 2016 Nat. Commun. 7 10735Google Scholar

    [29]

    Arnold F, Shekhar C, Wu S C, Sun Y, Dos Reis R D, Kumar N, Naumann M, Ajeesh M O, Schmidt M, Grushin A G, Bardarson J H, Baenitz M, Sokolov D, Borrmann H, Nicklas M, Felser C, Hassinger E, Yan B H 2016 Nat. Commun. 7 11615Google Scholar

    [30]

    Dos Reis R D, Ajeesh M O, Kumar N, Arnold F, Shekhar C, Naumann M, Schmidt M, Nicklas M, Hassinger E 2016 New J. Phys. 18 085006Google Scholar

    [31]

    Li C Z, Wang L X, Liu H W, Wang J, Liao Z M, Yu D P 2015 Nat. Commun. 6 10137Google Scholar

    [32]

    Kumar N, Guin S N, Felser C, Shekhar C 2018 Phys. Rev. B 98 041103(R)Google Scholar

    [33]

    Liu Q Q, Fei F C, Chen B, Bo X Y, Wei B Y, Zhang S, Zhang M H, Xie F J, Naveed M, Wan X G, Song F Q, Wang B G 2019 Phys. Rev. B 99 155119Google Scholar

    [34]

    Liang S H, Lin J J, Kushwaha S, Xing J, Ni N, Cava R J, Ong N P 2018 Phys. Rev. X 8 031002

    [35]

    Li P, Zhang C H, Zhang J W, Wen Y, Zhang X X 2018 Phys. Rev. B 98 121108Google Scholar

    [36]

    Smit J 1951 Physica 17 612Google Scholar

    [37]

    Burkov A A 2017 Phys. Rev. B 96 041110Google Scholar

    [38]

    Nandy S, Sharma G, Taraphder A, Tewari S 2017 Phys. Rev. Lett. 119 176804Google Scholar

    [39]

    West F G 1963 J. Appl. Phys. 34 1171Google Scholar

    [40]

    Marsocci V A, Chen T T 1969 J. Appl. Phys. 40 3361Google Scholar

    [41]

    Taskin A A, Legg H F, Yang F, Sasaki S, Kanai Y, Matsumoto K, Rosch A, Ando Y 2017 Nat. Commun. 8 1340Google Scholar

    [42]

    Wu B, Pan X C, Wu W K, Fei F C, Chen B, Liu Q Q, Bu H J, Cao L, Song F Q, Wang B G 2018 Appl. Phys. Lett. 113 011902Google Scholar

    [43]

    Tang H X, Kawakami R K, Awschalom D D, Roukes M L 2003 Phys. Rev. Lett. 90 107201Google Scholar

    [44]

    Chiu Y C, Chen K W, Schoenemann R, Quito V L, Sur S, Zhou Q, Graf D, Kampert E, Förster T, Yang K, McCandless G T, Chan J Y, Baumbach R E, Johannes M D, Balicas L 2019 arXiv: 1904.10123

  • [1] 朱庞栋, 王长昊, 王如志. 节线半金属AlB2水环境下发生吸附后拓扑表面态变化. 物理学报, 2024, 73(12): 127101. doi: 10.7498/aps.73.20240404
    [2] 巴佳燕, 陈复洋, 段后建, 邓明勋, 王瑞强. 拓扑材料中的平面霍尔效应. 物理学报, 2023, 72(20): 207201. doi: 10.7498/aps.72.20230905
    [3] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长. 物理学报, 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [4] 初纯光, 王安琦, 廖志敏. 拓扑半金属-超导体异质结的约瑟夫森效应. 物理学报, 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [5] 关欣, 陈刚, 潘婧, 游秀芬, 桂志国. 人造霍尔管中的基态手性流. 物理学报, 2022, 71(16): 160303. doi: 10.7498/aps.71.20220293
    [6] 孙慧敏, 何庆林. 层状磁性拓扑材料中的物理问题与实验进展. 物理学报, 2021, 70(12): 127302. doi: 10.7498/aps.70.20210133
    [7] 强晓斌, 卢海舟. 磁场中拓扑物态的量子输运. 物理学报, 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [8] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [9] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [10] 姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民. 三重简并拓扑半金属磷化钼的时间分辨超快动力学. 物理学报, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [11] 许兵, 邱子阳, 杨润, 戴耀民, 邱祥冈. 拓扑半金属的红外光谱研究. 物理学报, 2019, 68(22): 227804. doi: 10.7498/aps.68.20191510
    [12] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [13] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [14] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [15] 孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇. 铁磁/非磁金属异质结中的拓扑霍尔效应. 物理学报, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [16] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [17] 伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国. 拓扑半金属材料的单晶生长研究进展. 物理学报, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [18] 邢玉恒, 徐锡方, 张力发. 拓扑声子与声子霍尔效应. 物理学报, 2017, 66(22): 226601. doi: 10.7498/aps.66.226601
    [19] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [20] 陶卫东, 董建峰, 夏海平, 白贵儒, 陆祖康. 微米手性晶粒凝胶玻璃的制备及其消偏振效应. 物理学报, 2004, 53(3): 891-894. doi: 10.7498/aps.53.891
计量
  • 文章访问数:  11346
  • PDF下载量:  468
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-02
  • 修回日期:  2019-11-06
  • 上网日期:  2019-11-19
  • 刊出日期:  2019-11-20

/

返回文章
返回