-
近年来腔自旋波混合系统引起人们的研究兴趣. 基于自旋波体系的优点, 有望建立一个以自旋波量子为核心的、实现不同物理系统之间信息传递的平台. 本文简要介绍了腔自旋波混合系统的发展进程, 阐明自旋波量子与微波腔光子的耦合机制; 着重介绍了近期在腔自旋波混合系统中关于非线性和赝厄米性方面的研究进展, 其中包括非线性效应引起的腔自旋波量子极化激元的双稳, 宇称-时间(PT)对称哈密顿量的实现和PT对称自发破缺相变二阶奇点的观测, 以及如何构造非PT对称的赝厄米哈密顿量来实现三阶奇点等.
-
关键词:
- 腔自旋波混合系统 /
- 腔自旋波量子极化激元 /
- 克尔效应与双稳现象 /
- 非厄米性与奇异点
Recently, the hybrid cavity-magnon system has attracted considerable interest. Owing to the good tunability of magnons, it is promising to use the magnons as a core to implement a hybrid quantum platform for transferring information among different quantum systems. In this article, we first briefly review the cavity magnonic systems and clarify the coupling mechanism between magnons and microwave photons. Then, we introduce the latest research progress in the aspects of nonlinearity and pseudo-Hermiticity, including the bistability of cavity magnon polaritons, observation of the second-order exceptional point in a PT-symmetric hybrid cavity-magnon system, and the pseudo-Hermiticity with a third-order exceptional point.-
Keywords:
- hybrid cavity-magnon system /
- cavity magon polariton /
- Kerr effect and bistability /
- pseudo-Hermiticity and exceptional point
[1] Shor P W 1994 Proceedings of 35 th Annual Symposium on Foundations of Computer Scienece Los Alamitos, USA, November 22–24, 1994 p124
[2] Grover L K 1996 Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing New York, USA, May 22–24, 1996 p212
[3] Buluta I, Ashhab S, Nori F 2011 Rep. Prog. Phys. 74 104401Google Scholar
[4] Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar
[5] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217Google Scholar
[6] 孔祥宇, 朱垣晔, 闻经纬, 新涛, 李可仁, 龙桂鲁 2018 物理学报 67 220301Google Scholar
Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta Phys. Sin. 67 220301Google Scholar
[7] You J Q, Nori F 2005 Phys. Today 58 42
[8] Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar
[9] You J Q, Hu X D, Ashhab S, Nori F 2007 Phys. Rev. B 75 140515Google Scholar
[10] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar
[11] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O’Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2014 Nature 508 500Google Scholar
[12] Feynman R P 1986 Found. Phys. 16 507Google Scholar
[13] Nielsen M A, Chuang I L 2001 Quantum Computation and Quantum Information (London: Cambridge University Press) p702
[14] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar
[15] Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar
[16] Aspuru-Guzik A, Dutoi A D, Love P J, Head-Gordon M 2005 Science 309 1704Google Scholar
[17] Cirac J I, Zoller P 2012 Nat. Phys. 8 264Google Scholar
[18] Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar
[19] Kurizkia G, Bertetb P, Kubob Y, Molmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 Proc. Natl. Acad. Sci. USA 112 3866Google Scholar
[20] Bienfait A, Pla J J, Kubo Y, Stern M, Zhou X, Lo C C, Weis C D, Schenkel T, Thewalt M L W, Vion D, Esteve D, Julsgaard B, Moelmer K, Morton J J L, Bertet P 2016 Nat. Nano 11 253
[21] Raizen M G, Thompson R J, Brecha R J, Kimble H J, Carmichael H J 1989 Phys. Rev. Lett. 63 240Google Scholar
[22] Soykal Ö O, Flatté M E 2010 Phys. Rev. Lett. 104 077202
[23] Soykal Ö O, Flatté M E 2010 Phys. Rev. B 82 104413Google Scholar
[24] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar
[25] Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401Google Scholar
[26] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar
[27] Zhang D K, Wang X M, Li T F, Luo X Q, Wu W D, Nori F, You J Q 2015 NPJ Quantum Inf. 1 15014Google Scholar
[28] Bai L H, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar
[29] Haigh J A, Langenfeld S, Lambert N J, Baumberg J J, Ramsay A J, Nunnenkamp A, Ferguson A J 2015 Phys. Rev. A 92 063845Google Scholar
[30] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar
[31] Quirion D L, Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Nakamura Y 2017 Sci. Adv. 3 e1603150Google Scholar
[32] Zhang X F, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286Google Scholar
[33] Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L, Hu C M 2018 Phys. Rev. Lett. 121 137203
[34] Grigoryan V L, Shen K, Xia K 2018 Phys. Rev. B 98 024406Google Scholar
[35] Xu P C, Rao J W, Gui Y S, Jin X, Hu C M 2019 Phys. Rev. B 100 094415Google Scholar
[36] Yu W C, Wang J J, Yuan H Y, Xiao J 2019 arXiv: 1907.06222 v2 [cond-mat. mes-hall]
[37] Yuan H Y, Peng Y P, Zheng S S, He Q Y, Xia K, Yung M H 2019 arXiv: 1905.11117 v1 [cond-mat. mes-hall]
[38] Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M 2019 Phys. Rev. Lett. 123 127202Google Scholar
[39] Quirion D L, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101Google Scholar
[40] Wang Y P, Zhang G Q, Zhang D K, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M, You J Q 2016 Phys. Rev. B 94 224410Google Scholar
[41] Wang Y P, Zhang G Q, Zhang D K, Li T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202Google Scholar
[42] Zhang D K, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat. Com. 8 1368Google Scholar
[43] Zhang G Q, You J Q 2019 Phys. Rev. B 99 054404Google Scholar
[44] Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar
[45] Kostylev N, Goryachev M, Tobar M E 2016 Appl. Phys. Lett. 108 062402Google Scholar
[46] Rezende S M, de Aguiar F M 1990 Proc. IEEE 78 893Google Scholar
[47] Zhang G Q, Wang Y P, You J Q 2019 Sci. China: Phys. Mech. Astron. 62 987511Google Scholar
[48] Bogoliubov N N 1958 Phys. Today 34 1
[49] Harder M, Bai L H, Match C, Sirker J, Hu C M 2016 Sci. China: Phys. Mech. Astron. 59 117511Google Scholar
[50] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar
[51] Konotop V V, Yang J, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002Google Scholar
[52] Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar
[53] Mostafazadeh A 2002 J. Math. Phys. 43 2814Google Scholar
[54] Grigoryan V L, Xia K 2019 Phys. Rev. B 99 224408Google Scholar
[55] Cao Y S, Yan P 2019 Phys. Rev. B 99 214415Google Scholar
-
图 2 自旋波模和腔模共振时下支极化激元的频率移动随驱动功率变化情况 (a)偏置磁场沿晶轴[100]的情况; (b)偏置磁场沿晶轴[110]的情况[41]
Fig. 2. When the magnon resonated with the cavity mode, the curves of the frequency shift of the lower-branch cavity magnon polaritons
${\varDelta _{{\rm{LP}}}}$ versus the driving power${P_{\rm{d}}}$ : (a) The bias magnetic field is along the crystal axis [100]; (b) the bias magnetic field is along the crystal axis [110][41].图 5 PT对称系统中总传输谱
${\left| {{S_{{\rm{tot}}}}\left( \omega \right)} \right|^2}$ 随YIG小球位置x以及输入场频率$\omega $ 的变化情况 (a)理论模拟结果; (b)实验结果[42]Fig. 5. The total transmission spectrum
${\left| {{S_{{\rm{tot}}}}\left( \omega \right)} \right|^2}$ versus the position of YIG sphere$x$ and the frequency of input field$\omega $ : (a) The theoretical simulation results; (b) the experimental results[42].图 6 赝厄米系统示意图和理论结果模拟图[47] (a)赝厄米系统示意图; (b)理论模拟总传输谱
${\left| {{S_{{\rm{tot}}}}\left( \omega \right)} \right|^2}$ 随耦合强度${g_1}$ 以及输入场和腔模之间的频率失谐量$\omega - {\omega _{\rm{c}}}$ 的变化情况Fig. 6. The system schematic and the simulation of theoretical results of pseudo-Hermitian system[47]: (a) The schematic of pseudo-Hermitian system; (b) the total transmission spectrum
${\left| {{S_{{\rm{tot}}}}\left( \omega \right)} \right|^2}$ versus the coupling strength${g_1}$ and the frequency detuning between the input field and the cavity mode$\omega - {\omega _{\rm{c}}}$ . -
[1] Shor P W 1994 Proceedings of 35 th Annual Symposium on Foundations of Computer Scienece Los Alamitos, USA, November 22–24, 1994 p124
[2] Grover L K 1996 Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing New York, USA, May 22–24, 1996 p212
[3] Buluta I, Ashhab S, Nori F 2011 Rep. Prog. Phys. 74 104401Google Scholar
[4] Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar
[5] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217Google Scholar
[6] 孔祥宇, 朱垣晔, 闻经纬, 新涛, 李可仁, 龙桂鲁 2018 物理学报 67 220301Google Scholar
Kong X Y, Zhu Y Y, Wen J W, Xin T, Li K R, Long G L 2018 Acta Phys. Sin. 67 220301Google Scholar
[7] You J Q, Nori F 2005 Phys. Today 58 42
[8] Devoret M H, Schoelkopf R J 2013 Science 339 1169Google Scholar
[9] You J Q, Hu X D, Ashhab S, Nori F 2007 Phys. Rev. B 75 140515Google Scholar
[10] Koch J, Yu T M, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Phys. Rev. A 76 042319Google Scholar
[11] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Neill C, O’Malley P, Roushan P, Vainsencher A, Wenner J, Korotkov A N, Cleland A N, Martinis J M 2014 Nature 508 500Google Scholar
[12] Feynman R P 1986 Found. Phys. 16 507Google Scholar
[13] Nielsen M A, Chuang I L 2001 Quantum Computation and Quantum Information (London: Cambridge University Press) p702
[14] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O’Brien J L 2010 Nature 464 45Google Scholar
[15] Feynman R P 1982 Int. J. Theor. Phys. 21 467Google Scholar
[16] Aspuru-Guzik A, Dutoi A D, Love P J, Head-Gordon M 2005 Science 309 1704Google Scholar
[17] Cirac J I, Zoller P 2012 Nat. Phys. 8 264Google Scholar
[18] Xiang Z L, Ashhab S, You J Q, Nori F 2013 Rev. Mod. Phys. 85 623Google Scholar
[19] Kurizkia G, Bertetb P, Kubob Y, Molmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 Proc. Natl. Acad. Sci. USA 112 3866Google Scholar
[20] Bienfait A, Pla J J, Kubo Y, Stern M, Zhou X, Lo C C, Weis C D, Schenkel T, Thewalt M L W, Vion D, Esteve D, Julsgaard B, Moelmer K, Morton J J L, Bertet P 2016 Nat. Nano 11 253
[21] Raizen M G, Thompson R J, Brecha R J, Kimble H J, Carmichael H J 1989 Phys. Rev. Lett. 63 240Google Scholar
[22] Soykal Ö O, Flatté M E 2010 Phys. Rev. Lett. 104 077202
[23] Soykal Ö O, Flatté M E 2010 Phys. Rev. B 82 104413Google Scholar
[24] Huebl H, Zollitsch C W, Lotze J, Hocke F, Greifenstein M, Marx A, Gross R, Goennenwein S T B 2013 Phys. Rev. Lett. 111 127003Google Scholar
[25] Zhang X, Zou C L, Jiang L, Tang H X 2014 Phys. Rev. Lett. 113 156401Google Scholar
[26] Tabuchi Y, Ishino S, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2014 Phys. Rev. Lett. 113 083603Google Scholar
[27] Zhang D K, Wang X M, Li T F, Luo X Q, Wu W D, Nori F, You J Q 2015 NPJ Quantum Inf. 1 15014Google Scholar
[28] Bai L H, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M 2015 Phys. Rev. Lett. 114 227201Google Scholar
[29] Haigh J A, Langenfeld S, Lambert N J, Baumberg J J, Ramsay A J, Nunnenkamp A, Ferguson A J 2015 Phys. Rev. A 92 063845Google Scholar
[30] Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Usami K, Nakamura Y 2015 Science 349 405Google Scholar
[31] Quirion D L, Tabuchi Y, Ishino S, Noguchi A, Ishikawa T, Yamazaki R, Nakamura Y 2017 Sci. Adv. 3 e1603150Google Scholar
[32] Zhang X F, Zou C L, Jiang L, Tang H X 2016 Sci. Adv. 2 e1501286Google Scholar
[33] Harder M, Yang Y, Yao B M, Yu C H, Rao J W, Gui Y S, Stamps R L, Hu C M 2018 Phys. Rev. Lett. 121 137203
[34] Grigoryan V L, Shen K, Xia K 2018 Phys. Rev. B 98 024406Google Scholar
[35] Xu P C, Rao J W, Gui Y S, Jin X, Hu C M 2019 Phys. Rev. B 100 094415Google Scholar
[36] Yu W C, Wang J J, Yuan H Y, Xiao J 2019 arXiv: 1907.06222 v2 [cond-mat. mes-hall]
[37] Yuan H Y, Peng Y P, Zheng S S, He Q Y, Xia K, Yung M H 2019 arXiv: 1905.11117 v1 [cond-mat. mes-hall]
[38] Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M 2019 Phys. Rev. Lett. 123 127202Google Scholar
[39] Quirion D L, Tabuchi Y, Gloppe A, Usami K, Nakamura Y 2019 Appl. Phys. Express 12 070101Google Scholar
[40] Wang Y P, Zhang G Q, Zhang D K, Luo X Q, Xiong W, Wang S P, Li T F, Hu C M, You J Q 2016 Phys. Rev. B 94 224410Google Scholar
[41] Wang Y P, Zhang G Q, Zhang D K, Li T F, Hu C M, You J Q 2018 Phys. Rev. Lett. 120 057202Google Scholar
[42] Zhang D K, Luo X Q, Wang Y P, Li T F, You J Q 2017 Nat. Com. 8 1368Google Scholar
[43] Zhang G Q, You J Q 2019 Phys. Rev. B 99 054404Google Scholar
[44] Holstein T, Primakoff H 1940 Phys. Rev. 58 1098Google Scholar
[45] Kostylev N, Goryachev M, Tobar M E 2016 Appl. Phys. Lett. 108 062402Google Scholar
[46] Rezende S M, de Aguiar F M 1990 Proc. IEEE 78 893Google Scholar
[47] Zhang G Q, Wang Y P, You J Q 2019 Sci. China: Phys. Mech. Astron. 62 987511Google Scholar
[48] Bogoliubov N N 1958 Phys. Today 34 1
[49] Harder M, Bai L H, Match C, Sirker J, Hu C M 2016 Sci. China: Phys. Mech. Astron. 59 117511Google Scholar
[50] Bender C M, Boettcher S 1998 Phys. Rev. Lett. 80 5243Google Scholar
[51] Konotop V V, Yang J, Zezyulin D A 2016 Rev. Mod. Phys. 88 035002Google Scholar
[52] Mostafazadeh A 2002 J. Math. Phys. 43 205Google Scholar
[53] Mostafazadeh A 2002 J. Math. Phys. 43 2814Google Scholar
[54] Grigoryan V L, Xia K 2019 Phys. Rev. B 99 224408Google Scholar
[55] Cao Y S, Yan P 2019 Phys. Rev. B 99 214415Google Scholar
计量
- 文章访问数: 8705
- PDF下载量: 246
- 被引次数: 0