-
采用间断有限元法(discontinuous finite element method, DFEM)求解非规则形状介质内的辐射导热耦合传热问题, 得到了典型非规则形状介质内辐射导热耦合传热问题的高精度数值结果. 和传统连续型有限元方法不同, DFEM将计算区域划分成相互独立的离散单元, 形函数的构造、未知量的加权近似以及控制方程的求解均在每一个离散单元上进行. 通过在单元之间施加迎风格式的数值通量, DFEM保证了整个计算区域的连续性, 因此这种方法兼具良好的几何灵活性和局部守恒性. 推导了辐射传输方程和能量扩散方程的DFEM离散格式, 验证了DFEM求解辐射导热耦合传热问题的正确性; 同时研究了不同几何形状介质内辐射导热耦合传热问题, 得到了典型非规则形状介质内辐射导热耦合传热的高精度数值结果.The discontinuous finite element method (DFEM) is used to investigate the coupled radiation-conduction heat transfer in an irregular medium, and the highly accurate solutions for several typical media are numerically obtained. Comparing with the traditional continuous finite element method, the computational domain in the DFEM application is discretized into unstructured meshes that are assumed to be separated from each other. The shape function construction, field variable approximation, and numerical solutions are obtained for every single element. The continuity of the computational domain is maintained by modeling a numerical flux with the up-winding scheme. Thus the DFEM has the salient feature of geometry flexibility and simultaneously supports locally conservative solutions. The DFEM discretization for the radiative transfer equation and the energy diffusion equation are first presented, and the accuracies of the DFEM for coupled radiation-conduction heat transfer problems are verified. Combined radiation-conduction heat transfer problems in several irregular media are afterward solved, and the highly accurate DFEM solutions are presented.
-
Keywords:
- radiation-conduction /
- coupled heat transfer /
- numerical simulation /
- discontinuous finite element method
[1] Viskanta R 1965 J. Heat Transf. 87 143Google Scholar
[2] Viskanta R, Incropera F P 1985 J. Sol. Energy Eng. 107 29Google Scholar
[3] Wang P Y, Tan H P, Liu L H, Tong T W 2000 J. Thermophys. Heat Transf. 14 512Google Scholar
[4] Zhang J Q, Nie L R, Chen C Y, Zhang X Y 2016 AIP Adv. 6 075212Google Scholar
[5] Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar
[6] Chen R Y, Tong L M, Nie L R, Wang C J, Pan W L 2017 Physica A 468 532Google Scholar
[7] 李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501Google Scholar
Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501Google Scholar
[8] Sun B, Wang H, Sun X B, Hong J, Zhang Y J 2012 Chin. Phys. B 21 129501Google Scholar
[9] Chen R Y, Nie L R, Chen C Y, Wang C J 2017 J. Stat. Mech.- Theory Exp. 013201Google Scholar
[10] Chen R Y, Nie L R, Chen C Y 2018 Chaos 28 053115Google Scholar
[11] 梁子长, 金亚秋 2003 物理学报 52 1319Google Scholar
Liang Z C, Jin Y Q 2003 Acta Phys. Sin. 52 1319Google Scholar
[12] Ben X, Yi H L, Tan H P 2014 Chin. Phys. B 23 099501Google Scholar
[13] 赵军明 2007 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Zhao J M 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[14] 赵军明, 刘林华 2007 化工学报 58 1110
Zhao J M, Liu L H 2007 J. Chem. Ind. Eng. 58 1110
[15] 胡帅, 高太长, 刘磊, 易红亮, 贲勋 2015 物理学报 64 094201Google Scholar
Hu S, Gao T C, Liu L, Yi H L, Ben X 2015 Acta Phys. Sin. 64 094201Google Scholar
[16] Wang C H, Yi H L, Tan H P 2017 J. Quant. Spectrosc. Radiat. Transf. 189 383Google Scholar
[17] 高效伟, 王静, 崔苗 2011 中国科学: 物理学 力学 天文学 41 302Google Scholar
Gao X W, Wang J, Cui M 2011 Sci. Sin. Phys. Mech. Astron. 41 302Google Scholar
[18] 孙杰 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Sun J 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[19] Wang C H, Feng Y Y, Yue K, Zhang X X 2019 Int. Commun. Heat Mass Transf. 108 104287Google Scholar
[20] Sun Y J, Zheng S Jiang B, Tang J C, Liu F S 2019 Int. J. Heat Mass Transf. 145 118777Google Scholar
[21] Tan J Y, Liu L H, Li B X 2006 Numer. Heat Transf. Part B-Fundam. 49 179Google Scholar
[22] Wang C H, Qu L, Zhang Y, Yi H L 2018 J. Quant. Spectrosc. Radiat. Transf. 208 108Google Scholar
[23] Liu L H, Tan J Y, Li B X 2006 J. Quant. Spectrosc. Radiat. Transf. 101 237Google Scholar
[24] Wang C H, Feng Y Y, Ben X, Yue K, Zhang X X 2019 Opt. Express 27 A981Google Scholar
[25] Sun S C, Wang G J, Chen H, Zhang D Q 2019 Int. J. Heat Mass Transf. 134 574Google Scholar
[26] Zheng S, Yang Y, Zhou H 2019 Int. J. Heat Mass Transf. 129 1232Google Scholar
[27] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣 2019 物理学报 68 194207Google Scholar
Zhang K J, Liu L, Zeng Q W, Gao T C, Hu S, Chen M 2019 Acta Phys. Sin. 68 194207Google Scholar
[28] Mishra S C, Krishna C H, Kim M Y 2011 Numer. Heat Transf. Part A-Appl. 60 254Google Scholar
[29] Mishra S C, Roy H K 2007 J. Comput. Phys. 223 89Google Scholar
[30] Howell J R, Menguc M P 2018 J. Quant. Spectrosc. Radiat. Transf. 221 253Google Scholar
[31] Zabihi M, Lari K, Amiri H 2017 J. Braz. Soc. Mech. Sci. Eng. 39 2847Google Scholar
[32] Hesthaven J S, Warburton T 2007 Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (New York: Springer Science & Business Media)
[33] Cui X, Li B Q 2005 J. Quant. Spectrosc. Radiat. Transf. 96 383Google Scholar
[34] Liu L H, Liu L J 2007 J. Quant. Spectrosc. Radiat. Transf. 105 377Google Scholar
[35] 王存海, 易红亮, 谈和平 2017 工程热物理学报 38 833
Wang C H, Yi H L, Tan H P 2017 J. Eng. Thermophys. 38 833
[36] Wang C H, Yi H L, Tan H P 2017 Appl. Opt. 56 1861Google Scholar
[37] Wang C H, Yi H L, Tan H P 2017 Opt. Express 25 14621Google Scholar
[38] Feng Y Y, Wang C H 2018 Int. J. Heat Mass Transf. 126 783Google Scholar
[39] Mishra S C, Talukdar P, Trimis D, Durst F 2003 Int. J. Heat Mass Transf. 46 3083Google Scholar
[40] Sun Y, Zhang X 2018 Int. J. Heat Mass Transf. 121 1039Google Scholar
-
图 9 (a)普朗克数Npl = 0.1和1.0时内含圆形热边界的非规则形状介质中线上温度分布; (b) Npl = 0.1时介质温度分布; (c) Npl = 1.0时介质温度分布
Fig. 9. (a) Temperature distributions along the centerline of the irregular medium with an inner hot boundary; (b) temperature distribution within the computation domain for the case of Npl = 0.1; (c) temperature distribution within the computation domain for the case of Npl = 1.0.
图 11 (a)普朗克数Npl = 0.1和1.0时内含两个圆形热边界的矩形介质中线上温度分布; (b) Npl = 0.1时介质温度分布; (c) Npl = 1.0时介质温度分布
Fig. 11. (a) Temperature distributions along the centerline of the square medium with two circular hot boundaries; (b) temperature distribution within the computation domain for the case of Npl = 0.1; (c) temperature distribution within the computation domain for the case of Npl = 1.0
-
[1] Viskanta R 1965 J. Heat Transf. 87 143Google Scholar
[2] Viskanta R, Incropera F P 1985 J. Sol. Energy Eng. 107 29Google Scholar
[3] Wang P Y, Tan H P, Liu L H, Tong T W 2000 J. Thermophys. Heat Transf. 14 512Google Scholar
[4] Zhang J Q, Nie L R, Chen C Y, Zhang X Y 2016 AIP Adv. 6 075212Google Scholar
[5] Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar
[6] Chen R Y, Tong L M, Nie L R, Wang C J, Pan W L 2017 Physica A 468 532Google Scholar
[7] 李树, 李刚, 田东风, 邓力 2013 物理学报 62 249501Google Scholar
Li S, Li G, Tian D F, Deng L 2013 Acta Phys. Sin. 62 249501Google Scholar
[8] Sun B, Wang H, Sun X B, Hong J, Zhang Y J 2012 Chin. Phys. B 21 129501Google Scholar
[9] Chen R Y, Nie L R, Chen C Y, Wang C J 2017 J. Stat. Mech.- Theory Exp. 013201Google Scholar
[10] Chen R Y, Nie L R, Chen C Y 2018 Chaos 28 053115Google Scholar
[11] 梁子长, 金亚秋 2003 物理学报 52 1319Google Scholar
Liang Z C, Jin Y Q 2003 Acta Phys. Sin. 52 1319Google Scholar
[12] Ben X, Yi H L, Tan H P 2014 Chin. Phys. B 23 099501Google Scholar
[13] 赵军明 2007 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Zhao J M 2007 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[14] 赵军明, 刘林华 2007 化工学报 58 1110
Zhao J M, Liu L H 2007 J. Chem. Ind. Eng. 58 1110
[15] 胡帅, 高太长, 刘磊, 易红亮, 贲勋 2015 物理学报 64 094201Google Scholar
Hu S, Gao T C, Liu L, Yi H L, Ben X 2015 Acta Phys. Sin. 64 094201Google Scholar
[16] Wang C H, Yi H L, Tan H P 2017 J. Quant. Spectrosc. Radiat. Transf. 189 383Google Scholar
[17] 高效伟, 王静, 崔苗 2011 中国科学: 物理学 力学 天文学 41 302Google Scholar
Gao X W, Wang J, Cui M 2011 Sci. Sin. Phys. Mech. Astron. 41 302Google Scholar
[18] 孙杰 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)
Sun J 2016 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)
[19] Wang C H, Feng Y Y, Yue K, Zhang X X 2019 Int. Commun. Heat Mass Transf. 108 104287Google Scholar
[20] Sun Y J, Zheng S Jiang B, Tang J C, Liu F S 2019 Int. J. Heat Mass Transf. 145 118777Google Scholar
[21] Tan J Y, Liu L H, Li B X 2006 Numer. Heat Transf. Part B-Fundam. 49 179Google Scholar
[22] Wang C H, Qu L, Zhang Y, Yi H L 2018 J. Quant. Spectrosc. Radiat. Transf. 208 108Google Scholar
[23] Liu L H, Tan J Y, Li B X 2006 J. Quant. Spectrosc. Radiat. Transf. 101 237Google Scholar
[24] Wang C H, Feng Y Y, Ben X, Yue K, Zhang X X 2019 Opt. Express 27 A981Google Scholar
[25] Sun S C, Wang G J, Chen H, Zhang D Q 2019 Int. J. Heat Mass Transf. 134 574Google Scholar
[26] Zheng S, Yang Y, Zhou H 2019 Int. J. Heat Mass Transf. 129 1232Google Scholar
[27] 张克瑾, 刘磊, 曾庆伟, 高太长, 胡帅, 陈鸣 2019 物理学报 68 194207Google Scholar
Zhang K J, Liu L, Zeng Q W, Gao T C, Hu S, Chen M 2019 Acta Phys. Sin. 68 194207Google Scholar
[28] Mishra S C, Krishna C H, Kim M Y 2011 Numer. Heat Transf. Part A-Appl. 60 254Google Scholar
[29] Mishra S C, Roy H K 2007 J. Comput. Phys. 223 89Google Scholar
[30] Howell J R, Menguc M P 2018 J. Quant. Spectrosc. Radiat. Transf. 221 253Google Scholar
[31] Zabihi M, Lari K, Amiri H 2017 J. Braz. Soc. Mech. Sci. Eng. 39 2847Google Scholar
[32] Hesthaven J S, Warburton T 2007 Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications (New York: Springer Science & Business Media)
[33] Cui X, Li B Q 2005 J. Quant. Spectrosc. Radiat. Transf. 96 383Google Scholar
[34] Liu L H, Liu L J 2007 J. Quant. Spectrosc. Radiat. Transf. 105 377Google Scholar
[35] 王存海, 易红亮, 谈和平 2017 工程热物理学报 38 833
Wang C H, Yi H L, Tan H P 2017 J. Eng. Thermophys. 38 833
[36] Wang C H, Yi H L, Tan H P 2017 Appl. Opt. 56 1861Google Scholar
[37] Wang C H, Yi H L, Tan H P 2017 Opt. Express 25 14621Google Scholar
[38] Feng Y Y, Wang C H 2018 Int. J. Heat Mass Transf. 126 783Google Scholar
[39] Mishra S C, Talukdar P, Trimis D, Durst F 2003 Int. J. Heat Mass Transf. 46 3083Google Scholar
[40] Sun Y, Zhang X 2018 Int. J. Heat Mass Transf. 121 1039Google Scholar
计量
- 文章访问数: 8332
- PDF下载量: 114
- 被引次数: 0