搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究Al-Cu-Li合金中T1相的腐蚀机理

孔敏 吴静静 韩天茹 唐鑫

引用本文:
Citation:

第一性原理研究Al-Cu-Li合金中T1相的腐蚀机理

孔敏, 吴静静, 韩天茹, 唐鑫

Corrosion mechanism of T1 phase in Al-Cu-Li alloy: First-principles calculations

Kong Min, Wu Jing-Jing, Han Tian-Ru, Tang Xin
PDF
HTML
导出引用
  • 利用密度泛函理论的第一性原理, 讨论Al-Cu-Li合金中主要析出相T1相(Al6Cu4Li3)的表面性质, 计算不同终结面的表面能和表面电子功函数, 并探讨应力作用和常见合金元素对Al/T1界面的影响. 结果表明: T1相的表面能与表面的原子排列有关, 不同的表面通过应变释放重构, 进而获得不同的表面能. 表面电子功函数则与表面原子种类有关, 由于Li的电负性最小, 含Li原子的表面通常有较低的电子功函数, 进而降低材料的耐蚀性. 此外, 在应力作用下, T1相一些表面的电子功函数变化与纯金属是相反的. 压应力下T1相电子功函数降低, 材料更加容易被腐蚀; 张应力下T1相功函数增加, 材料更加耐腐蚀. 同时, 通过计算Al/T1界面中Ag, Zn和Mg 3种合金元素的替位能, 可以发现, 这3种元素都有利于降低界面能, 且Ag的作用最明显.
    First principle calculations in the framework of density functional theory are performed to calculate the T1 phase (Al6Cu4Li3), which is the main precipitation in Al-Cu-Li alloy. In this paper, the surface energy values and surface electron work functions of different termination surfaces in T1 phase are calculated. Meanwhile, the effects of stress and common alloying elements on the T1 phase are also discussed. There are 10 different termination surfaces for T1 phase. The surface energy varies between 0.59 and 1.28 J·m–2. It is found that the surface energy is dependent on the atomic configuration of the surface. The relaxation of the surficial atoms leads to low surface energy. For work function, it is controlled by the surficial atomic species. When a surface contains Li atoms, low work function is expected, which can be attributed to the low electronegativity of Li atom. The (010) T1 surface with Li termination has a minimum work function, 3.40 eV. In addition, as is different from pure metal, work function of some T1 surfaces shows unique behavior under stress state. The (010) T1 surface with Al and Cu termination has an increasing work function under the action of tensile strain. In fact, tensile strain induces the first and second surface layer to merge, which can improve the surface electronic density and raise work function. As a result, the corrosion resistance can be enhanced. Finally, the effect of alloying elements on the precipitation of T1 phase is studied. Al(111)/T1(010) interface is built and the substitution energy of Mg, Zn and Ag are calculated. Comparing with Mg and Zn atom, the energy of Ag atom to substitute the interfacial one is low, meaning that Ag can relax the strain in the interface. Ag atom has the closest atomic radius to Al atom, and the same chemical valence as Li atom. Therefore, Ag atom is more likely to promote the precipitation of T1 phase, which is also in agreement with the experimental result.
      通信作者: 唐鑫, xtang@glut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11364009)和广西科技重大专项(批准号: AA17129005)资助的课题
      Corresponding author: Tang Xin, xtang@glut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11364009) and the Guangxi Major Science and Technology Project, China (Grant No.AA17129005)
    [1]

    程超, 王逊, 孙嘉兴, 曹超铭, 马云莉, 刘艳侠 2018 物理学报 67 197101Google Scholar

    Cheng C, Wang X, Sun J X, Cao C M, Ma Y L, Liu Y X 2018 Acta Phys. Sin. 67 197101Google Scholar

    [2]

    Jr. E A S, Staley J T 1996 Prog. Aerosp. Sci 32 131Google Scholar

    [3]

    Kim K, Zhou B C, Wolverton C 2018 Acta Mater. 145 337Google Scholar

    [4]

    Rioja R J 1998 Mater Sci Eng, A 257 100Google Scholar

    [5]

    Kim Y S, Park I J, An B S, Park J G, Yang C W, Lee Y H, Kim J G 2020 Mater. Chem. Phys. 241 122275Google Scholar

    [6]

    段永华, 孙勇, 何建洪, 彭明军, 郭中正 2012 物理学报 61 046101Google Scholar

    Duan Y H, Sun Y, He J H, Peng M J, Guo Z Z 2012 Acta Phys. Sin. 61 046101Google Scholar

    [7]

    Tao Y, Xiong T, Chao S, Kong L, Cui X, Li T, Song G L 2010 Corros. Sci. 52 3191Google Scholar

    [8]

    Wadeson D A, Zhou X, Thompson G E, Skeldon P, Oosterkamp L D, Scamans G 2006 Corros. Sci. 48 887Google Scholar

    [9]

    Vera R, Delgado D, Rosales B M 2006 Corros. Sci. 48 2882Google Scholar

    [10]

    刘贵立 2010 物理学报 59 2708

    Liu G L 2010 Acta Phys. Sin. 59 2708

    [11]

    Wang X Y, Jang J T, Li G A, Wang X M, Sun J, Zhen L 2020 J. Alloy Compd. 815 152469

    [12]

    Li J F, Zheng Z Q, Li S C, Chen W J, Ren W D, Zhao X S 2007 Corros. Sci. 49 2436Google Scholar

    [13]

    Eifert A J, Thomas J P, Jr R G R 1999 Scr. Mater. 40 929Google Scholar

    [14]

    Zhang X, Zhou X, Hashimoto T, Liu B, Luo C, Sun Z, Tang Z, Lu F, Ma Y 2018 Corros. Sci. 132 1Google Scholar

    [15]

    Buchheit R G, Moran J P, Stoner G E 1994 Corrosion 50 120Google Scholar

    [16]

    王健, 王绍青 2014 物理化学学报 30 551Google Scholar

    Wang J, Wang S Q 2014 Acta Phys-Chim. Sin. 30 551Google Scholar

    [17]

    Wu J J, Tang X, Long F, Tang B 2018 Chin. Phys. B 27 057701Google Scholar

    [18]

    Pang X, Yang W, Yang J, Pang M, Zhan Y 2018 Intermetallics 93 329Google Scholar

    [19]

    Brik M G, Ma C-G, Krasnenko V 2013 Surf. Sci. 608 146Google Scholar

    [20]

    Heifets E, Eglitis R I, Kotomin E A, Maier J, Borstel G 2001 Phys. Rev. B 64 235417Google Scholar

    [21]

    Sharma A, Berger R, Lewis D A, Andersson G G 2015 Appl. Surf. Sci. 327 22Google Scholar

    [22]

    Liu J, Zhang X, Chen M, Li L, Zhu B, Tang J, Liu S 2011 Appl. Surf. Sci. 257 4004Google Scholar

    [23]

    Ma H, Chen X-Q, Li R, Wang S, Dong J, Ke W 2017 Acta Mater. 130 137Google Scholar

    [24]

    Cao F, Zheng J, Jiang Y, Chen B, Wang Y, Hu T 2019 Acta Mater. 164 207Google Scholar

    [25]

    Ye Z Y, Liu D X, Yuan M, Zhang X M, Yang Z, Lei M X 2015 Acta Metall. Sin. 28 608Google Scholar

    [26]

    Brewick P T, DeGiorgi V G, Geltmacher A B, Qidwai S M 2019 Corros. Sci. 158 108111Google Scholar

    [27]

    Nicolas A, Mello A W, Sangid M D 2019 Corros. Sci. 154 208Google Scholar

    [28]

    Scott P M, Combrade P 2019 J. Nucl. Mater. 524 340Google Scholar

    [29]

    Li W, Cai M, Wang Y, Yu S 2006 Scr. Mater. 54 921Google Scholar

    [30]

    Kiejna A, Pogosov V V 2000 Phys. Rev. B 62 10445Google Scholar

    [31]

    Kim K, Zhou B-C, Wolverton C 2019 Scr. Mater. 159 99Google Scholar

    [32]

    Murayama M, Hono K 2001 Scr. Mater. 44 701Google Scholar

    [33]

    Huang B P, Zheng Z Q 1998 Acta Mater. 46 4381Google Scholar

    [34]

    Gumbmann E, de Geuser F, Sigli C, Deschamps A 2017 Acta Mater. 133 172Google Scholar

  • 图 1  T1相(001), (100), (010) 3个晶面的切面方向

    Fig. 1.  Surface selection of (001), (100), (010) phase.

    图 2  不同面的原子构型

    Fig. 2.  The configurations of different surfaces.

    图 3  (a)面I, (b)面F, (c)面H 3个终结面弛豫前后原子构型

    Fig. 3.  Atomic configurations of (a) surface I, (b) surface F and (c) surface H before and after relaxation.

    图 4  (a)面A, (b)面C, (c)面E以及(d)面J的电子密度分布

    Fig. 4.  Electron density distribution of (a) surface A, (b) surface C, (c) surface E, and (d) surface J.

    图 5  B应变条件下表面能的变化

    Fig. 5.  Surface energy of surface B with strain.

    图 6  I应变条件下电子功函数的变化

    Fig. 6.  Work function of surface I with strain state.

    图 7  界面模型及其原子替换位置

    Fig. 7.  Interface model and atomic substitution positions.

    图 8  Mg, Zn和Ag在Al(111)/T1(010)界面的替位能

    Fig. 8.  The substitution energies of Mg, Zn and Ag in Al(111)/T1(010) interface.

    表 1  T1相10个终结面的表面能和电子功函数

    Table 1.  The surface energies and electron work functions of ten surfaces.

    终结面表面能/J·m–2功函数/eV
    AAl-Cu-Li1.243.64
    BCu1.103.91
    CAl-Cu-Li1.203.70
    DAl1.284.27
    EAl-Cu-Li1.023.89
    FAl-Cu-Li1.074.35
    GAl-Cu0.844.29
    HAl-Li0.864.53
    IAl-Cu0.594.12
    JLi0.833.40
    下载: 导出CSV

    表 2  应变条件下表面能和功函数的波动量

    Table 2.  Fluctuation of surface energy and work function with strain.

    表面能变化量/J·m–2功函数变化量/eV
    A0.410.14
    B0.590.09
    C0.250.09
    D0.160.12
    E0.210.14
    F0.310.07
    G0.340.08
    H0.370.05
    I0.370.15
    J0.180.04
    下载: 导出CSV
  • [1]

    程超, 王逊, 孙嘉兴, 曹超铭, 马云莉, 刘艳侠 2018 物理学报 67 197101Google Scholar

    Cheng C, Wang X, Sun J X, Cao C M, Ma Y L, Liu Y X 2018 Acta Phys. Sin. 67 197101Google Scholar

    [2]

    Jr. E A S, Staley J T 1996 Prog. Aerosp. Sci 32 131Google Scholar

    [3]

    Kim K, Zhou B C, Wolverton C 2018 Acta Mater. 145 337Google Scholar

    [4]

    Rioja R J 1998 Mater Sci Eng, A 257 100Google Scholar

    [5]

    Kim Y S, Park I J, An B S, Park J G, Yang C W, Lee Y H, Kim J G 2020 Mater. Chem. Phys. 241 122275Google Scholar

    [6]

    段永华, 孙勇, 何建洪, 彭明军, 郭中正 2012 物理学报 61 046101Google Scholar

    Duan Y H, Sun Y, He J H, Peng M J, Guo Z Z 2012 Acta Phys. Sin. 61 046101Google Scholar

    [7]

    Tao Y, Xiong T, Chao S, Kong L, Cui X, Li T, Song G L 2010 Corros. Sci. 52 3191Google Scholar

    [8]

    Wadeson D A, Zhou X, Thompson G E, Skeldon P, Oosterkamp L D, Scamans G 2006 Corros. Sci. 48 887Google Scholar

    [9]

    Vera R, Delgado D, Rosales B M 2006 Corros. Sci. 48 2882Google Scholar

    [10]

    刘贵立 2010 物理学报 59 2708

    Liu G L 2010 Acta Phys. Sin. 59 2708

    [11]

    Wang X Y, Jang J T, Li G A, Wang X M, Sun J, Zhen L 2020 J. Alloy Compd. 815 152469

    [12]

    Li J F, Zheng Z Q, Li S C, Chen W J, Ren W D, Zhao X S 2007 Corros. Sci. 49 2436Google Scholar

    [13]

    Eifert A J, Thomas J P, Jr R G R 1999 Scr. Mater. 40 929Google Scholar

    [14]

    Zhang X, Zhou X, Hashimoto T, Liu B, Luo C, Sun Z, Tang Z, Lu F, Ma Y 2018 Corros. Sci. 132 1Google Scholar

    [15]

    Buchheit R G, Moran J P, Stoner G E 1994 Corrosion 50 120Google Scholar

    [16]

    王健, 王绍青 2014 物理化学学报 30 551Google Scholar

    Wang J, Wang S Q 2014 Acta Phys-Chim. Sin. 30 551Google Scholar

    [17]

    Wu J J, Tang X, Long F, Tang B 2018 Chin. Phys. B 27 057701Google Scholar

    [18]

    Pang X, Yang W, Yang J, Pang M, Zhan Y 2018 Intermetallics 93 329Google Scholar

    [19]

    Brik M G, Ma C-G, Krasnenko V 2013 Surf. Sci. 608 146Google Scholar

    [20]

    Heifets E, Eglitis R I, Kotomin E A, Maier J, Borstel G 2001 Phys. Rev. B 64 235417Google Scholar

    [21]

    Sharma A, Berger R, Lewis D A, Andersson G G 2015 Appl. Surf. Sci. 327 22Google Scholar

    [22]

    Liu J, Zhang X, Chen M, Li L, Zhu B, Tang J, Liu S 2011 Appl. Surf. Sci. 257 4004Google Scholar

    [23]

    Ma H, Chen X-Q, Li R, Wang S, Dong J, Ke W 2017 Acta Mater. 130 137Google Scholar

    [24]

    Cao F, Zheng J, Jiang Y, Chen B, Wang Y, Hu T 2019 Acta Mater. 164 207Google Scholar

    [25]

    Ye Z Y, Liu D X, Yuan M, Zhang X M, Yang Z, Lei M X 2015 Acta Metall. Sin. 28 608Google Scholar

    [26]

    Brewick P T, DeGiorgi V G, Geltmacher A B, Qidwai S M 2019 Corros. Sci. 158 108111Google Scholar

    [27]

    Nicolas A, Mello A W, Sangid M D 2019 Corros. Sci. 154 208Google Scholar

    [28]

    Scott P M, Combrade P 2019 J. Nucl. Mater. 524 340Google Scholar

    [29]

    Li W, Cai M, Wang Y, Yu S 2006 Scr. Mater. 54 921Google Scholar

    [30]

    Kiejna A, Pogosov V V 2000 Phys. Rev. B 62 10445Google Scholar

    [31]

    Kim K, Zhou B-C, Wolverton C 2019 Scr. Mater. 159 99Google Scholar

    [32]

    Murayama M, Hono K 2001 Scr. Mater. 44 701Google Scholar

    [33]

    Huang B P, Zheng Z Q 1998 Acta Mater. 46 4381Google Scholar

    [34]

    Gumbmann E, de Geuser F, Sigli C, Deschamps A 2017 Acta Mater. 133 172Google Scholar

  • [1] 魏志远, 胡勇, 曾令勇, 李泽宇, 乔振华, 罗惠霞, 何俊峰. 1T-NbSeTe电子结构的角分辨光电子能谱. 物理学报, 2022, 71(12): 127901. doi: 10.7498/aps.71.20220458
    [2] 蒋新安, 赵宇宏, 杨文奎, 田晓林, 侯华. 相场法研究Fe84Cu15Mn1合金富Cu相析出的内磁能作用机理. 物理学报, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [3] 郭震, 赵宇宏, 孙远洋, 赵宝军, 田晓林, 侯华. 相场法研究Fe-Cu-Mn-Al合金富Cu相析出机制. 物理学报, 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [4] 赵洋洋, 宋筠. 无序效应对1T-TaS2材料中Mott绝缘相的影响. 物理学报, 2017, 66(5): 057101. doi: 10.7498/aps.66.057101
    [5] 马振宁, 周全, 汪青杰, 王逊, 王磊. Mg-Y-Cu合金长周期有序相热力学稳定性及其电子结构的第一性原理研究. 物理学报, 2016, 65(23): 236101. doi: 10.7498/aps.65.236101
    [6] 周华杰, 徐秋霞. Ni全硅化金属栅功函数调节技术研究. 物理学报, 2011, 60(10): 108102. doi: 10.7498/aps.60.108102
    [7] 刘贵立, 方戈亮. Sc在Al-Zn-Mg-Cu超高强铝合金中作用机理的电子理论研究. 物理学报, 2009, 58(7): 4872-4877. doi: 10.7498/aps.58.4872
    [8] 罗文浪, 阮 文, 张 莉, 谢安东, 朱正和. 氢同位素氚水T2O(X1A1)的解析势能函数. 物理学报, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [9] 贾金锋, 董国材, 王立莉, 马旭村, 薛其坤, Y. Hasegawa T. Sakurai. 局域功函数图像及其在Cu(111)-Au/Pd表面的应用. 物理学报, 2005, 54(4): 1513-1527. doi: 10.7498/aps.54.1513
    [10] 赵辉, 杜志伟, 周铁涛, 刘培英, 董宝中, 陈昌麒. Al-Zn-Mg-Cu-Li合金时效过程微结构演化的小角x射线散射研究. 物理学报, 2004, 53(4): 1251-1254. doi: 10.7498/aps.53.1251
    [11] 柴志刚, 孟繁玲, 邹青. Al-Li合金时效-回归-再时效析出δ′相的行为. 物理学报, 2001, 50(7): 1401-1404. doi: 10.7498/aps.50.1401
    [12] 张永健, 陈仙辉, 曹烈兆. T*相超导体(Bi,Sr)2(Y,Ce)2Cu2Oy的性质研究. 物理学报, 1997, 46(5): 975-980. doi: 10.7498/aps.46.975
    [13] 陈陆君, 王宁, 罗恩泽. Cs/Ir(001)吸附系统的功函数与电子转移. 物理学报, 1993, 42(7): 1149-1152. doi: 10.7498/aps.42.1149-2
    [14] 孟祥敏, 胡魁毅, 吴玉琨, 黄锦秀, 崔盛兰. Al65Cu20Co15合金中的新τ相. 物理学报, 1992, 41(12): 1968-1971. doi: 10.7498/aps.41.1968
    [15] 李海洋, 朱立, 徐亚伯, 蔡莲珍. CO在K/Cu(111)表面吸附的功函数变化. 物理学报, 1991, 40(4): 625-629. doi: 10.7498/aps.40.625
    [16] 王浭, 李海洋, 徐亚伯. K/Cu(111)表面功函数的变化. 物理学报, 1990, 39(12): 1989-1993. doi: 10.7498/aps.39.1989
    [17] 边为民. Al-Mn合金中Ⅰ相电子衍射图指标化. 物理学报, 1989, 38(6): 998-1004. doi: 10.7498/aps.38.998
    [18] 范希庆, 张德萱, 申三国. 3c-SiC中深杂质能级的A1,T2对称波函数. 物理学报, 1988, 37(2): 183-188. doi: 10.7498/aps.37.183
    [19] 邬钦祟, 王元生, 吴自勤, 何怡贞. 急冷Al80Mn20合金准晶T相的晶化动力学. 物理学报, 1988, 37(5): 796-803. doi: 10.7498/aps.37.796
    [20] 王超英, 王连忠, 石磊, 陈立泉. 多晶Li3+xV1-xTxO4(T=Ge,Si)离子导电性能的改善. 物理学报, 1984, 33(12): 1700-1706. doi: 10.7498/aps.33.1700
计量
  • 文章访问数:  8842
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 修回日期:  2019-11-05
  • 刊出日期:  2020-01-20

/

返回文章
返回