搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H, F修饰单层GeTe的电子结构与光催化性质

方文玉 张鹏程 赵军 康文斌

引用本文:
Citation:

H, F修饰单层GeTe的电子结构与光催化性质

方文玉, 张鹏程, 赵军, 康文斌

Electronic structure and photocatalytic properties of H, F modified two-dimensional GeTe

Fang Wen-Yu, Zhang Peng-Cheng, Zhao Jun, Kang Wen-Bin
PDF
HTML
导出引用
  • 采用基于密度泛函理论的第一性原理平面波赝势方法, 计算了单层GeTe、表面氢化及氟化单层GeTe的晶体结构、稳定性、电子结构和光学性质. 计算结果表明, 经过修饰后, GeTe的晶格常数、键角、键长增大, 且均具有较好的稳定性. 电子结构分析表明, 单层GeTe为间接带隙半导体, 全氢化修饰、全氟化修饰以及氢氟共修饰(F, Ge同侧; H, Te同侧)则转变为直接带隙半导体, 且修饰后的能隙均不同程度减小. 载流子有效质量表明, 全氢化、全氟化以及氢氟共修饰GeTe (F, Ge同侧; H, Te同侧)的有效质量减小, 其载流子迁移率增强. 带边势分析结果显示, 单层GeTe能够光裂解水制氢和析氧, 而修饰后的GeTe的价带带边势明显下移, 其氧化性明显增强, 能够光裂解水析O2, H2O2, O3以及OH·等产物. 光学性质表明, 修饰后的GeTe对可见光区和红、紫外区的光谱吸收效果明显增强, 表明其在光催化领域有着广阔的应用前景.
    Using the first principle calculation based on the density functional theory, we have systematically investigated the structure stability, electronic structure and photocatalytic properties of two-dimensional single-layered GeTe crystal structure modified by H and F. The results show that the lattice constant, bond angle and bond length of GeTe increase after being modified. The stability analysis shows that all the materials have excellent dynamical, mechanical, and thermal stabilities. The electronic structure analysis shows that the two-dimensional GeTe is an indirect bandgap semiconductor with an energy gap of 1.797 eV, and its energy band is mainly composed of Ge-4p and Te-5p, while it is converted into a direct bandgap semiconductor by H or F modification and H-F co-modification (F and Ge on one side, H and Te on the other), and their corresponding energy gaps are reduced to 1.847 eV (fH-GeTe), 0.113 eV (fF-GeTe) and 1.613 eV (hF-GeTe-hH). However, hH-GeTe-hF is still an indirect band gap semiconductor, and its energy gap is reduced to 0.706 eV. The results of the density of states show that part of the Ge-4p and Te-5p electrons are transferred to a deeper level due to the adsorption of H or F atoms, resulting in a strong orbital hybridization between them and the adsorbed atoms. The effective mass shows that the effective mass of H or F modified and H-F co-modified GeTe (F and Ge on one side, H and Te on the other) decrease, and their carrier mobilities increase. The carrier recombination rates of all modified GeTe materials are lower than that of the intrinsic GeTe, so the semiconductor will be more durable. The electron density difference shows that due to the electronegativities of atoms being different from each other, when H or F is used to modify GeTe, some electrons transfer to H and F atoms, resulting in the weakening of covalent bond between Ge and Te atoms and the enhancement of ion bond. The results of band-edge potential analysis show that GeTe can produce hydrogen and oxygen by photolysis of water. However, the valence band edge potential of the modified GeTe decreases significantly, and its oxidation ability increases considerably, the photocatalytic water can produce O2, H2, O3, OH·, etc. Optical properties show that the modified GeTe can enhance the absorption of visible and ultraviolet spectrum, which indicates that they have great application prospects in the field of photocatalysis.
      通信作者: 康文斌, wbkang@hbmu.edu.cn
    • 基金项目: 省部级-湖北省教育厅自然科学基金项目(B2018434)
      Corresponding author: Kang Wen-Bin, wbkang@hbmu.edu.cn
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Bolar S, Shit S, Kumar J S, Murmu N C, Genesh R S, Inokawa H, Kuila T 2019 Appl. Catal., B-environ. 254 432Google Scholar

    [3]

    Hu W, Yang J L 2017 J. Mater. Chem. C 5 12289Google Scholar

    [4]

    Yao L H, Cao M S, Yang H J, Liu X J, Fang X Y, Yuan J 2014 Comput. Mater. Sci. 85 179Google Scholar

    [5]

    Molle A, Grazianetti C, Tao L, Taneja D, Alam M H, Akinwande D 2018 Chem. Soc. Rev. 47 6370Google Scholar

    [6]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [7]

    Wang L J, Wang W Z, Chen Y L, Yao L Z, Zhao X, Shi H L, Cao M S, Liang Y J 2018 Acs. Appl. Mater. Interfaces 10 11652Google Scholar

    [8]

    Chen P F, Li N, Chen X Z, Ong W J, Zhao X J 2018 2D Mater. 5 014002

    [9]

    Zhao J, Li Y L, Ma J 2016 Nanoscale 8 9567

    [10]

    Chen Y L, Wang L J, Wang W Z, Cao M S 2017 Appl. Catal. B-Environ. 209 110Google Scholar

    [11]

    Wong S L, Khoo K H, Quek S Y, Wee A T S 2015 J. Phys. Chem. C 119 29193Google Scholar

    [12]

    Zeng Q S, Sun B, Du K Z, Zhao W Y, Yu P, Zhu C, Xia J, Chen Y, Cao X, Yan Q Y, Shen Z X, Yu T, Long Y, Koh Y K, Liu Z 2019 2D Mater. 6 045009

    [13]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem.-Int. Edit. 54 3112Google Scholar

    [14]

    Fonseca J J, TonGey S, Topsakal M, Chew A R, Lin A J, Ko C, Luce A V, Salleo A, Wu J Q, Dubon O D 2016 Adv. Mater. 28 6465Google Scholar

    [15]

    Fedorenko Y G 2015 Semiconductors 49 1640Google Scholar

    [16]

    Gelca A C, Sava F, Simandan I D, Bucur C, Dumitru V, Porosnicu C, Mihai C, Velea A 2016 J. Non-Cryst. Solids 499 1

    [17]

    Qiao M, Chen Y L, Wang Y, Li Y F 2018 J. Mater. Chem. A 6 4119Google Scholar

    [18]

    Singh A K, Hennig R G 2014 Appl. Phys. Lett. 105 042103Google Scholar

    [19]

    Wan W H, Liu C, Xiao W D, Yao Y G 2017 Appl. Phys. Lett. 111 132904Google Scholar

    [20]

    Zhang P P, Zhao F L, Long P, Wang Y, Yue Y C, Liu X Y, Feng Y Y, Li R J, Hu W P, Li Y, Feng W 2018 Nanoscale 10 34Google Scholar

    [21]

    Tang W C, Sun M L, Ren Q Q, Wang S K, Yu J 2016 Appl. Surf. Sci. 376 286Google Scholar

    [22]

    Zhang D B, Zhou Z P, Wang H Y, Yang Z X, Liu C 2018 Nanoscale Res. Lett. 13 400Google Scholar

    [23]

    Yuan J H, Xie Q X, Yu N N, Wang J F 2017 Appl. Surf. Sci. 394 625Google Scholar

    [24]

    SeGell M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.-Condes. Matter 14 2717Google Scholar

    [25]

    Xie Q X, Yuan J H, Yu N N, Wang L S, Wang J F 2017 Comput. Mater. Sci. 135 160Google Scholar

    [26]

    Yuan J H, Yu N N, Xue K H, Miao X S 2017 RSC Adv. 7 8654Google Scholar

    [27]

    Zhang J F, Wageh S, Al-Ghamdi A, Yu J G 2016 Appl. Catal. B-Environ. 192 101Google Scholar

    [28]

    Tian Y L, Hua H L, Yue W W, Chen M N, Hu G C, Ren J F, Yuan X B 2017 Mod. Phys. Lett. B 31 1750335Google Scholar

    [29]

    王胜楠, 毛启楠, 袁倩敏, 李鹤, 季振国 2016 材料科学与工程学报 34 702

    Wang S N, Mao Q N, Yuan Q M, Li H, Ji Z G 2016 Journal of Materials Science and Engineering 34 702

    [30]

    Yu W L, Zhang J F, Peng T Y 2016 Appl. Catal. B-Environ. 181 220Google Scholar

    [31]

    Yu N N, Yuan J H, Li K X 2018 Appl. Surf. Sci. 427 0169Google Scholar

    [32]

    Goclon J, Winkler K 2018 Appl. Surf. Sci. 462 134Google Scholar

    [33]

    Zhou Y H, Peng Z B, Chen Y D, Luo K, Zhang J, Du S Y 2019 Comput. Mater. Sci. 168 137Google Scholar

  • 图 1  优化后的晶胞模型 (a) GeTe侧视图; (b) fH-GeTe俯视图; (c) fH-GeTe侧视图; (d) hH-GeTe-hF侧视图; (e) hF-GeTe-hH侧视图; (f) K点路径

    Fig. 1.  The optimized geometric structures: (a) side view of GeTe; (b) top view of fH-GeTe; (c) side view of fH-GeTe; (d) side view of hH-GeTe-hF; (e) side view of hF-GeTe-hH; (f) K point path.

    图 2  声子谱 (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH

    Fig. 2.  Phonon dispersion: (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH.

    图 3  分子动力学模拟计算的能量随时间的变化, 插图表示加热到500 K温度下最后的结构图 (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH

    Fig. 3.  Variation of the total energy in the molecular dynamics simulation at 500 K for: (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH, during a timescale of 2.5 ps. The insets are the top (left panel) and side (right panel) views of the atomic structure snapshots taken from the molecular dynamics simulation.

    图 4  能带图和态密度 (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH

    Fig. 4.  Band structure and density of states: (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH.

    图 5  $\langle 0, 0, 1 \rangle$截面差分电荷密度图 (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH

    Fig. 5.  Electron density difference $\langle 0, 0, 1 \rangle$: (a) GeTe; (b) fH-GeTe; (c) fF-GeTe; (d) hH-GeTe-hF; (e) hF-GeTe-hH.

    图 6  半导体的导带与价带的带边电势示意图

    Fig. 6.  Reduction and oxidation potentials of CB and VB edges of all chemically decorated GeTe.

    图 7  半导体的吸收系数

    Fig. 7.  Absorption spectra of all chemically decorated GeTe.

    表 1  晶体的结构参数及吸附能

    Table 1.  Structural parameters for all chemically decorated GeTe.

    Structure(a/b)/Åθ/(°)ll1l2σEf/eV
    GeTe3.9591.222.761.56
    fH-GeTe5.09119.922.941.601.69–0.08–5.80
    fF-GeTe4.1893.082.881.792.041.58–7.45
    hH-GeTe-hF4.0292.042.971.592.081.56–5.79
    hF-GeTe-hH5.21119.993.011.811.69–0.03–7.74
    下载: 导出CSV

    表 2  半导体的载流子有效质量

    Table 2.  The effective mass for all chemically decorated GeTe.

    Effective massGeTefH-GeTefF-GeTehH-GeTe-hFhF-GeTe-hH
    $ m_{\rm h}^*/m_0 $0.540.240.231.500.30
    $ m_{\rm e}^*/m_0 $0.520.390.270.910.49
    D1.041.631.171.651.63
    下载: 导出CSV

    表 3  半导体的导带和价带的带边电势

    Table 3.  Reduction and oxidation potentials of CB and VB edges of all chemically decorated GeTe.

    StructureGeTefH-GeTefF-GeTehH-GeTe-hFhF-GeTe-hH
    $ \chi $5.036.017.236.596.59
    CB/eV–0.370.762.681.741.28
    VB/eV1.422.252.792.442.90
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Bolar S, Shit S, Kumar J S, Murmu N C, Genesh R S, Inokawa H, Kuila T 2019 Appl. Catal., B-environ. 254 432Google Scholar

    [3]

    Hu W, Yang J L 2017 J. Mater. Chem. C 5 12289Google Scholar

    [4]

    Yao L H, Cao M S, Yang H J, Liu X J, Fang X Y, Yuan J 2014 Comput. Mater. Sci. 85 179Google Scholar

    [5]

    Molle A, Grazianetti C, Tao L, Taneja D, Alam M H, Akinwande D 2018 Chem. Soc. Rev. 47 6370Google Scholar

    [6]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [7]

    Wang L J, Wang W Z, Chen Y L, Yao L Z, Zhao X, Shi H L, Cao M S, Liang Y J 2018 Acs. Appl. Mater. Interfaces 10 11652Google Scholar

    [8]

    Chen P F, Li N, Chen X Z, Ong W J, Zhao X J 2018 2D Mater. 5 014002

    [9]

    Zhao J, Li Y L, Ma J 2016 Nanoscale 8 9567

    [10]

    Chen Y L, Wang L J, Wang W Z, Cao M S 2017 Appl. Catal. B-Environ. 209 110Google Scholar

    [11]

    Wong S L, Khoo K H, Quek S Y, Wee A T S 2015 J. Phys. Chem. C 119 29193Google Scholar

    [12]

    Zeng Q S, Sun B, Du K Z, Zhao W Y, Yu P, Zhu C, Xia J, Chen Y, Cao X, Yan Q Y, Shen Z X, Yu T, Long Y, Koh Y K, Liu Z 2019 2D Mater. 6 045009

    [13]

    Zhang S L, Yan Z, Li Y F, Chen Z F, Zeng H B 2015 Angew. Chem.-Int. Edit. 54 3112Google Scholar

    [14]

    Fonseca J J, TonGey S, Topsakal M, Chew A R, Lin A J, Ko C, Luce A V, Salleo A, Wu J Q, Dubon O D 2016 Adv. Mater. 28 6465Google Scholar

    [15]

    Fedorenko Y G 2015 Semiconductors 49 1640Google Scholar

    [16]

    Gelca A C, Sava F, Simandan I D, Bucur C, Dumitru V, Porosnicu C, Mihai C, Velea A 2016 J. Non-Cryst. Solids 499 1

    [17]

    Qiao M, Chen Y L, Wang Y, Li Y F 2018 J. Mater. Chem. A 6 4119Google Scholar

    [18]

    Singh A K, Hennig R G 2014 Appl. Phys. Lett. 105 042103Google Scholar

    [19]

    Wan W H, Liu C, Xiao W D, Yao Y G 2017 Appl. Phys. Lett. 111 132904Google Scholar

    [20]

    Zhang P P, Zhao F L, Long P, Wang Y, Yue Y C, Liu X Y, Feng Y Y, Li R J, Hu W P, Li Y, Feng W 2018 Nanoscale 10 34Google Scholar

    [21]

    Tang W C, Sun M L, Ren Q Q, Wang S K, Yu J 2016 Appl. Surf. Sci. 376 286Google Scholar

    [22]

    Zhang D B, Zhou Z P, Wang H Y, Yang Z X, Liu C 2018 Nanoscale Res. Lett. 13 400Google Scholar

    [23]

    Yuan J H, Xie Q X, Yu N N, Wang J F 2017 Appl. Surf. Sci. 394 625Google Scholar

    [24]

    SeGell M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.-Condes. Matter 14 2717Google Scholar

    [25]

    Xie Q X, Yuan J H, Yu N N, Wang L S, Wang J F 2017 Comput. Mater. Sci. 135 160Google Scholar

    [26]

    Yuan J H, Yu N N, Xue K H, Miao X S 2017 RSC Adv. 7 8654Google Scholar

    [27]

    Zhang J F, Wageh S, Al-Ghamdi A, Yu J G 2016 Appl. Catal. B-Environ. 192 101Google Scholar

    [28]

    Tian Y L, Hua H L, Yue W W, Chen M N, Hu G C, Ren J F, Yuan X B 2017 Mod. Phys. Lett. B 31 1750335Google Scholar

    [29]

    王胜楠, 毛启楠, 袁倩敏, 李鹤, 季振国 2016 材料科学与工程学报 34 702

    Wang S N, Mao Q N, Yuan Q M, Li H, Ji Z G 2016 Journal of Materials Science and Engineering 34 702

    [30]

    Yu W L, Zhang J F, Peng T Y 2016 Appl. Catal. B-Environ. 181 220Google Scholar

    [31]

    Yu N N, Yuan J H, Li K X 2018 Appl. Surf. Sci. 427 0169Google Scholar

    [32]

    Goclon J, Winkler K 2018 Appl. Surf. Sci. 462 134Google Scholar

    [33]

    Zhou Y H, Peng Z B, Chen Y D, Luo K, Zhang J, Du S Y 2019 Comput. Mater. Sci. 168 137Google Scholar

  • [1] 宋蕊, 王必利, 冯凯, 姚佳, 李霞. 应力调控对单层TiOCl2电子结构及光学性质的影响. 物理学报, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [2] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [3] 熊子谦, 张鹏程, 康文斌, 方文玉. 一种新型二维TiO2的电子结构与光催化性质. 物理学报, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [4] 刘晓威, 张可烨. 有效质量法调控原子玻色-爱因斯坦凝聚体的双阱动力学. 物理学报, 2017, 66(16): 160301. doi: 10.7498/aps.66.160301
    [5] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [6] 李立明, 宁锋, 唐黎明. 量子局域效应和应力对GaSb纳米线电子结构影响的第一性原理研究. 物理学报, 2015, 64(22): 227303. doi: 10.7498/aps.64.227303
    [7] 余田, 张国华, 孙其诚, 赵雪丹, 马文波. 垂直振动激励下颗粒材料有效质量和耗散功率的研究. 物理学报, 2015, 64(4): 044501. doi: 10.7498/aps.64.044501
    [8] 雷天民, 吴胜宝, 张玉明, 郭辉, 陈德林, 张志勇. La, Ce, Nd掺杂对单层MoS2电子结构的影响. 物理学报, 2014, 63(6): 067301. doi: 10.7498/aps.63.067301
    [9] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [10] 祁洪飞, 刘大博, 成波, 郝维昌, 王天民. Ag反点阵列修饰TiO2 薄膜的制备及光催化性能研究. 物理学报, 2012, 61(22): 228201. doi: 10.7498/aps.61.228201
    [11] 张学军, 柳清菊, 邓曙光, 陈娟, 高攀. Mn,N共掺杂对锐钛矿相TiO2微观结构和性能的影响. 物理学报, 2011, 60(8): 087103. doi: 10.7498/aps.60.087103
    [12] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [13] 赵起迪, 张振华. 低偏压下单层碳纳米管的输运特征. 物理学报, 2010, 59(11): 8098-8103. doi: 10.7498/aps.59.8098
    [14] 吴慧婷, 王海龙, 姜黎明. 有效质量差异和电场对GaN/AlxGa1-xN球形量子点电子结构的影响. 物理学报, 2009, 58(1): 465-470. doi: 10.7498/aps.58.465
    [15] 王传道. GaAs/AlxGa1-xAs球形量子点中的电子结构. 物理学报, 2008, 57(2): 1091-1096. doi: 10.7498/aps.57.1091
    [16] 赵宗彦, 柳清菊, 朱忠其, 张 瑾. S掺杂对锐钛矿相TiO2电子结构与光催化性能的影响. 物理学报, 2008, 57(6): 3760-3768. doi: 10.7498/aps.57.3760
    [17] 陆广成, 李增花, 左 维, 罗培燕. 热核物质中基态关联修正下的单核子势和核子有效质量. 物理学报, 2006, 55(1): 84-90. doi: 10.7498/aps.55.84
    [18] 额尔敦朝鲁, 李树深, 肖景林. 晶格热振动对准二维强耦合极化子有效质量的影响. 物理学报, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [19] 蔡长英, 任中洲, 鞠国兴. 指数型变化有效质量的三维Schr?dinger方程的解析解. 物理学报, 2005, 54(6): 2528-2533. doi: 10.7498/aps.54.2528
    [20] 段 鹤, 陈效双, 孙立忠, 周孝好, 陆 卫. 闪锌矿结构CdTe和ZnTe能带结构和有效质量的第一性原理计算. 物理学报, 2005, 54(11): 5293-5300. doi: 10.7498/aps.54.5293
计量
  • 文章访问数:  8993
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-14
  • 修回日期:  2019-12-12
  • 刊出日期:  2020-03-05

/

返回文章
返回