搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

经式8-羟基喹啉铝的光谱与激发性质密度泛函

彭婕 张嗣杰 王苛 DoveMartin

引用本文:
Citation:

经式8-羟基喹啉铝的光谱与激发性质密度泛函

彭婕, 张嗣杰, 王苛, DoveMartin

Density functional theory calculation of spectrum and excitation properties of mer-Alq3

Peng Jie, Zhang Si-Jie, Wang Ke, Dove Martin
PDF
HTML
导出引用
  • 经式8-羟基喹啉铝(mer-Alq3)是一种光电性能优良的小分子有机半导体发光材料. 本文采用密度泛函理论(DFT)B3LYP/6-31G*方法和基组对其进行结构优化, 计算并研究了该分子的红外光谱、拉曼光谱和前线轨道. 计算得到的红外光谱、拉曼光谱均与实验相符. 前线轨道表明基态最高占据轨道(HOMO)的电子云主要集中在苯酚环, 最低未占据轨道(LUMO)的电子云主要集中在吡啶环. 用含时密度泛函理论(TD-DFT)计算得到紫外-可见吸收光谱, 采用空穴-电子分析法研究了电子激发特征. 结果表明: 电子从基态到激发态的跃迁, 主要是8-羟基喹啉环内或环间的电荷转移, 以π-π*跃迁为主, 包括局域激发和电荷转移激发两种类型. 本工作对mer-Alq3分子发光机理提出更深入的认识, 能为进一步提高该分子发光效率和调控分子的发光范围提供一定的理论指导.
    Meridional tris(8-hydroxyquinoline)aluminum (III) (mer-Alq3) is an organometallic semiconductor material with phenomenal photo-electric properties. In order to understand the molecular luminescence properties of mer-Alq3, the density functional theoretical (B3LYP) method with 6-31G* basis set is employed to calculate its structure, infrared spectrum and Raman spectrum and the frontier molecular orbital of its ground state. The UV-vis absorption and the excited state characteristics are investigated by the time-dependent density functional theory (TD-DFT) method. The results show that the calculated spectral characteristics are in good agreement with the experimental data. The electron cloud of the highest occupied molecular orbital (HOMO) is located mostly on the phenoxide ring, whereas that of the lowest unoccupied molecular orbital (LUMO) sits on the pyridine ring. The absorption peaks of the UV-visible absorption spectrum are located in the visible and ultraviolet region. S0→S2 is attributed to the superposition of the π-π* local excitation in the direction from benzene ring to pyridine ring and the n-π* local excitation in the direction from oxygen atom to pyridine ring. The π-π* local excitation from benzene ring to pyridine ring is S0→S4. The superposition of π-n local excitation from benzene to carbon and n-n local excitation from oxygen to carbon are excited by S0→S11. S0→S14 is charge-transfer excitation and contributed by the superposition of π-π* in the direction from benzene ring to pyridine ring and n-π* in the direction from oxygen atom to pyridine ring. This work is significant for understanding the basic properties of mer-Alq3 and the mechanisms of electron excitations. It provides a deeper insight into the luminescence mechanism of mer-Alq3, thus playing a guidance role in further improving the luminescence efficiency and regulating the spectral range of the light-emitting mer-Alq3.
      通信作者: 张嗣杰, sijie.zhang@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61871451)、四川省青年科技基金(批准号: 2017JQ0021)和贵州师范学院国家科技部和国家自然科学基金项目奖励补助资金项目(批准号:黔科合平台人才[2017]5790-03)资助的课题
      Corresponding author: Zhang Si-Jie, sijie.zhang@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61871451), the Natural Science Foundation for Young Scientists of Sichuan Province, China (Grant No. 2017JQ0021), and the Awards of the Ministry of Science and Technology and the Natural Science Foundation of Guizhou Education University, China (Grant No. QKHPTRC[2017]5790-03)
    [1]

    段炼, 邱勇 2015 材料研究学报 29 321Google Scholar

    Duan L, Qiu Y 2015 Chin. J. Mater. Res. 29 321Google Scholar

    [2]

    周瑞, 安忠维, 柴生勇 2004 光谱学与光谱分析 08 922Google Scholar

    Zhou R, An Z W, Chai S Y 2004 Spectrosc. Spect. Anal. 08 922Google Scholar

    [3]

    Xu H, Chen R F, Sun Q, Lai W Y, Su Q Q, Huang W, Liu X G 2014 Chem. Soc. Rev. 43 3259Google Scholar

    [4]

    Tang C W, VanSlyke S A 1987 Appl. Phys. Lett. 51 913Google Scholar

    [5]

    Liao S H, Shiu J R, Liu S W, Yeh S J, Chen Y H, Chen C T, Chow T J, Wu C I 2009 J. Am. Chem. Soc. 131 763Google Scholar

    [6]

    Liu R, Gan Z Q, Shinar R, Shinar J 2011 Phys. Rev. B 83 245302Google Scholar

    [7]

    Katakura R, Koide Y 2006 Inorg. Chem. 45 5730Google Scholar

    [8]

    许金钩, 王尊本 2006 荧光分析法 (北京: 科学出版社) 第42页

    Xu J G, Wang Z B 2006 Fluorescence Analysis (Beijing: Science Press) p42 (in Chinese)

    [9]

    张蕾, 张学俊 2011 化工中间体 7 28

    Zhang L, Zhang X J 2011 Chem. Intermed. 7 28

    [10]

    Xu B S, Chen L Q, Liu X G, Zhou H F, Xu H F, Fang X H, Wang Y L 2008 Appl. Phys. Lett. 92 103305Google Scholar

    [11]

    Pérez-Bolívar C, Takizawa S Y, Nishimura G, Montes V A, Anzenbacher P J 2011 Chem. Eur. J. 17 9076Google Scholar

    [12]

    Stampor W, Kalinowski J, Marco P D, Fattori V 1997 Appl. Phys. Lett. 70 1953Google Scholar

    [13]

    Xue W M, Wang Y, Chan M C W, Su Z M, Cheung K K, Chen C M 1998 Organomet. 17 1946Google Scholar

    [14]

    Xue W M, Chan M C W, Su Z M, Cheung K K, Liu S T, Chen C M 1998 Organomet. 17 1622Google Scholar

    [15]

    苏忠民, 高洪泽, 程红, 初蓓, 陈丽华, 王荣顺, 王悦, 沈家骢 2001 中国科学: 化学 31 16

    Su Z M, Gao H Z, Chen H, Chu B, Chen L H, Wang R S, Wang Y, Shen J C 2001 Sci. China: Chemistry 31 16

    [16]

    Curioni A, Boero M, Andreoni W 1998 Chem. Phys. Lett. 294 263Google Scholar

    [17]

    Sobereva http://sobereva.com/434 [2019-10-25]

    [18]

    Tangui L B, Carlo A, Ilaria C 2011 J. Chem. Theory Comput. 7 2498Google Scholar

    [19]

    Foresman J B, Frisch A 1996 Exploring chemistry with electronic structure method (2nd edn.) (Pittsburgh: Gaussian, Inc.) p64

    [20]

    Curioni A, Andreoni W 2001 IBM J. Res. Dev. 45 101Google Scholar

    [21]

    Brinkmann M, Gadret G, Muccini M, Taliani C, Masciocchi N, Sironi A 2000 J. Am. Chem. Soc. 122 5147Google Scholar

    [22]

    Chemistry Database [DB/OL]. Shanghai Institute of Organic Chemistry of CAS. http://www.organchem.csdb.cn. [1978–2019]

    [23]

    王媛媛 2006 硕士学位论文 (山东: 山东大学)

    Wang Y Y 2006 M.S. Thesis (Shangdong: Shandong University) (in Chinese)

    [24]

    解晓东, 郝玉英, 章日光, 王宝俊 2012 物理学报 61 127201Google Scholar

    Xie X D, Hao Y Y, Zhang R G, Wang B J 2012 Acta Phys. Sin. 61 127201Google Scholar

    [25]

    卢天, 陈飞武 2011 化学学报 69 2393

    Lu T, Chen F W 2011 Acta Chim. Sin. 69 2393

    [26]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [27]

    Multiwfn Manual, Lu T http://sobereva.com/multiwfn/[2019-9-2]

  • 图 1  mer-Alq3的分子结构

    Fig. 1.  Structure of the mer-Alq3 molecule.

    图 2  mer-Alq3分子的红外光谱

    Fig. 2.  Infrared absorption spectrum of mer-Alq3.

    图 3  mer-Alq3的拉曼光谱

    Fig. 3.  Raman spectrum of mer-Alq3.

    图 4  mer-Alq3前线分子轨道分布图 (a) HOMO-2轨道分布图; (b) HOMO-1轨道分布图; (c) HOMO轨道分布图; (d) LUMO轨道分布图; (e) LUMO+1轨道分布图; (f) LUMO+2轨道分布图

    Fig. 4.  Frontier molecular orbits of mer-Alq3: (a) HOMO-2 distribution; (b) HOMO-1 distribution; (c) HOMO distribution; (d) LUMO distribution; (e) LUMO+1 distribution; (f) LUMO+2 distribution.

    图 5  mer-Alq3分子的紫外-可见吸收光谱

    Fig. 5.  UV-Vis absorption spectrum of mer-Alq3.

    图 6  mer-Alq3的空穴-电子、Chole-Cele、Sr示意图 (a)−(c) S2的空穴-电子, Chole-Cele, Sr图; (d)−(f) S4的空穴-电子, Chole-Cele, Sr图; (g)−(i) S11的空穴-电子, Chole-Cele, Sr图; (j)−(l) S14的空穴-电子, Chole-Cele, Sr

    Fig. 6.  Electron-hole, Chole-Cele and Sr distributions of mer-Alq3 respectively: (a)−(c) Electron-hole, Chole-Cele, Sr distribution at S2 state geometry; (d)−(f) Electron-hole, Chole-Cele, Sr distribution at S4 state geometry; (g)−(i) Electron-hole, Chole-Cele, Sr distribution at S11 state geometry; (j)−(l) Electron-hole, Chole-Cele, Sr distribution at S14 state geometry

    表 1  mer-Alq3分子的键长

    Table 1.  Bond lengths of the mer-Alq3.

    BondB3LYP/6-31G*/ÅExperimental results/Å[21]
    Al-Na2.083772.0502
    Al-Nb2.125652.0872
    Al-Nc2.064312.0172
    Al-Oa1.855451.8502
    Al-Ob1.881061.8602
    Al-Oc1.883981.8572
    下载: 导出CSV

    表 2  mer-Alq3分子中部分振动模式指认

    Table 2.  Identification of partial vibration modes of mer-Alq3.

    Vexperiment/cm–1Vtheory/cm–1Vibration analysisVexperiment/cm–1Vtheory/cm–1Vibration analysis
    398408分子骨架扭曲变形12281268C—N伸缩振动, C—H平面摇摆振动, 剪式振动
    416422分子骨架扭曲变形, 环1环2环5 环6上C—H平面摇摆振动, 环3环4上C—H扭曲振动12801334C—O, C—C伸缩振动, C—H平面摇摆振动
    457470C—H扭曲振动13281376C—H平面摇摆振动, 剪式振动
    548554Al-O50伸缩振动, 环1环2呼吸振动13831422C—C伸缩振动, C—H平面摇摆振动
    642662Al-O50伸缩振动, C—H扭曲振动14241438C—N、C—C伸缩振动, C—H 平面摇摆振动, 剪式振动
    746768Al-O面外弯曲振动, 环3环4呼吸
    振动
    14681512C—N伸缩振动, C—C伸缩振动, C—H平面摇摆振动
    787796C—H扭曲振动14991550C—C伸缩振动, C—H平面摇摆振动
    803820苯环和吡啶环变形振动15791636C—N伸缩振动, C—C伸缩振动, C—H平面摇摆振动, 剪式振动
    823836C—H面外摇摆振动16061658C—N伸缩振动, C—C伸缩振动, C—H平面摇摆振动, 剪式振动
    11141140C—H剪式振动30393202苯环上C—H伸缩振动
    下载: 导出CSV

    表 3  mer-Alq3分子中部分振动模式指认

    Table 3.  Identification of partial vibration modes of mer-Alq3.

    Vexperiment/cm–1Vtheory/cm–1Vibration analysis
    507508Al—O扭曲振动, 苯环和吡啶环变形振动
    529530Al—O伸缩振动, 苯环和吡啶环呼吸振动
    545554Al—O伸缩振动, 苯环和吡啶环呼吸振动
    581586Al—O扭曲振动, 苯环和吡啶环变形振动
    760768Al—O伸缩振动, 苯环和吡啶环呼吸振动
    10621086C—H平面摇摆振动, 剪式振动
    11771172C—H平面摇摆振动, 剪式振动
    13931422C—O, C—C伸缩振动, C—H平面摇摆振动, 剪式振动
    1438C—N、C—C伸缩振动, C—H平面摇摆振动, 剪式振动
    15931638C—C伸缩振动, C—H平面摇摆振动, 剪式振动
    3216C—H伸缩振动
    下载: 导出CSV

    表 4  mer-Alq3的前线分子轨道能级(单位: arb.units)及分布(单位: %)

    Table 4.  Frontier molecular orbital energy levels (in arb.units) and distribution (in %) of mer-Alq3.

    分子轨道能级Alabc
    O吡啶O吡啶O吡啶
    H-2–0.195841.510.160.850.9320.3664.5919.940.240.741.15
    H-1–0.192041.572.058.502.560.361.181.1717.1958.3017.72
    H–0.183971.4719.2557.5217.840.360.200.243.587.262.42
    L–0.063631.600.060.180.911.6625.2864.810.294.5512.18
    L+1–0.054961.360.628.4120.900.243.247.251.3319.6447.98
    L+2–0.052181.281.7221.5756.030.541.835.130.816.3216.59
    下载: 导出CSV

    表 5  mer-Alq3分子的电子激发分析表

    Table 5.  The analysis of electron excitation of mer-Alq3.

    Excited stateλ/nmfTransition nature (contribution > 10%)Transition energy/eV
    2427.150.0672119→121 (45.9956%); 119→122 (23.0683%);
    118→120 (21.1263%)
    2.9026
    4417.310.0425117→120 (88.1022%)2.9710
    11304.030.0151119→124 (38.2445%); 119→125 (23.0208%)4.0781
    12302.870.0214117→123 (66.2078%); 114→120 (20.1638%)4.0937
    下载: 导出CSV

    表 6  mer-Alq3分子的激发态参数

    Table 6.  Excited state parameters of mer-Alq3.

    DSr/arb.unitsHt
    S0 → S20.180.613.570.12
    S0 → S40.990.592.950.41
    S0 → S110.880.793.84–1.38
    S0 → S140.680.433.472.00
    下载: 导出CSV
  • [1]

    段炼, 邱勇 2015 材料研究学报 29 321Google Scholar

    Duan L, Qiu Y 2015 Chin. J. Mater. Res. 29 321Google Scholar

    [2]

    周瑞, 安忠维, 柴生勇 2004 光谱学与光谱分析 08 922Google Scholar

    Zhou R, An Z W, Chai S Y 2004 Spectrosc. Spect. Anal. 08 922Google Scholar

    [3]

    Xu H, Chen R F, Sun Q, Lai W Y, Su Q Q, Huang W, Liu X G 2014 Chem. Soc. Rev. 43 3259Google Scholar

    [4]

    Tang C W, VanSlyke S A 1987 Appl. Phys. Lett. 51 913Google Scholar

    [5]

    Liao S H, Shiu J R, Liu S W, Yeh S J, Chen Y H, Chen C T, Chow T J, Wu C I 2009 J. Am. Chem. Soc. 131 763Google Scholar

    [6]

    Liu R, Gan Z Q, Shinar R, Shinar J 2011 Phys. Rev. B 83 245302Google Scholar

    [7]

    Katakura R, Koide Y 2006 Inorg. Chem. 45 5730Google Scholar

    [8]

    许金钩, 王尊本 2006 荧光分析法 (北京: 科学出版社) 第42页

    Xu J G, Wang Z B 2006 Fluorescence Analysis (Beijing: Science Press) p42 (in Chinese)

    [9]

    张蕾, 张学俊 2011 化工中间体 7 28

    Zhang L, Zhang X J 2011 Chem. Intermed. 7 28

    [10]

    Xu B S, Chen L Q, Liu X G, Zhou H F, Xu H F, Fang X H, Wang Y L 2008 Appl. Phys. Lett. 92 103305Google Scholar

    [11]

    Pérez-Bolívar C, Takizawa S Y, Nishimura G, Montes V A, Anzenbacher P J 2011 Chem. Eur. J. 17 9076Google Scholar

    [12]

    Stampor W, Kalinowski J, Marco P D, Fattori V 1997 Appl. Phys. Lett. 70 1953Google Scholar

    [13]

    Xue W M, Wang Y, Chan M C W, Su Z M, Cheung K K, Chen C M 1998 Organomet. 17 1946Google Scholar

    [14]

    Xue W M, Chan M C W, Su Z M, Cheung K K, Liu S T, Chen C M 1998 Organomet. 17 1622Google Scholar

    [15]

    苏忠民, 高洪泽, 程红, 初蓓, 陈丽华, 王荣顺, 王悦, 沈家骢 2001 中国科学: 化学 31 16

    Su Z M, Gao H Z, Chen H, Chu B, Chen L H, Wang R S, Wang Y, Shen J C 2001 Sci. China: Chemistry 31 16

    [16]

    Curioni A, Boero M, Andreoni W 1998 Chem. Phys. Lett. 294 263Google Scholar

    [17]

    Sobereva http://sobereva.com/434 [2019-10-25]

    [18]

    Tangui L B, Carlo A, Ilaria C 2011 J. Chem. Theory Comput. 7 2498Google Scholar

    [19]

    Foresman J B, Frisch A 1996 Exploring chemistry with electronic structure method (2nd edn.) (Pittsburgh: Gaussian, Inc.) p64

    [20]

    Curioni A, Andreoni W 2001 IBM J. Res. Dev. 45 101Google Scholar

    [21]

    Brinkmann M, Gadret G, Muccini M, Taliani C, Masciocchi N, Sironi A 2000 J. Am. Chem. Soc. 122 5147Google Scholar

    [22]

    Chemistry Database [DB/OL]. Shanghai Institute of Organic Chemistry of CAS. http://www.organchem.csdb.cn. [1978–2019]

    [23]

    王媛媛 2006 硕士学位论文 (山东: 山东大学)

    Wang Y Y 2006 M.S. Thesis (Shangdong: Shandong University) (in Chinese)

    [24]

    解晓东, 郝玉英, 章日光, 王宝俊 2012 物理学报 61 127201Google Scholar

    Xie X D, Hao Y Y, Zhang R G, Wang B J 2012 Acta Phys. Sin. 61 127201Google Scholar

    [25]

    卢天, 陈飞武 2011 化学学报 69 2393

    Lu T, Chen F W 2011 Acta Chim. Sin. 69 2393

    [26]

    Lu T, Chen F W 2012 J. Comput. Chem. 33 580Google Scholar

    [27]

    Multiwfn Manual, Lu T http://sobereva.com/multiwfn/[2019-9-2]

  • [1] 李媛媛, 胡竹斌, 孙海涛, 孙真荣. 胆红素分子激发态性质的密度泛函理论研究. 物理学报, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [2] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算. 物理学报, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [3] 李世雄, 张正平, 隆正文, 秦水介. 硼球烯B40在外电场下的基态性质和光谱特性. 物理学报, 2017, 66(10): 103102. doi: 10.7498/aps.66.103102
    [4] 江鹏, 毕卫红, 齐跃峰, 付兴虎, 武洋, 田朋飞. 光子晶体光纤重叠光栅理论模型与光谱特性研究. 物理学报, 2016, 65(20): 204208. doi: 10.7498/aps.65.204208
    [5] 杨振清, 白晓慧, 邵长金. (TiO2)12量子环及过渡金属化合物掺杂对其电子性质影响的密度泛函理论研究. 物理学报, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [6] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [7] 吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋. 外电场下CdSe的基态性质和光谱特性研究. 物理学报, 2015, 64(15): 153102. doi: 10.7498/aps.64.153102
    [8] 余本海, 陈东. 用密度泛函理论研究氮化硅新相的电子结构、光学性质和相变. 物理学报, 2014, 63(4): 047101. doi: 10.7498/aps.63.047101
    [9] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究. 物理学报, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [10] 王森, 周亚训, 戴世勋, 王训四, 沈祥, 陈飞飞, 徐星辰. Er3+/Ce3+共掺碲铋酸盐玻璃的制备及光谱特性提高研究. 物理学报, 2012, 61(10): 107802. doi: 10.7498/aps.61.107802
    [11] 张致龙, 陈玉红, 任宝兴, 张材荣, 杜瑞, 王伟超. (HMgN3)n(n=15)团簇结构与性质的密度泛函理论研究. 物理学报, 2011, 60(12): 123601. doi: 10.7498/aps.60.123601
    [12] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [13] 金蓉, 谌晓洪. 密度泛函理论对ZrnPd团簇结构和性质的研究. 物理学报, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] 李雪梅, 张建平. 5-(2-芳氧甲基苯并咪唑-1-亚甲基)-1,3,4噁二唑-2-硫酮的结构,光谱与热力学性质的理论研究. 物理学报, 2010, 59(11): 7736-7742. doi: 10.7498/aps.59.7736
    [15] 孙建敏, 赵高峰, 王献伟, 杨雯, 刘岩, 王渊旭. Cu吸附(SiO3)n(n=1—8)团簇几何结构和电子性质的密度泛函研究. 物理学报, 2010, 59(11): 7830-7837. doi: 10.7498/aps.59.7830
    [16] 李喜波, 王红艳, 罗江山, 吴卫东, 唐永建. 密度泛函理论研究ScnO(n=1—9)团簇的结构、稳定性与电子性质. 物理学报, 2009, 58(9): 6134-6140. doi: 10.7498/aps.58.6134
    [17] 李喜波, 罗江山, 郭云东, 吴卫东, 王红艳, 唐永建. 密度泛函理论研究Scn,Yn和Lan(n=2—10)团簇的稳定性、电子性质和磁性. 物理学报, 2008, 57(8): 4857-4865. doi: 10.7498/aps.57.4857
    [18] 陈玉红, 康 龙, 张材荣, 罗永春, 蒲忠胜. (Li3N)n(n=1—5)团簇结构与性质的密度泛函研究. 物理学报, 2008, 57(7): 4174-4181. doi: 10.7498/aps.57.4174
    [19] 陈玉红, 康 龙, 张材荣, 罗永春, 元丽华, 李延龙. (Ca3N2)n(n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2008, 57(10): 6265-6270. doi: 10.7498/aps.57.6265
    [20] 陈玉红, 张材荣, 马 军. MgmBn(m=1,2;n=1—4)团簇结构与性质的密度泛函理论研究. 物理学报, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
计量
  • 文章访问数:  11012
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-23
  • 修回日期:  2019-10-30
  • 刊出日期:  2020-01-20

/

返回文章
返回