搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属衬底上石墨烯的红外近场光学

岑贵 张志斌 吕新宇 刘开辉 李志强

引用本文:
Citation:

金属衬底上石墨烯的红外近场光学

岑贵, 张志斌, 吕新宇, 刘开辉, 李志强

Near-field infrared microscopy of graphene on metal substrate

Cen Gui, Zhang Zhi-Bin, Lü Xin-Yu, Liu Kai-Hui, Li Zhi-Qiang
PDF
HTML
导出引用
  • 对石墨烯/铜体系开展了系统性的近场光学实验研究, 成功观测到了区别于铜衬底的、来自石墨烯的近场光学响应信号, 发现在表面台阶几何参数相同的铜衬底上的不同石墨烯样品表现出了截然不同的近场光学响应.
    Graphene plasmons, collective oscillation modes of electrons in graphene, have recently attracted intense attention in both the fundamental researches and the applications because of their strong field confinement, low loss and excellent tunability. The dispersion of graphene plasmons can be significantly modified in the system of graphene on metal substrate, in which the screening of the long-range part of the electron-electron interactions by nearby metal can lead to many novel quantum effects, such as acoustic plasmons, quantum nonlocal effects and renormalization of band structure. Scattering-type scanning near-field optical microscopy (s-SNOM) which consists of a laser coupled to the tip of an atomic force microscopy (AFM), is an effective technique to directly probe plasmons in two-dimensional materials including graphene, and the graphene plasmons can be observed visually by real-space imaging. But so far the detailed s-SNOM studies of graphene/metal system have not been reported. One potential challenge is that the near-field response of highly conductive metal substrate may partially or entirely obscure that of graphene, making it difficult to further explore graphene by using s-SNOM. Here in this paper, we report the direct observation of near-field optical response of graphene in a graphene/metal system excited by a mid-infrared quantum cascade laser. From a close examination of the data of graphene/Cu compared with that of h-BN/Cu, we are able to identify experimental features due to the near-field response of graphene. Surprisingly, two completely different behaviors are observed in the s-SNOM data for different graphene samples on Cu substrates with similar surface step geometries. These results suggest that the near-field response of graphene/metal system is not completely dominated by the metal substrate, and that two completely different near-field response behaviors of graphene may be attributed to their intrinsic properties affected by metal substrates themselves rather than surface step geometries of metal substrate. In addition, following this approach it is possible to distinguish the near-field optical responses of graphene from that of graphene/metal system. Our work reveals the clear signatures of the near-field optical response of graphene on metal substrate, which provides the foundation for probing plasmons in these systems by using the s-SNOM and understanding many novel quantum phenomena therein.
      通信作者: 李志强, zhiqiangli@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11874271)资助的课题
      Corresponding author: Li Zhi-Qiang, zhiqiangli@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874271)
    [1]

    Basov D N, Fogler M M, de Abajo F J G 2016 Science 354 6309Google Scholar

    [2]

    Chen X, Hu D, Mescall R, You G, Basov D N, Dai Q, Liu M 2019 Adv. Mater. 31 1804774Google Scholar

    [3]

    Atkin J M, Berweger S, Jones A C, Raschke M B 2012 Adv. Phys. 61 745Google Scholar

    [4]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [5]

    段嘉华, 陈佳宁 2019 物理学报 68 110701Google Scholar

    Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar

    [6]

    Lundeberg M B, Gao Y, Asgari R, Tan C, Duppen B V, Autore M, Alonso González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187Google Scholar

    [7]

    Principi A, Asgari R, Polini M 2011 Solid State Commun. 151 1627Google Scholar

    [8]

    Principi A, Loon E v, Polini M, Katsnelson M I 2018 Phys. Rev. B. 98 035427Google Scholar

    [9]

    Alkorre H, Shkerdin G, Stiens J, Vounckx R 2015 J. Opt. 17 045003Google Scholar

    [10]

    Chen J, Badioli M, Alonso González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H K 2012 Nature 487 77Google Scholar

    [11]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [12]

    Ni G X, Wang H, Wu J S, Fei Z, Goldflam M D, Keilmann F, Özyilmaz B, Neto A H C, Xie X M, Fogler M M, Basov D N 2015 Nat. Mater. 14 1217Google Scholar

    [13]

    Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen G C A M, Zhu S E, Jarillo Herrero P, Fogler M M, Basov D N 2015 Nat. Nanotechnol. 10 682Google Scholar

    [14]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421Google Scholar

    [15]

    Yang X, Zhai F, Hu H, Hu D, Liu R, Zhang S, Sun M, Sun Z, Chen J, Dai Q 2016 Adv. Mater. 28 2931Google Scholar

    [16]

    Jiang L, Shi Z, Zeng B, Wang S, Kang J H, Joshi T, Jin C, Ju L, Kim J, Lyu T, Shen Y R, Crommie M, Gao H J, Wang F 2016 Nat. Mater. 15 840Google Scholar

    [17]

    Sunku S S, Ni G X, Jiang B Y, Yoo H, Sternbach A, McLeod A S, Stauber T, Xiong L, Taniguchi T, Watanabe K, Kim P, Fogler M M, Basov D N 2018 Science 362 1153Google Scholar

    [18]

    Jiang B Y, Ni G X, Addison Z, Shi J K, Liu X, Zhao S Y F, Kim P, Mele E J, Basov D N, Fogler M M 2017 Nano Lett. 17 7080Google Scholar

    [19]

    Jiang B Y, Zhang L M, Neto A H C, Basov D N, Fogler M M 2016 J. Appl. Phys. 119 054305Google Scholar

    [20]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930Google Scholar

    [21]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074Google Scholar

    [22]

    Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K 2019 Nature Chem. 11 730Google Scholar

    [23]

    Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar

    [24]

    Babicheva V E, Gamage S, Stockman M I, Abate Y 2017 Opt. Express 25 23935Google Scholar

    [25]

    Abate Y, Gamage S, Li Z, Babicheva V, Javani M H, Wang H, Cronin S B, Stockman M I 2016 Light Sci. Appl. 5 e16162Google Scholar

    [26]

    Costa S D, Weis J E, Frank O, Kalbac M 2015 Carbon. 93 793Google Scholar

    [27]

    Frank O, Vejpravova J, Holy V, Kavan L, Kalbac M 2014 Carbon. 68 440Google Scholar

    [28]

    Walter A L, Nie S, Bostwick A, Kim K S, Moreschini L, Chang Y J, Innocenti D, Horn K, McCarty K F, Rotenberg E 2011 Phys. Rev. B. 84 195443Google Scholar

    [29]

    Lyu B, Li H, Jiang L, Shan W, Hu C, Deng A, Ying Z, Wang L, Zhang Y, Bechtel H A, Martin M C, Taniguchi T, Watanabe K, Luo W, Wang F, Shi Z 2019 Nano Lett. 19 1982Google Scholar

  • 图 1  s-SNOM示意图 一束红外光(IR)聚焦于针尖和样品之间, 针尖以频率$ \varOmega $和振幅A在竖直方向振动, 针尖与样品的距离为$H(t) ={H_0} + A(1 + {\rm{cos}}(\varOmega t))$, 其中${H_0}$表示针尖和样品的最小距离, 测量信号是针尖-样品系统的散射光${E_{{\rm{sc}}}}$

    Fig. 1.  Schematic of s-SNOM. An infrared light is focused between the sample and the probe tip, which oscillate vertically with frequency $ \varOmega$ and amplitude A. The tip-sample distance is $H(t) ={H_0} + A(1 + {\rm{cos}}(\varOmega t))$, where ${H_0}$ is the minimum tip-sample distance. Incident light ${E_{{\rm{in}}}}$ interacts with tip-sample system, and is elastically scattered. The scattered field ${E_{{\rm{sc}}}}$ encodes the properties of the sample surface.

    图 2  生长在铜衬底上的石墨烯拉曼光谱2D峰呈现了单个的洛伦兹峰型, 表明是单层石墨烯; D峰没有出现, 表明是无缺陷的高质量石墨烯

    Fig. 2.  Raman spectra of graphene on Cu substrate. The Lorentzian shape of 2D peak manifested that it is a monolayer graphene. Absence of D peak indicated its defect-free and high-quality nature.

    图 3  h-BN/Cu台阶成像图 (a) 针尖扫过台阶时的不同位置, ①和④表示针尖处于远离台阶的位置, ②和③分别表示信号峰值(两个热点形成处)和信号谷值对应的针尖位置, 图中的针尖与台阶以等比例画出, 针尖中的红色圆圈表示直径D = 25 nm的针尖尖端; (b) (a)中位置②处针尖与台阶边缘间隔的局部放大图, 红色箭头指出热点形成的位置; (c) 左侧: h-BN/Cu台阶的形貌(上)和s-SNOM成像(下); 右侧: 左侧图中蓝色实线对应的形貌(上)和s-SNOM信号(下), 其中标签①—④与(a)中的标签相对应, 黑色和红色虚线分别指出s-SNOM信号的不同特征(峰值、谷值和平台)

    Fig. 3.  s-SNOM images of a h-BN/Cu step: (a) Different tip positions when the tip is scanned across a step. ① and ④ are the tip positions far away from the step, ② and ③ are the positions where a peak (corresponding to the formation of two hot-spots) and a dip appear in the s-SNOM signal, respectively. The tip and the step are shown in proportion. Red circle drew on the tip represents its apex with diameter of D = 25 nm; (b) Zoom-in on the gap between tip and sample at tip position ② in (a), which shows the two hot-spots by red arrows; (c) left panel: topography (upper) and s-SNOM image (lower) of h-BN/Cu at a surface step. Right panel: topography (upper) and s-SNOM line-profiles (lower) corresponding to the blue solid lines in the left panel. Labels ①–④ are corresponding to those in (a). Black and red dash lines indicate different features (peak, dip and plateau) in the s-SNOM line-profile.

    图 4  衬底台阶几何相近的两个石墨烯/铜样品的s-SNOM成像. 两种情况中, 左侧: 形貌(上)和s-SNOM成像(下); 右侧: 左侧图中蓝色实线对应的形貌(上)和s-SNOM信号(下) (a) 情况一, 台阶高度和宽度分别约为 5.3 nm和50 nm, 峰值和谷值分别对应台阶下方和下方边缘; (b)情况二, 台阶高度和宽度分别约为 5.5 nm和55 nm, 仅出现一个对应于台阶下方边缘的峰值

    Fig. 4.  s-SNOM images of two graphene/Cu samples with similar surface step geometries. In both cases, left panel: topography (upper) and s-SNOM image (lower); right panel: line-profiles of topography (upper) and s-SNOM line-profiles (lower) corresponding to the blue solid lines in left panel. (a) Case 1 (peak-dip): step height of about 5.3 nm and width of about 50 nm. Signal peak and dip appear corresponding to the lower and upper edge of the step, respectively; (b) Case 2 (peak): step height of about 5.5 nm and width of about 55 nm. Only a signal peak appears corresponding to the lower edge of the step.

  • [1]

    Basov D N, Fogler M M, de Abajo F J G 2016 Science 354 6309Google Scholar

    [2]

    Chen X, Hu D, Mescall R, You G, Basov D N, Dai Q, Liu M 2019 Adv. Mater. 31 1804774Google Scholar

    [3]

    Atkin J M, Berweger S, Jones A C, Raschke M B 2012 Adv. Phys. 61 745Google Scholar

    [4]

    Low T, Avouris P 2014 ACS Nano 8 1086Google Scholar

    [5]

    段嘉华, 陈佳宁 2019 物理学报 68 110701Google Scholar

    Duan J H, Chen J N 2019 Acta Phys. Sin. 68 110701Google Scholar

    [6]

    Lundeberg M B, Gao Y, Asgari R, Tan C, Duppen B V, Autore M, Alonso González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens F H L 2017 Science 357 187Google Scholar

    [7]

    Principi A, Asgari R, Polini M 2011 Solid State Commun. 151 1627Google Scholar

    [8]

    Principi A, Loon E v, Polini M, Katsnelson M I 2018 Phys. Rev. B. 98 035427Google Scholar

    [9]

    Alkorre H, Shkerdin G, Stiens J, Vounckx R 2015 J. Opt. 17 045003Google Scholar

    [10]

    Chen J, Badioli M, Alonso González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, de Abajo F J G, Hillenbrand R, Koppens F H K 2012 Nature 487 77Google Scholar

    [11]

    Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Neto A H C, Lau C N, Keilmann F, Basov D N 2012 Nature 487 82Google Scholar

    [12]

    Ni G X, Wang H, Wu J S, Fei Z, Goldflam M D, Keilmann F, Özyilmaz B, Neto A H C, Xie X M, Fogler M M, Basov D N 2015 Nat. Mater. 14 1217Google Scholar

    [13]

    Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen G C A M, Zhu S E, Jarillo Herrero P, Fogler M M, Basov D N 2015 Nat. Nanotechnol. 10 682Google Scholar

    [14]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421Google Scholar

    [15]

    Yang X, Zhai F, Hu H, Hu D, Liu R, Zhang S, Sun M, Sun Z, Chen J, Dai Q 2016 Adv. Mater. 28 2931Google Scholar

    [16]

    Jiang L, Shi Z, Zeng B, Wang S, Kang J H, Joshi T, Jin C, Ju L, Kim J, Lyu T, Shen Y R, Crommie M, Gao H J, Wang F 2016 Nat. Mater. 15 840Google Scholar

    [17]

    Sunku S S, Ni G X, Jiang B Y, Yoo H, Sternbach A, McLeod A S, Stauber T, Xiong L, Taniguchi T, Watanabe K, Kim P, Fogler M M, Basov D N 2018 Science 362 1153Google Scholar

    [18]

    Jiang B Y, Ni G X, Addison Z, Shi J K, Liu X, Zhao S Y F, Kim P, Mele E J, Basov D N, Fogler M M 2017 Nano Lett. 17 7080Google Scholar

    [19]

    Jiang B Y, Zhang L M, Neto A H C, Basov D N, Fogler M M 2016 J. Appl. Phys. 119 054305Google Scholar

    [20]

    Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K 2016 Nat. Nanotechnol. 11 930Google Scholar

    [21]

    Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, Liu K 2017 Sci. Bull. 62 1074Google Scholar

    [22]

    Liu C, Xu X, Qiu L, Wu M, Qiao R, Wang L, Wang J, Niu J, Liang J, Zhou X, Zhang Z, Peng M, Gao P, Wang W, Bai X, Ma D, Jiang Y, Wu X, Yu D, Wang E, Xiong J, Ding F, Liu K 2019 Nature Chem. 11 730Google Scholar

    [23]

    Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F, Liu K 2019 Nature 570 91Google Scholar

    [24]

    Babicheva V E, Gamage S, Stockman M I, Abate Y 2017 Opt. Express 25 23935Google Scholar

    [25]

    Abate Y, Gamage S, Li Z, Babicheva V, Javani M H, Wang H, Cronin S B, Stockman M I 2016 Light Sci. Appl. 5 e16162Google Scholar

    [26]

    Costa S D, Weis J E, Frank O, Kalbac M 2015 Carbon. 93 793Google Scholar

    [27]

    Frank O, Vejpravova J, Holy V, Kavan L, Kalbac M 2014 Carbon. 68 440Google Scholar

    [28]

    Walter A L, Nie S, Bostwick A, Kim K S, Moreschini L, Chang Y J, Innocenti D, Horn K, McCarty K F, Rotenberg E 2011 Phys. Rev. B. 84 195443Google Scholar

    [29]

    Lyu B, Li H, Jiang L, Shan W, Hu C, Deng A, Ying Z, Wang L, Zhang Y, Bechtel H A, Martin M C, Taniguchi T, Watanabe K, Luo W, Wang F, Shi Z 2019 Nano Lett. 19 1982Google Scholar

  • [1] 王波, 张纪红, 李聪颖. 石墨烯增强半导体态二氧化钒近场热辐射. 物理学报, 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [2] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感. 物理学报, 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [3] 段嘉华, 陈佳宁. 二维极化激元学近场研究进展. 物理学报, 2019, 68(11): 110701. doi: 10.7498/aps.68.20190341
    [4] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [5] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [6] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [7] 周锐, 吴梦雪, 沈飞, 洪明辉. 基于近场光学的微球超分辨显微效应. 物理学报, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702
    [8] 郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧. 金属衬底上高质量大面积石墨烯的插层及其机制. 物理学报, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [9] 张学进, 陆延青, 陈延峰, 朱永元, 祝世宁. 太赫兹表面极化激元. 物理学报, 2017, 66(14): 148705. doi: 10.7498/aps.66.148705
    [10] 焦悦, 陶海岩, 季博宇, 宋晓伟, 林景全. 用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强. 物理学报, 2017, 66(14): 144203. doi: 10.7498/aps.66.144203
    [11] 禹忠, 党忠, 柯熙政, 崔真. N/B掺杂石墨烯的光学与电学性质. 物理学报, 2016, 65(24): 248103. doi: 10.7498/aps.65.248103
    [12] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [13] 陈英良, 冯小波, 侯德东. 单层与双层石墨烯的光学吸收性质研究. 物理学报, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [14] 白永强, 唐爱辉, 王世强, 朱 星. 单个心肌细胞内钙波的微观动力学研究. 物理学报, 2007, 56(6): 3607-3612. doi: 10.7498/aps.56.3607
    [15] 宋国峰, 甘巧强, 瞿 欣, 方培源, 高建霞, 曹 青, 徐 军, 康香宁, 徐 云, 钟 源, 杨国华, 陈良惠. 微小孔径激光器的工艺及器件功率和寿命特性分析. 物理学报, 2005, 54(12): 5609-5613. doi: 10.7498/aps.54.5609
    [16] 徐耿钊, 梁 琥, 白永强, 刘纪美, 朱 星. 低温近场光学显微术对InGaN/GaN多量子阱电致发光温度特性的研究. 物理学报, 2005, 54(11): 5344-5349. doi: 10.7498/aps.54.5344
    [17] 王 潜, 徐金强, 武 锦, 李永贵. 利用扫描近场红外显微镜对化学样品组分进行成像研究. 物理学报, 2003, 52(2): 298-301. doi: 10.7498/aps.52.298
    [18] 周庆, 朱星, 李宏福. 近场光学中光纤探针的光强分布. 物理学报, 2000, 49(2): 210-214. doi: 10.7498/aps.49.210
    [19] 王子洋, 李 勤, 赵 钧, 郭继华. 透射式扫描近场光学显微镜探针光场分布及其受激荧光分子光场分布研究. 物理学报, 2000, 49(10): 1959-1964. doi: 10.7498/aps.49.1959
    [20] 王桂英. 近场光学理论初探. 物理学报, 1997, 46(11): 2154-2159. doi: 10.7498/aps.46.2154
计量
  • 文章访问数:  9167
  • PDF下载量:  239
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 修回日期:  2019-11-08
  • 上网日期:  2020-01-01
  • 刊出日期:  2020-01-20

/

返回文章
返回