搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理

徐晗 张璐 党政

引用本文:
Citation:

固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理

徐晗, 张璐, 党政

Coupling mechanism of mass transport and electrochemical reaction within patterned anode of solid oxide fuel cell

Xu Han, Zhang Lu, Dang Zheng
PDF
HTML
导出引用
  • 模式电极因其结构可控、电化学/化学反应活性位和物质传输路径明确等优势, 被广泛应用于固体氧化物燃料电池新型电极研究. 现有研究多采用模式电极研究新材料电化学特性、表界面催化反应机理等, 尚未涉及几何结构对其内部传输与电化学反应耦合机理的影响, 限制了模式电极的应用. 本文建立了固体氧化物燃料电池阳极内电荷传输与电化学反应过程的格子玻尔兹曼模拟方法, 明确了控制电极过程的关键无量纲参数及其对电极性能的影响规律, 研究了模式阳极几何结构的影响机理. 根据电极性能对无量纲参数的敏感程度, 绘制了指导模式阳极设计与运行的相图, 指出相图过渡区(电极性能随操作参数显著变化区域)为进行反应机理研究的最佳操作参数取值范围. 同时, 研究发现模式阳极电子导体内电子的快速迁移虽不限制阳极性能, 其几何结构显著影响过渡区范围;离子导体内离子迁移为影响阳极性能的限速步骤, 但其几何结构几乎不影响过渡区范围. 本文的数值方法与机理研究结果可为固体氧化物燃料电池模式电极的设计提供重要理论依据.
    Patterned electrodes are widely used in the development of novel electrodes of solid oxide fuel cells (SOFCs) because of their well-controlled geometries, distinguishable catalytically active sites and simple transport paths. In the existing studies the patterned electrodes are usually adopted to reveal relevant reaction mechanisms and to investigate the electrochemical characteristics of new materials of SOFCs, however, the effects of electrode geometry are not taken into consideration. In the present paper, a lattice Boltzmann model for simulating the charge transport and electrochemical reaction in an SOFC patterned anode is established, and the key dimensionless parameters governing the above electrode process are deduced. This model is then used to investigate the effects of the key dimensionless parameters on the electrochemical performance of a patterned anode. More importantly, the influences of the patterned anode geometry on the coupling of the charge transport and electrochemical reaction are unraveled. According to the sensitivity of the electrode performance to the dimensionless parameters, a dimensionless phase map, which is divided into maximum area, transition area and minimum area, is built. It is concluded that the transition area, in which the electrode performance varies dramatically with the parameters of design and operation, is regarded as the optimal range for studying the relevant reaction mechanism. Meanwhile, it is found that although the electron transport does not restrict the electrode performance, the moderate decrease of the height-to-width ratio of electronic conductor is capable of enlarging the transition area, which is beneficial to revealing the relevant reaction mechanism. Conversely, the ion transport is the rate-limiting step, however, the transition area remains unchanged under different ionic conductor geometries. The present numerical method and conclusions could offer guidance for rationally designing and operating the patterned electrodes.
      通信作者: 徐晗, xuhanxh@xjtu.edu.cn
    • 基金项目: 国家级-基于人工表面等离激元的功能集成型辐射器研究(51606151)
      Corresponding author: Xu Han, xuhanxh@xjtu.edu.cn
    [1]

    Chen Y, deGlee B, Tang Y, Wang Z, Zhao B, Wei Y, Zhang L, Yoo S, Pei K, Kim J, Ding Y, Hu P, Tao F, Liu M 2018 Nat. Energy 3 1042Google Scholar

    [2]

    陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬 2018 物理学报 67 088202Google Scholar

    Chen M N, Zhang L, Gao H Y, Xuan Y, Ren J F, Lin Z J 2018 Acta Phys. Sin. 67 088202Google Scholar

    [3]

    Mahato N, Banerjee A, Gupta A, Omar S, Balani K 2015 Prog. Mater Sci. 72 141Google Scholar

    [4]

    Li W, Shi Y, Luo Y, Wang Y, Cai N 2015 J. Power Sources 276 26Google Scholar

    [5]

    Patel H, Tabish A, Comelli F, Aravind P 2015 Appl. Energy 154 912Google Scholar

    [6]

    Luo Y, Li W, Shi Y, Cai N 2017 J. Power Sources 366 93Google Scholar

    [7]

    Doppler M, Fleig J, Bram M, Opitz A 2018 J. Power Sources 380 46Google Scholar

    [8]

    Chen Y, Choi Y, Yoo S, Ding Y, Yan R, Pei K, Qu C, Zhang L, Chang I, Zhao B, Zhang Y, Chen H, Chen Y, Yang C, deGlee B, Murphy R, Liu J, Liu M 2018 Joule 2 938Google Scholar

    [9]

    Luo Y, Li W, Shi Y, Wang Y, Cai N 2017 Int. J. Hydrogen Energy 42 25130Google Scholar

    [10]

    Liu M, Lynch M E, Blinn K, Alamgir F M, Choi Y 2011 Mater. Today 14 534Google Scholar

    [11]

    Liu J, Ciucci F 2017 Phys. Chem. Chem. Phys. 19 26310Google Scholar

    [12]

    Patel H, Tabish A, Aravind P 2015 Electrochim. Acta 182 202Google Scholar

    [13]

    Yao W, Croiset E 2014 J. Power Sources 248 777Google Scholar

    [14]

    Yurkiv V, Utz A, Weber A, Ivers-Tiffée E, Volpp H R, Bessler W G 2012 Electrochim. Acta 59 573Google Scholar

    [15]

    Lynch M, Liu M 2010 J. Power Sources 195 5155Google Scholar

    [16]

    Vogler M, Bieberle-Hütter A, Gauckler L, Warnatz J, Bessler W G 2009 J. Electrochem. Soc. 156 B663Google Scholar

    [17]

    Lynch M, Mebane D, Liu Y, Liu M 2008 J. Electrochem. Soc. 155 B635Google Scholar

    [18]

    Qu Z P, Aravind P V, Boksteen S Z, Dekker N J J, Janssen A H H, Woudstra N, Verkooijen A H M 2011 Int. J. Hydrogen Energy 36 10209Google Scholar

    [19]

    Chan S H, Khor K A, Xia Z T 2001 J. Power Sources 93 130Google Scholar

    [20]

    Xu H, Chen Y, Kim J, Dang Z, Liu M 2019 Int. J. Hydrogen Energy 44 30293Google Scholar

    [21]

    Feng D, Bao C, Gao T 2020 J. Power Sources. 449 227499Google Scholar

    [22]

    刘高洁, 郭照立, 施保昌 2016 物理学报 65 014702Google Scholar

    Liu G J, Guo Z L, Shi B C 2016 Acta Phys. Sin. 65 014702Google Scholar

  • 图 1  (a) 模式阳极结构示意图; (b) 本文计算区域与边界条件

    Fig. 1.  (a) Schematic of a patterned anode; (b) computational domain and boundary conditions of the model in the present study.

    图 2  本文LB模型验证

    Fig. 2.  Model validation of the present LB model.

    图 3  模式阳极在基准工况下的性能 (a) 整个阳极电势分布; (b) 电子导体与离子导体交界面(z/Hion = 1.0)电势分布; (c) 电子导体和离子导体分别在TPB处的电势分布; (d) 无量纲电势(0/RT)对无量纲平均电流密度(iav/i0)的影响; (e) 无量纲交换电流密度(iex/i0)对iav/i0的影响; (f) iex/i00/RTiav/i0的耦合影响; (g) 指导模式阳极设计与运行的无量纲相图

    Fig. 3.  Patterned anode performance at standard case: (a) Potential distribution in the entire anode; (b) potential distribution at z/Hion = 1.0; (c) potential distribution at TPBs; (d) effect of dimensionless potential (0/RT) on dimensionless average current density (iav/i0); (e) effect of dimensionless exchange current density (iex/i0) on iav/i0; (f) combined effect of iex/i0 and 0/RT on iav/i0; (e) phase map generated based on panel (f) for rational design and operation of patterned anode.

    图 4  电子导体高宽比(Hele/Lele)对模式阳极性能的影响 (a) 不同电子导体高宽比下无量纲交换电流密度(iex/i0)与无量纲电势(0/RT)对无量纲平均电流密度(iav/i0)的耦合影响; (b) 不同电子导体高宽比下指导模式阳极设计与运行的无量纲相图

    Fig. 4.  Effect of height-to-width ratio of electronic conductor (Hele/Lele) on patterned anode performance: (a) Combined effect of dimensionless exchange current density (iex/i0) and dimensionless potential (0/RT) on dimensionless average current density (iav/i0); (b) phase maps under different Hele/Lele generated based on panel (a) for rational design and operation of patterned anode.

    图 5  电子导体宽度与间距比(LeleL)对模式阳极性能的影响 (a) 不同电子导体宽度与间距比下无量纲交换电流密度(iex/i0)与无量纲电势(0/RT)对无量纲平均电流密度(iav/i0)的耦合影响; (b) 不同电子导体宽度与间距比下指导模式阳极设计与运行的无量纲相图

    Fig. 5.  Effect of width-to-spacing ratio of electronic conductor (LeleL) on patterned anode performance: (a) Combined effect of dimensionless exchange current density (iex/i0) and dimensionless potential (0/RT) on dimensionless average current density (iav/i0); (b) phase maps under different LeleL generated based on panel (a) for rational design and operation of patterned anode.

    图 6  离子导体高宽比(Hion/Lion)对模式阳极性能的影响 (a) 不同离子导体高宽比下无量纲交换电流密度(iex/i0)与无量纲电势(0/RT)对无量纲平均电流密度(iav/i0)的耦合影响; (b) 不同离子导体高宽比下指导模式阳极设计与运行的无量纲相图

    Fig. 6.  Effect of height-to-width ratio of ionic conductor (Hion/Lion) on patterned anode performance: (a) Combined effect of dimensionless exchange current density (iex/i0) and dimensionless potential (0/RT) on dimensionless average current density (iav/i0); (b) phase maps under different Hion/Lion generated based on panel (a) for rational design and operation of patterned anode.

    表 1  本文的边界条件

    Table 1.  Boundary conditions of the present study.

    坐标边界条件
    z* = 0ϕ* = 0
    z* = 1 + Hele/Hionϕ* = 1
    x* = 0, Lion/Hion,
    电子导体左右边界
    ${ {\partial \phi ^*} / {\partial x^* = 0} }$
    z* = 1 (非TPBs)${ {\partial \phi ^*} / {\partial z^* = 0} }$
    z* = 1 (TPBs)${\left. { {{i} }^*} \right|_{ {\rm{el} } } } = {\left. { - \sigma ^*\nabla \phi ^*} \right|_{ {\rm{el} } } } = {\left. { {{i} }^*} \right|_{ {\rm{ion} } } } = {\left. { - \nabla \phi ^*} \right|_{ {\rm{ion} } } }$
    下载: 导出CSV
  • [1]

    Chen Y, deGlee B, Tang Y, Wang Z, Zhao B, Wei Y, Zhang L, Yoo S, Pei K, Kim J, Ding Y, Hu P, Tao F, Liu M 2018 Nat. Energy 3 1042Google Scholar

    [2]

    陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬 2018 物理学报 67 088202Google Scholar

    Chen M N, Zhang L, Gao H Y, Xuan Y, Ren J F, Lin Z J 2018 Acta Phys. Sin. 67 088202Google Scholar

    [3]

    Mahato N, Banerjee A, Gupta A, Omar S, Balani K 2015 Prog. Mater Sci. 72 141Google Scholar

    [4]

    Li W, Shi Y, Luo Y, Wang Y, Cai N 2015 J. Power Sources 276 26Google Scholar

    [5]

    Patel H, Tabish A, Comelli F, Aravind P 2015 Appl. Energy 154 912Google Scholar

    [6]

    Luo Y, Li W, Shi Y, Cai N 2017 J. Power Sources 366 93Google Scholar

    [7]

    Doppler M, Fleig J, Bram M, Opitz A 2018 J. Power Sources 380 46Google Scholar

    [8]

    Chen Y, Choi Y, Yoo S, Ding Y, Yan R, Pei K, Qu C, Zhang L, Chang I, Zhao B, Zhang Y, Chen H, Chen Y, Yang C, deGlee B, Murphy R, Liu J, Liu M 2018 Joule 2 938Google Scholar

    [9]

    Luo Y, Li W, Shi Y, Wang Y, Cai N 2017 Int. J. Hydrogen Energy 42 25130Google Scholar

    [10]

    Liu M, Lynch M E, Blinn K, Alamgir F M, Choi Y 2011 Mater. Today 14 534Google Scholar

    [11]

    Liu J, Ciucci F 2017 Phys. Chem. Chem. Phys. 19 26310Google Scholar

    [12]

    Patel H, Tabish A, Aravind P 2015 Electrochim. Acta 182 202Google Scholar

    [13]

    Yao W, Croiset E 2014 J. Power Sources 248 777Google Scholar

    [14]

    Yurkiv V, Utz A, Weber A, Ivers-Tiffée E, Volpp H R, Bessler W G 2012 Electrochim. Acta 59 573Google Scholar

    [15]

    Lynch M, Liu M 2010 J. Power Sources 195 5155Google Scholar

    [16]

    Vogler M, Bieberle-Hütter A, Gauckler L, Warnatz J, Bessler W G 2009 J. Electrochem. Soc. 156 B663Google Scholar

    [17]

    Lynch M, Mebane D, Liu Y, Liu M 2008 J. Electrochem. Soc. 155 B635Google Scholar

    [18]

    Qu Z P, Aravind P V, Boksteen S Z, Dekker N J J, Janssen A H H, Woudstra N, Verkooijen A H M 2011 Int. J. Hydrogen Energy 36 10209Google Scholar

    [19]

    Chan S H, Khor K A, Xia Z T 2001 J. Power Sources 93 130Google Scholar

    [20]

    Xu H, Chen Y, Kim J, Dang Z, Liu M 2019 Int. J. Hydrogen Energy 44 30293Google Scholar

    [21]

    Feng D, Bao C, Gao T 2020 J. Power Sources. 449 227499Google Scholar

    [22]

    刘高洁, 郭照立, 施保昌 2016 物理学报 65 014702Google Scholar

    Liu G J, Guo Z L, Shi B C 2016 Acta Phys. Sin. 65 014702Google Scholar

  • [1] 刘旺旺, 张克学, 王军, 夏国栋. 过渡区内纳米颗粒的曳力特性模拟研究. 物理学报, 2024, 73(7): 075101. doi: 10.7498/aps.73.20231861
    [2] 谢佳苗, 李京阳, 周佳逸, 郝文乾. 含有预裂纹的固体氧化物燃料电池的电极裂纹扩展分析. 物理学报, 2024, 73(23): 238201. doi: 10.7498/aps.73.20241176
    [3] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [4] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究. 物理学报, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [5] 白刚, 林翠, 刘端生, 许杰, 李卫, 高存法. 取向相关的Pb(Zr0.52Ti0.48)O3外延薄膜的相图和介电性能. 物理学报, 2021, 70(12): 127701. doi: 10.7498/aps.70.20202164
    [6] 徐晗, 张璐. 空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响. 物理学报, 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [7] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [8] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算. 物理学报, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [9] 陆勇俊, 杨溢, 王峰会, 楼康, 赵翔. 连续梯度的功能层对燃料电池在初始还原过程中曲率及残余应力的影响. 物理学报, 2016, 65(9): 098102. doi: 10.7498/aps.65.098102
    [10] 王佐, 刘雁, 张家忠. 过渡区微尺度流动的有效黏性多松弛系数格子Boltzmann模拟. 物理学报, 2016, 65(1): 014703. doi: 10.7498/aps.65.014703
    [11] 刘华艳, 范悦, 康振锋, 许彦彬, 薄青瑞, 丁铁柱. (Ce0.8Sm0.2O2-/Y2O3:ZrO2)N超晶格电解质薄膜的制备及表征. 物理学报, 2015, 64(23): 236801. doi: 10.7498/aps.64.236801
    [12] 赵红霞, 赵晖, 陈宇光, 鄢永红. 一维扩展离子Hubbard模型的相图研究. 物理学报, 2015, 64(10): 107101. doi: 10.7498/aps.64.107101
    [13] 郭灿, 王志军, 王锦程, 郭耀麟, 唐赛. 直接相关函数对双模晶体相场模型相图的影响. 物理学报, 2013, 62(10): 108104. doi: 10.7498/aps.62.108104
    [14] 孙春峰. 镶嵌正方晶格上Gauss模型的相图. 物理学报, 2012, 61(8): 086802. doi: 10.7498/aps.61.086802
    [15] 白克钊, 邝华, 刘慕仁, 孔令江. 开放边界条件下平面环行交叉路口交通流的相图研究. 物理学报, 2010, 59(9): 5990-5995. doi: 10.7498/aps.59.5990
    [16] 李启朗, 孙晓燕, 汪秉宏, 刘慕仁. 低速十字路口交通流模型相图. 物理学报, 2010, 59(9): 5996-6002. doi: 10.7498/aps.59.5996
    [17] 许 玲, 晏世雷. 横向随机晶场Ising模型的相图和磁化行为研究. 物理学报, 2007, 56(3): 1691-1696. doi: 10.7498/aps.56.1691
    [18] 徐 靖, 王治国, 陈宇光, 石云龙, 陈 鸿. 电荷转移型Hubbard模型的相图. 物理学报, 2005, 54(1): 307-312. doi: 10.7498/aps.54.307
    [19] 吴 凡, 王太宏. 通过单电子泵实现对单电子运动的控制及其相图分析. 物理学报, 2003, 52(3): 696-702. doi: 10.7498/aps.52.696
    [20] 王文全, 王建立, 唐宁, 包富泉, 吴光恒, 杨伏明, 金汉民. Sm-Co-Ti三元系相关系及某些单相化合物的结构与磁性. 物理学报, 2001, 50(4): 752-757. doi: 10.7498/aps.50.752
计量
  • 文章访问数:  9505
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 修回日期:  2020-03-01
  • 刊出日期:  2020-05-05

/

返回文章
返回