搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三重简并拓扑半金属磷化钼的时间分辨超快动力学

姜聪颖 孙飞 冯子力 刘世炳 石友国 赵继民

引用本文:
Citation:

三重简并拓扑半金属磷化钼的时间分辨超快动力学

姜聪颖, 孙飞, 冯子力, 刘世炳, 石友国, 赵继民

Time-resolved ultrafast dynamics in triple degenerate topological semimetal molybdenum phosphide

Jiang Cong-Ying, Sun Fei, Feng Zi-Li, Liu Shi-Bing, Shi You-Guo, Zhao Ji-Min
PDF
HTML
导出引用
  • 拓扑半金属磷化钼(MoP)同时具有三重和二重简并费米子. 为了研究其费米面以上的激发态超快动力学特性, 对其进行了时间分辨超快泵浦-探测实验. 获得了MoP的准粒子动力学, 包含来源于电子-声子散射的快分量, 寿命为0.3 ps, 以及来源于声子-声子散射的慢分量, 寿命为150 ps. 温度依赖的研究表明, 快分量和慢分量的弛豫寿命均随着温度的增加产生微小增大. 同时还激发并探测到一支相干态声学支声子, 其由热应力引起, 频率为0.033 THz且不随温度而改变. 对于MoP激发态准粒子超快动力学以及相干态声子的研究为理解该体系总体的激发态超快动力学特性以及电子-声子相互作用对温度的依赖提供了有益的实验依据.
    We employ the time resolved pump probe experiment to investigate the ultrafast dynamics in a topological semimetal molybdenum phosphide (MoP), which exhibits triple degenerate points in the momentum space. Two relaxation processes with the lifetime of 0.3 and 150 ps have been observed. We attribute the fast component to the electron-phonon scattering and the slow component to the phonon-phonon scattering, respectively. Temperature dependence investigation shows that both the lifetimes of the fast and slow components enhance slightly with increasing temperature. We also successfully generate and detect a thermal-stress-induced coherent acoustic phonon mode with a frequency of 0.033 THz, which does not vary with temperature. Our ultrafast spectroscopy investigation of the quasiparticle dynamics and the coherent phonon in MoP provides useful experimental facts and information about the overall excited state dynamics and the temperature dependence of electron-phonon coupling.
      通信作者: 赵继民, jmzhao@iphy.ac.cn
    • 基金项目: 国际级-中科院国际合作项目(GJHZ1826)
      Corresponding author: Zhao Ji-Min, jmzhao@iphy.ac.cn
    [1]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [2]

    Wang Z J, Weng H M, Wu Q S, Dai X, Fang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [3]

    Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar

    [4]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [5]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023

    [6]

    Bradlyn B, Cano J, Wang Z J, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Science 353 6299Google Scholar

    [7]

    Lv B Q, Feng Z L, Xu Q N, Gao X, Ma J Z, Kong L Y, Richard P, Huang Y B, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T, Ding H 2017 Nature 546 627Google Scholar

    [8]

    Chi Z H, Chen X L, An C, Yang L X, Zhao J G, Feng Zili, Zhou Y H, Zhou Y, Gu C C, Zhang B W, Yuan Y F, Curtis K B, Yang W G, Wu G, Wan X G, Shi Y G, Yang X P, Yang Z R 2018 npj. Quantum. Materials 3 28Google Scholar

    [9]

    Zhu Z M, Winkler G W, Wu Q S, Li J, Soluyanov A A 2016 Phys. Rev. X 6 031003

    [10]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K, Zhao J M 2016 Phys. Rev. Lett. 116 107001Google Scholar

    [11]

    Wu Q, Zhou H X, Wu Y L, Hu L L, Ni S L, Tian Y C, Sun F, Zhou F, Dong X L, Zhao Z X, Zhao J M 2019 arXiv 1910 09859

    [12]

    Toda Y, Kawanokami F, Kurosawa T, Oda M, Madan I, Mertelj T, Kabanov V V, Mihailovic D 2014 Phys. Rev. B 90 094513Google Scholar

    [13]

    曹宁, 龙拥兵, 张治国, 高丽娟, 袁洁, 赵伯儒, 赵士平, 杨乾生, 赵继民, 傅盘铭 2008 物理学报 57 2543Google Scholar

    Cao N, Long Y B, Zang Z G, Gao L J, Yuan J, Zhao B R, Zhao S P, Yang Q S, Zhao J M, Fu P M 2008 Acta Phys. Sin. 57 2543Google Scholar

    [14]

    Cao N, Wei Y F, Zhao J M, Zhao S P, Yang Q S, Zhang Z G, Fu P M 2008 Chin. Phys. Lett. 25 2257Google Scholar

    [15]

    Sun F, Yang M, Yang M W, Wu Q, Zhao H, Ye X, Shi Y G, Zhao J M 2018 Chin. Phys. Lett. 35 116301Google Scholar

    [16]

    Sun F, Wu Q, Wu Y L, Zhao H, Yi C J, Tian Y C, Liu H W, Shi Y G, Ding H, Dai X, Richard P, Zhao J M 2017 Phys. Rev. B 95 235108Google Scholar

    [17]

    Wang M C, Qiao S, Jiang Z, Luo S N, Qi J 2016 Phys. Rev. Lett. 116 036601Google Scholar

    [18]

    Hu L L, Yang M, Wu Y L, Wu Q, Zhao H, Sun F, Wang W, He R, He S L, Zhang H, Huang R J, Li L F, Shi Y G, Zhao J M 2019 Phys. Rev. B 99 094307Google Scholar

    [19]

    Hsieh D, Mahmood F, Torchinsky D H, Cao G, Gedik N 2012 Phys. Rev. B 86 035128Google Scholar

    [20]

    SieE J, MclverJ, Lee Y H, Fu L, Kong J, Gedik N 2015 Nat. Mater. 14 290Google Scholar

    [21]

    Ge S F, Liu X F, Qiao X A, Wang Q S, Xu Z, Qiu J, Tan P H, Zhao J M, Sun D 2015 Sci. Rep. 4 5722

    [22]

    Wang R, Wang T, Zhou Y, Wu Y L, Zhang X X, He X Y, Peng H L, Zhao J M, Qiu X H 2019 2D Mater. 6 035034

    [23]

    Wang Y J, Chen H L, Sun M T, Yao Z G, Quan B G, Liu Z, Weng Y X, Zhao J M, Gu C Z, Li J J 2017 Carbon 122 98Google Scholar

    [24]

    Zhao J M, Bragas A V, Lockwood D J, Merlin R 2004 Phys. Rev. Lett. 93 107203Google Scholar

    [25]

    Zhao J M, Bragas A V, Merlin R, Lockwood D J 2006 Phys. Rev. B 73 184434Google Scholar

    [26]

    Aku-Leh C, Zhao J M, Merlin R, Menéndez J, Cardona M 2005 Phys. Rev. B 71 205211Google Scholar

    [27]

    Bragas A V, Aku-Leh C, Costantino S, Ingale A, Zhao J M, Merlin R 2004 Phys. Rev. B 69 205306Google Scholar

  • 图 1  MoP的时间分辨超快动力学过程 (a) 温度从7 K到290 K变化的∆R/R0曲线; (b)进行泵浦探测实验所用MoP样品的SEM图片; (c)和(d)分别为MoP样品在不同角度下的晶格结构. 蓝色和红色小球分别代表Mo原子和P原子

    Fig. 1.  Time-resolved pump-probe spectroscopy showing the ultrafast dynamics of MoP: (a) The ∆R/R0 of MoP at several typical temperatures from 7 to 290 K; (b) SEM image of our sample; (c) and (d) Schematic lattice structures of MoP. Blue and red balls: Mo and P atoms, respectively.

    图 2  温度依赖的动力学二维彩图

    Fig. 2.  2D mapping diagram of temperature-dependent dynamics.

    图 3  温度为7 K的∆R/R0的拟合结果, 其中空心圆圈代表原始实验数据, 蓝色实线代表拟合曲线. 插图为激发的相干态声学支声子的频率对温度的依赖, 在整个温区均为0.033 THz

    Fig. 3.  Fitting of the ∆R/R0 at 7 K, where the black circles represent the raw data and the blue curve represents the fitting result, respectively. The inset illustrates the temperature dependence of the frequency of the coherent acoustic phonon, which stays 0.033 THz for the whole temperature range.

    图 4  光激发载流子的弛豫过程对温度的依赖 (a)Afast, (b)τfast, (c)Afast和(d)τslow分别表示快分量和慢分量的幅值和寿命随温度的变化.红色和蓝色分别代表快分量和慢分量

    Fig. 4.  Temperature dependence of the amplitudes and lifetimes: (a)Afast, (b)τfast, (c)Afast和(d)τslow. The red and blue linesdenote the fast and slow components, respectively.

  • [1]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [2]

    Wang Z J, Weng H M, Wu Q S, Dai X, Fang Z 2013 Phys. Rev. B 88 125427Google Scholar

    [3]

    Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677Google Scholar

    [4]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [5]

    Huang X C, Zhao L X, Long Y J, Wang P P, Chen D, Yang Z H, Liang H, Xue M Q, Weng H M, Fang Z, Dai X, Chen G F 2015 Phys. Rev. X 5 031023

    [6]

    Bradlyn B, Cano J, Wang Z J, Vergniory M G, Felser C, Cava R J, Bernevig B A 2016 Science 353 6299Google Scholar

    [7]

    Lv B Q, Feng Z L, Xu Q N, Gao X, Ma J Z, Kong L Y, Richard P, Huang Y B, Strocov V N, Fang C, Weng H M, Shi Y G, Qian T, Ding H 2017 Nature 546 627Google Scholar

    [8]

    Chi Z H, Chen X L, An C, Yang L X, Zhao J G, Feng Zili, Zhou Y H, Zhou Y, Gu C C, Zhang B W, Yuan Y F, Curtis K B, Yang W G, Wu G, Wan X G, Shi Y G, Yang X P, Yang Z R 2018 npj. Quantum. Materials 3 28Google Scholar

    [9]

    Zhu Z M, Winkler G W, Wu Q S, Li J, Soluyanov A A 2016 Phys. Rev. X 6 031003

    [10]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L L, Ma X C, Xue Q K, Zhao J M 2016 Phys. Rev. Lett. 116 107001Google Scholar

    [11]

    Wu Q, Zhou H X, Wu Y L, Hu L L, Ni S L, Tian Y C, Sun F, Zhou F, Dong X L, Zhao Z X, Zhao J M 2019 arXiv 1910 09859

    [12]

    Toda Y, Kawanokami F, Kurosawa T, Oda M, Madan I, Mertelj T, Kabanov V V, Mihailovic D 2014 Phys. Rev. B 90 094513Google Scholar

    [13]

    曹宁, 龙拥兵, 张治国, 高丽娟, 袁洁, 赵伯儒, 赵士平, 杨乾生, 赵继民, 傅盘铭 2008 物理学报 57 2543Google Scholar

    Cao N, Long Y B, Zang Z G, Gao L J, Yuan J, Zhao B R, Zhao S P, Yang Q S, Zhao J M, Fu P M 2008 Acta Phys. Sin. 57 2543Google Scholar

    [14]

    Cao N, Wei Y F, Zhao J M, Zhao S P, Yang Q S, Zhang Z G, Fu P M 2008 Chin. Phys. Lett. 25 2257Google Scholar

    [15]

    Sun F, Yang M, Yang M W, Wu Q, Zhao H, Ye X, Shi Y G, Zhao J M 2018 Chin. Phys. Lett. 35 116301Google Scholar

    [16]

    Sun F, Wu Q, Wu Y L, Zhao H, Yi C J, Tian Y C, Liu H W, Shi Y G, Ding H, Dai X, Richard P, Zhao J M 2017 Phys. Rev. B 95 235108Google Scholar

    [17]

    Wang M C, Qiao S, Jiang Z, Luo S N, Qi J 2016 Phys. Rev. Lett. 116 036601Google Scholar

    [18]

    Hu L L, Yang M, Wu Y L, Wu Q, Zhao H, Sun F, Wang W, He R, He S L, Zhang H, Huang R J, Li L F, Shi Y G, Zhao J M 2019 Phys. Rev. B 99 094307Google Scholar

    [19]

    Hsieh D, Mahmood F, Torchinsky D H, Cao G, Gedik N 2012 Phys. Rev. B 86 035128Google Scholar

    [20]

    SieE J, MclverJ, Lee Y H, Fu L, Kong J, Gedik N 2015 Nat. Mater. 14 290Google Scholar

    [21]

    Ge S F, Liu X F, Qiao X A, Wang Q S, Xu Z, Qiu J, Tan P H, Zhao J M, Sun D 2015 Sci. Rep. 4 5722

    [22]

    Wang R, Wang T, Zhou Y, Wu Y L, Zhang X X, He X Y, Peng H L, Zhao J M, Qiu X H 2019 2D Mater. 6 035034

    [23]

    Wang Y J, Chen H L, Sun M T, Yao Z G, Quan B G, Liu Z, Weng Y X, Zhao J M, Gu C Z, Li J J 2017 Carbon 122 98Google Scholar

    [24]

    Zhao J M, Bragas A V, Lockwood D J, Merlin R 2004 Phys. Rev. Lett. 93 107203Google Scholar

    [25]

    Zhao J M, Bragas A V, Merlin R, Lockwood D J 2006 Phys. Rev. B 73 184434Google Scholar

    [26]

    Aku-Leh C, Zhao J M, Merlin R, Menéndez J, Cardona M 2005 Phys. Rev. B 71 205211Google Scholar

    [27]

    Bragas A V, Aku-Leh C, Costantino S, Ingale A, Zhao J M, Merlin R 2004 Phys. Rev. B 69 205306Google Scholar

  • [1] 朱庞栋, 王长昊, 王如志. 节线半金属AlB2水环境下发生吸附后拓扑表面态变化. 物理学报, 2024, 73(12): 127101. doi: 10.7498/aps.73.20240404
    [2] 初纯光, 王安琦, 廖志敏. 拓扑半金属-超导体异质结的约瑟夫森效应. 物理学报, 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [3] 孙慧敏, 何庆林. 层状磁性拓扑材料中的物理问题与实验进展. 物理学报, 2021, 70(12): 127302. doi: 10.7498/aps.70.20210133
    [4] 强晓斌, 卢海舟. 磁场中拓扑物态的量子输运. 物理学报, 2021, 70(2): 027201. doi: 10.7498/aps.70.20200914
    [5] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [6] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [7] 加孜拉·哈赛恩, 朱恪嘉, 孙飞, 吴艳玲, 石友国, 赵继民. 三重简并拓扑半金属MoP中超快圆偏振光产生和调控光生热电流. 物理学报, 2020, 69(20): 207801. doi: 10.7498/aps.69.20200031
    [8] 王冲, 邢巧霞, 谢元钢, 晏湖根. 拓扑材料等离激元谱学研究. 物理学报, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [9] 韦博元, 步海军, 张帅, 宋凤麒. 拓扑半金属ZrSiSe器件中面内霍尔效应的观测. 物理学报, 2019, 68(22): 227203. doi: 10.7498/aps.68.20191501
    [10] 邓韬, 杨海峰, 张敬, 李一苇, 杨乐仙, 柳仲楷, 陈宇林. 拓扑半金属材料角分辨光电子能谱研究进展. 物理学报, 2019, 68(22): 227102. doi: 10.7498/aps.68.20191544
    [11] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [12] 林贤, 金钻明, 李炬赓, 郭飞云, 庄乃锋, 陈建中, 戴晔, 阎晓娜, 马国宏. 非线性克尔效应对飞秒激光偏振的超快调制. 物理学报, 2018, 67(23): 237801. doi: 10.7498/aps.67.20181450
    [13] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [14] 伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国. 拓扑半金属材料的单晶生长研究进展. 物理学报, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [15] 王孟舟, 姜永恒, 刘天元, 孙成林, 里佐威. 络合物形成对电子-声子耦合的影响. 物理学报, 2013, 62(18): 187802. doi: 10.7498/aps.62.187802
    [16] 朱丽丹, 孙方远, 祝捷, 唐大伟. 飞秒激光抽运探测热反射法对金属纳米薄膜超快非平衡传热的研究. 物理学报, 2012, 61(13): 134402. doi: 10.7498/aps.61.134402
    [17] 马维刚, 王海东, 张兴, 王玮. 飞秒脉冲激光加热金属薄膜的理论和实验研究. 物理学报, 2011, 60(6): 064401. doi: 10.7498/aps.60.064401
    [18] 程萍, 高峰, 陈向东, 杨继平. 偏置电场对聚对苯乙烯激发态弛豫特性的影响. 物理学报, 2010, 59(4): 2831-2835. doi: 10.7498/aps.59.2831
    [19] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究. 物理学报, 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [20] 马 荣, 黄桂芹, 刘 楣. 三元硅化物CaAlSi的结构和超导电性. 物理学报, 2007, 56(8): 4960-4964. doi: 10.7498/aps.56.4960
计量
  • 文章访问数:  10137
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-30
  • 修回日期:  2019-12-27
  • 刊出日期:  2020-04-05

/

返回文章
返回