搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温稠密铝等离子体物态方程及其电离平衡研究

王天浩 王坤 张阅 姜林村

引用本文:
Citation:

温稠密铝等离子体物态方程及其电离平衡研究

王天浩, 王坤, 张阅, 姜林村

Investigation on equation of state and ionization equilibrium for aluminum in warm dense matter regime

Wang Tian-Hao, Wang Kun, Zhang Yue, Jiang Lin-Cun
PDF
HTML
导出引用
  • 温稠密物质的物性参数在惯性约束聚变能源、Z箍缩等高能量密度物理领域的实验结果分析和物理过程数值模拟等方面有着重要的应用价值. 本文应用部分电离等离子体模型, 在理想自由能的基础上考虑了库仑相互作用、排斥体积作用和极化作用等非理想特性, 开展了温稠密等离子体物态方程和电离平衡的研究. 计算了温稠密铝等离子体的压强等物态方程数据和在密度为1.0 × 10–4—3.0 g/cm3, 温度为1.0 × 104—3.0 × 104 K范围内的粒子组分. 计算结果显示, 铝等离子体的平均电离度在临界密度区域内随着密度的增加而突然增大. 根据非理想Saha方程中有效电离能这一关键参数, 分析了铝等离子体平均电离度在临界密度区域内随密度迅速增大的现象.
    Warm dense matter is widely found in the high-energy-density-physics researches, such as inertial confinement fusion, X-ray source and wire-array Z-pinch. The equation of state and ionization equilibrium of material in warm dense matter regime play a significant role in explaining experimental results and simulations of physical process. In this paper, the Coulomb interaction between charged particles, and the excluded volume effect due to high density and polarization effect between neutral atoms and charged particles are considered in the equation of state for aluminum in warm dense matter regime. A non-ideal Saha equation is used to account for the ionization equilibrium. The data for pressure and concentration of particles of aluminum plasma are derived by iteration between equation of state and ionization equilibrium model. The pressure and average ionization degree of aluminum plasma are consistent with the calculation results from other models and relevant experimental data. The Coulomb interaction, which dominants the non-ideal effects, is insensitive to temperature and increases with density rising especially near the region of critical density. The excluded volume effect peaks at a density of ~0.5 g/cm3. The polarization effect first becomes stronger with density increasing and then decreases at a density of ~0.4 g/cm3. The ionization equilibrium results with density ranging from 1.0 × 10–4 g/cm3 to 3.0 g/cm3 and temperature ranging from 1.0 × 104 K to 3.0 × 104 K reveal that the average ionization degree increases with density sharply increasing near the critical density. The non-ideal effects, which lead the ionization energy to decline and the effective ionization potential of specific ions in aluminum plasma to decrease substantially, are responsible for the sharp increase of average ionization degree near the region of critical density. When the temperature is lower than 12000 K, first and second stage of ionization occur in aluminum plasma, and the system is mainly composed of Al1+, Al2+ and electrons. The average ionization degree can reach 2 at critical density. The third stage of ionization is dominant in the aluminum plasma when plasma temperature is higher than 12000 K. And then, the charged particles in the plasma are composed of Al3+ and electrons, allowing the average ionization degree to reach 3 at critical density.
      通信作者: 王坤, kunwang@hebut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51807050)、河北省自然科学基金(批准号: E2019202297)和河北省高等学校青年拔尖人才项目(批准号: BJ2017038)资助的课题
      Corresponding author: Wang Kun, kunwang@hebut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51807050), the Natural Science Foundation of Hebei Province, China (Grant No. E2019202297), and the Program for the Top Young and Middle-aged Innovative Talents of Higher Learning Institutions of Hebei Province, China (Grant No. BJ2017038)
    [1]

    付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰 2016 物理学报 65 065201Google Scholar

    Fu Z J, Jia L J, Xia J H, Tang K, Li Z H, Quan W L, Chen Q F 2016 Acta Phys. Sin. 65 065201Google Scholar

    [2]

    Wallace M S, Haque S, Neill P, Pereira N R, Presura R 2018 Rev. Sci. Instrum. 89 015106Google Scholar

    [3]

    Oreshkin V I, Artyomov A P, Chaikovsky S A, Oreshkin E V, Rousskikh A G 2017 Phys. Plasmas 24 012703Google Scholar

    [4]

    格拉齐亚尼F, 德斯贾莱斯M P, 雷德默R, 特里基S B 著 (陈其峰 译) 2018 温稠密物质研究的前沿和挑战 (北京: 原子能出版社) 第vii−x页

    Graziani F, Desjarlais M P, Redmer R, Trickey S B (translated by Chen Q F) 2018 Frontiers and Challenges in Warm Dense Matter (Beijing: Atomic Energy Press) ppvii−x (in Chinese)

    [5]

    徐锡申, 张万箱 1986 实用物态方程理论导引 (北京: 科学出版社) 第1−5页

    Xu X S, Zhang W X 1986 Introduction to the Theory of Equation of State (Beijing: Science Press) pp1−5 (in Chinese)

    [6]

    Shi Z Q, Wang K, Li Y, Shi Y J, Wu J, Jia S L 2014 Phys. Plasmas 21 032702Google Scholar

    [7]

    Eliezer S, Ghatak A, Hora H, Teller E 2002 Fundamentals of Equations of State (Singapore: World Scientific) pp153−164

    [8]

    陈其峰, 顾云军, 郑君, 李江涛, 李治国, 权伟龙, 付志坚, 李成军 2017 科学通报 62 812Google Scholar

    Chen Q F, Gu Y J, Zheng J, Li J T, Li Z G, Quan W L, Fu Z J, Li C J 2017 Chin. Sci. Bull. 62 812Google Scholar

    [9]

    于继东, 李平, 王文强, 吴强 2014 物理学报 63 116401Google Scholar

    Yu J D, Li P, Wang W Q, Wu Q 2014 Acta Phys. Sin. 63 116401Google Scholar

    [10]

    Danel J F, Kazandjian L, Zérah G 2008 Phys. Plasmas 15 072704Google Scholar

    [11]

    Fu Z J, Quan W L, Zhang W, Li Z G, Zheng J, Gu Y J, Chen Q F 2017 Phys. Plasmas 24 013303Google Scholar

    [12]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 物理学报 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [13]

    张颖, 陈其峰, 顾云军, 蔡灵仓, 卢铁城 2007 物理学报 56 1318Google Scholar

    Zhang Y, Chen Q F, Gu Y J, Cai L C, Lu T C 2007 Acta Phys. Sin. 56 1318Google Scholar

    [14]

    Chen Q F, Cai L C, Gu Y J, Gu Y 2009 Phys. Rev. E 79 016409Google Scholar

    [15]

    Chen Q F, Zheng J, Gu Y J, Chen Y L, Cai L C 2011 Phys. Plasmas 18 112704Google Scholar

    [16]

    Quan W L, Chen Q F, Fu Z J, Sun X W, Zheng J, Gu Y J 2015 Phys. Rev. E 91 023106Google Scholar

    [17]

    Apfelbaum E M 2015 Phys. Plasmas 22 092703Google Scholar

    [18]

    Apfelbaum E M 2017 High Temp. 55 1Google Scholar

    [19]

    Kuhlbrodt S, Holst B, Redmer R 2005 Contrib. Plasma Phys. 45 73Google Scholar

    [20]

    Moldabekov Z A, Groth S, Dornheim T, Bonitz M, Ramazanov T S 2017 Contrib. Plasma Phys. 57 532Google Scholar

    [21]

    Stolzmann W, Blöcker T 1996 Astron. Astrophys. 314 1024

    [22]

    Fortov V E, Altshuler L V, Trunin R F, Funtikov A I 2004 High-Pressure Shock Compression of Solids VII (New York: Springer) pp437−489

    [23]

    付志坚, 陈其峰, 陈向荣 2011 物理学报 60 055202Google Scholar

    Fu Z J, Chen Q F, Chen X R 2011 Acta Phys. Sin. 60 055202Google Scholar

    [24]

    Redmer R, Rother T, Schmidt K, Kraeft W D, Röpke G 1988 Contrib. Plasma Phys. 28 41Google Scholar

    [25]

    Apfelbaum E M 2011 Phys. Rev. E 84 066403Google Scholar

    [26]

    Karakhtanov V S, Redmer R, Reinholz H, Röpke G 2011 Contrib. Plasma Phys. 51 355Google Scholar

    [27]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [28]

    Iyetomi H, Ichimaru S 1986 Phys. Rev. A 34 433Google Scholar

    [29]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [30]

    Zaghloul M R 2018 High Energy Density Phys. 26 8Google Scholar

    [31]

    Wu B, Shin Y C 2006 Appl. Phys. Lett. 89 111902Google Scholar

    [32]

    Morel V, Bultel A, Chéron B G 2009 Int. J. Thermophys. 30 1853Google Scholar

    [33]

    Preston T R, Vinko S M, Ciricosta O, Chung H K, Lee R W, Wark J S 2013 High Energy Density Phys. 9 258Google Scholar

    [34]

    Stransky M 2016 Phys. Plasmas 23 012708Google Scholar

    [35]

    Kemp A J, Meyer-Ter-Vehn J 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 415 674Google Scholar

    [36]

    Krisch I, Kunze H J 1998 Phys. Rev. E 58 6557Google Scholar

    [37]

    田庆云 2015 硕士学位论文 (长沙: 国防科学技术大学)

    Tian Q Y 2015 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [38]

    Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004

    [39]

    Ebeling W, Föster A, Fortov V E, Gryaznov V K, Polishuk A Y 1991 Thermophysical Properties of Hot Dense Plasmas (Stuttgar-Leipzig: Teubner Verlagsgesellshaft) pp39—42

  • 图 1  在密度为0.1 g/cm3时, 不同模型计算的铝等离子体压强随温度的变化

    Fig. 1.  The pressure of aluminum plasma calculated by different models as a function of temperature at density of 0.1 g/cm3.

    图 2  铝等离子体的平均电离度随密度与温度变化等值线分布

    Fig. 2.  Contour map of average ionization degree of aluminum plasma as a function of density and temperature.

    图 3  等离子体中不同粒子的相对粒子分数在密度为0.1 g/cm3时随温度的变化

    Fig. 3.  Dependence of relative particle fraction of different particles on temperature at density of 0.1 g/cm3.

    图 4  不同模型计算的铝等离子体平均电离度在不同温度下随密度的变化 (a) 10000 K; (b) 15000 K

    Fig. 4.  Average ionization degree of aluminum plasma calculated by different models as a function of density at different temperatures: (a) 10000 K; (b) 15000 K.

    图 5  不同温度下非理想效应自由能密度以及电子、原子相对粒子分数随密度的变化 (a) 库仑相互作用; (b) 排斥体积作用; (c) 极化作用; (d) 电子、原子相对粒子分数

    Fig. 5.  Free energy density of different non-ideal effects and relative particle fraction for electrons and atoms as a function of density at different temperatures: (a) Coulomb interaction; (b) excluded volume effect; (c) polarization effect; (d) relative particle fraction for electrons and atoms.

    图 6  温度为15000 K时等离子体中不同粒子化学势的非理想部分随密度的变化

    Fig. 6.  Dependence of non-ideal chemical potential of particles on density at temperature of 15000 K.

    图 7  温度为15000 K时不同模型计算的电离能的降低∆E随密度的变化(黑色曲线, 非理想Saha方程; 红色曲线, DmEK模型)

    Fig. 7.  Depression of ionization potential calculated by different models as a function of density at 15000 K. Black lines correspond to nonideal Saha equation; red lines correspond to DmEK model.

    表 1  物态方程及电离平衡模型参数列表

    Table 1.  Parameters of equation of state and ionization equilibrium model.

    参数参数参数
    R02.5714R60.4167E32.0909
    R12.3377rc1.7712E48.8192
    R22.1429mk24597E511.3059
    R30.4678αD46.281E614.0008
    R40.4494E10.4400
    R50.4324E21.3839
    下载: 导出CSV
  • [1]

    付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰 2016 物理学报 65 065201Google Scholar

    Fu Z J, Jia L J, Xia J H, Tang K, Li Z H, Quan W L, Chen Q F 2016 Acta Phys. Sin. 65 065201Google Scholar

    [2]

    Wallace M S, Haque S, Neill P, Pereira N R, Presura R 2018 Rev. Sci. Instrum. 89 015106Google Scholar

    [3]

    Oreshkin V I, Artyomov A P, Chaikovsky S A, Oreshkin E V, Rousskikh A G 2017 Phys. Plasmas 24 012703Google Scholar

    [4]

    格拉齐亚尼F, 德斯贾莱斯M P, 雷德默R, 特里基S B 著 (陈其峰 译) 2018 温稠密物质研究的前沿和挑战 (北京: 原子能出版社) 第vii−x页

    Graziani F, Desjarlais M P, Redmer R, Trickey S B (translated by Chen Q F) 2018 Frontiers and Challenges in Warm Dense Matter (Beijing: Atomic Energy Press) ppvii−x (in Chinese)

    [5]

    徐锡申, 张万箱 1986 实用物态方程理论导引 (北京: 科学出版社) 第1−5页

    Xu X S, Zhang W X 1986 Introduction to the Theory of Equation of State (Beijing: Science Press) pp1−5 (in Chinese)

    [6]

    Shi Z Q, Wang K, Li Y, Shi Y J, Wu J, Jia S L 2014 Phys. Plasmas 21 032702Google Scholar

    [7]

    Eliezer S, Ghatak A, Hora H, Teller E 2002 Fundamentals of Equations of State (Singapore: World Scientific) pp153−164

    [8]

    陈其峰, 顾云军, 郑君, 李江涛, 李治国, 权伟龙, 付志坚, 李成军 2017 科学通报 62 812Google Scholar

    Chen Q F, Gu Y J, Zheng J, Li J T, Li Z G, Quan W L, Fu Z J, Li C J 2017 Chin. Sci. Bull. 62 812Google Scholar

    [9]

    于继东, 李平, 王文强, 吴强 2014 物理学报 63 116401Google Scholar

    Yu J D, Li P, Wang W Q, Wu Q 2014 Acta Phys. Sin. 63 116401Google Scholar

    [10]

    Danel J F, Kazandjian L, Zérah G 2008 Phys. Plasmas 15 072704Google Scholar

    [11]

    Fu Z J, Quan W L, Zhang W, Li Z G, Zheng J, Gu Y J, Chen Q F 2017 Phys. Plasmas 24 013303Google Scholar

    [12]

    汤文辉, 徐彬彬, 冉宪文, 徐志宏 2017 物理学报 66 030505Google Scholar

    Tang W H, Xu B B, Ran X W, Xu Z H 2017 Acta Phys. Sin. 66 030505Google Scholar

    [13]

    张颖, 陈其峰, 顾云军, 蔡灵仓, 卢铁城 2007 物理学报 56 1318Google Scholar

    Zhang Y, Chen Q F, Gu Y J, Cai L C, Lu T C 2007 Acta Phys. Sin. 56 1318Google Scholar

    [14]

    Chen Q F, Cai L C, Gu Y J, Gu Y 2009 Phys. Rev. E 79 016409Google Scholar

    [15]

    Chen Q F, Zheng J, Gu Y J, Chen Y L, Cai L C 2011 Phys. Plasmas 18 112704Google Scholar

    [16]

    Quan W L, Chen Q F, Fu Z J, Sun X W, Zheng J, Gu Y J 2015 Phys. Rev. E 91 023106Google Scholar

    [17]

    Apfelbaum E M 2015 Phys. Plasmas 22 092703Google Scholar

    [18]

    Apfelbaum E M 2017 High Temp. 55 1Google Scholar

    [19]

    Kuhlbrodt S, Holst B, Redmer R 2005 Contrib. Plasma Phys. 45 73Google Scholar

    [20]

    Moldabekov Z A, Groth S, Dornheim T, Bonitz M, Ramazanov T S 2017 Contrib. Plasma Phys. 57 532Google Scholar

    [21]

    Stolzmann W, Blöcker T 1996 Astron. Astrophys. 314 1024

    [22]

    Fortov V E, Altshuler L V, Trunin R F, Funtikov A I 2004 High-Pressure Shock Compression of Solids VII (New York: Springer) pp437−489

    [23]

    付志坚, 陈其峰, 陈向荣 2011 物理学报 60 055202Google Scholar

    Fu Z J, Chen Q F, Chen X R 2011 Acta Phys. Sin. 60 055202Google Scholar

    [24]

    Redmer R, Rother T, Schmidt K, Kraeft W D, Röpke G 1988 Contrib. Plasma Phys. 28 41Google Scholar

    [25]

    Apfelbaum E M 2011 Phys. Rev. E 84 066403Google Scholar

    [26]

    Karakhtanov V S, Redmer R, Reinholz H, Röpke G 2011 Contrib. Plasma Phys. 51 355Google Scholar

    [27]

    More R M, Warren K H, Young D A, Zimmerman G B 1988 Phys. Fluids 31 3059Google Scholar

    [28]

    Iyetomi H, Ichimaru S 1986 Phys. Rev. A 34 433Google Scholar

    [29]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [30]

    Zaghloul M R 2018 High Energy Density Phys. 26 8Google Scholar

    [31]

    Wu B, Shin Y C 2006 Appl. Phys. Lett. 89 111902Google Scholar

    [32]

    Morel V, Bultel A, Chéron B G 2009 Int. J. Thermophys. 30 1853Google Scholar

    [33]

    Preston T R, Vinko S M, Ciricosta O, Chung H K, Lee R W, Wark J S 2013 High Energy Density Phys. 9 258Google Scholar

    [34]

    Stransky M 2016 Phys. Plasmas 23 012708Google Scholar

    [35]

    Kemp A J, Meyer-Ter-Vehn J 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 415 674Google Scholar

    [36]

    Krisch I, Kunze H J 1998 Phys. Rev. E 58 6557Google Scholar

    [37]

    田庆云 2015 硕士学位论文 (长沙: 国防科学技术大学)

    Tian Q Y 2015 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)

    [38]

    Son S K, Thiele R, Jurek Z, Ziaja B, Santra R 2014 Phys. Rev. X 4 031004

    [39]

    Ebeling W, Föster A, Fortov V E, Gryaznov V K, Polishuk A Y 1991 Thermophysical Properties of Hot Dense Plasmas (Stuttgar-Leipzig: Teubner Verlagsgesellshaft) pp39—42

  • [1] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究. 物理学报, 2024, 73(1): 015201. doi: 10.7498/aps.73.20231216
    [2] 张志宇, 赵阳, 青波, 张继彦, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质离化分布实验方法研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20231216
    [3] 张志宇, 赵阳, 青波, 张继彦, 马建毅, 林成亮, 杨国洪, 韦敏习, 熊刚, 吕敏, 黄成武, 朱托, 宋天明, 赵妍, 张玉雪, 张璐, 李丽灵, 杜华冰, 车兴森, 黎宇坤, 詹夏宇, 杨家敏. 基于X射线荧光光谱的温稠密物质电子结构密度效应研究. 物理学报, 2023, 72(24): 245201. doi: 10.7498/aps.72.20231215
    [4] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [5] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响. 物理学报, 2021, 70(7): 073102. doi: 10.7498/aps.70.20201483
    [6] 金康, 经光银. 双电层相互作用下主动粒子系统的压强. 物理学报, 2019, 68(17): 170501. doi: 10.7498/aps.68.20190435
    [7] 马桂存, 张其黎, 宋红州, 李琼, 朱希睿, 孟续军. 温稠密物质物态方程的理论研究. 物理学报, 2017, 66(3): 036401. doi: 10.7498/aps.66.036401
    [8] 武娜, 杨皎, 肖芬, 蔡灵仓, 田春玲. 固氪物态方程的关联量子化学计算. 物理学报, 2014, 63(14): 146102. doi: 10.7498/aps.63.146102
    [9] 彭小娟, 刘福生. 液相及固/液混合相区金属物态方程Grover模型存在的问题及修正. 物理学报, 2012, 61(18): 186201. doi: 10.7498/aps.61.186201
    [10] 郑君, 顾云军, 陈其峰, 陈志云. 稀有气体在电离区压缩特性研究. 物理学报, 2010, 59(10): 7472-7477. doi: 10.7498/aps.59.7472
    [11] 顾云军, 郑君, 陈志云, 陈其峰, 蔡灵仓. H2+He流体混合物在部分离解区的物态方程. 物理学报, 2010, 59(7): 4508-4513. doi: 10.7498/aps.59.4508
    [12] 赵艳红, 刘海风, 张弓木. 基于统计物理的爆轰产物物态方程研究. 物理学报, 2007, 56(8): 4791-4797. doi: 10.7498/aps.56.4791
    [13] 田春玲, 蔡灵仓, 顾云军, 经福谦, 陈志云. 用多次冲击压缩方法研究稠密氢氦等摩尔混合气体的物态方程. 物理学报, 2007, 56(7): 4180-4186. doi: 10.7498/aps.56.4180
    [14] 侯 永, 袁建民. 第一性原理对金的高压相变和零温物态方程的计算. 物理学报, 2007, 56(6): 3458-3463. doi: 10.7498/aps.56.3458
    [15] 田杨萌, 王彩霞, 姜 明, 程新路, 杨向东. 惰性物质等离子体物态方程研究. 物理学报, 2007, 56(10): 5698-5703. doi: 10.7498/aps.56.5698
    [16] 张 颖, 陈其峰, 顾云军, 蔡灵仓, 卢铁城. 部分电离稠密氦等离子体物态方程的自洽变分计算. 物理学报, 2007, 56(3): 1318-1324. doi: 10.7498/aps.56.1318
    [17] 王彩霞, 田杨萌, 姜 明, 程新路, 杨向东, 孟川民. 一种计算氩等离子物态方程的简单模型. 物理学报, 2006, 55(11): 5784-5789. doi: 10.7498/aps.55.5784
    [18] 李晓杰. 热膨胀型固体物态方程. 物理学报, 2002, 51(5): 1098-1102. doi: 10.7498/aps.51.1098
    [19] 耿华运, 吴强, 谭华. 热力学物态方程参数的统计力学表示. 物理学报, 2001, 50(7): 1334-1339. doi: 10.7498/aps.50.1334
    [20] 华劲松, 经福谦, 谭 华. 一种获得剪切模量压强二阶偏导数G″P的方法. 物理学报, 2000, 49(12): 2443-2447. doi: 10.7498/aps.49.2443
计量
  • 文章访问数:  7640
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-02
  • 修回日期:  2020-02-04
  • 刊出日期:  2020-05-05

/

返回文章
返回