搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米光学辐射传热: 从热辐射增强理论到辐射制冷应用

刘扬 潘登 陈文 王文强 沈昊 徐红星

引用本文:
Citation:

纳米光学辐射传热: 从热辐射增强理论到辐射制冷应用

刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星

Radiative heat transfer in nanophotonics: From thermal radiation enhancement theory to radiative cooling applications

Liu Yang, Pan Deng, Chen Wen, Wang Wen-Qiang, Shen Hao, Xu Hong-Xing
PDF
HTML
导出引用
  • 热辐射作为一种无处不在的物理现象, 对于科学研究和工程应用都具有重要意义. 传统上对热辐射的理解主要是基于普朗克定律, 它描述了物体通过辐射交换能量的能力. 而近年来的研究表明, 由于微纳光学材料在尺寸上远小于热辐射峰值波长, 它们的热辐射性质往往很大程度上有别于传统黑体辐射理论所描述的宏观物体. 更重要的是, 微纳光学材料的热辐射性质可以通过改变它们的几何尺寸和微观构型进行定量的优化设计与精确调控. 纳米光学材料与辐射制冷效应的结合, 给热辐射效应在能源和环境等相关领域的应用提供了极具前景的应用价值. 本文首先从热辐射的基本原理和规律出发, 介绍纳米结构热辐射增强的发展进程和最新进展, 包括二维材料间的近场热辐射机理以及尺寸效应导致的远场热辐射增强; 其次, 介绍了近年来纳米光学材料在辐射制冷应用中的重大进展, 包括可以实现高效日间辐射制冷的各种纳米光学材料设计; 最后, 进一步介绍了日间辐射制冷的各种实际应用, 包括建筑物制冷、冷凝水收集、舒适衣物与太阳能电池降温等. 此外, 展望了纳米光学材料的辐射制冷技术在推动荒漠生态环境的治理与改造方面的广阔未来.
    Thermal radiation, as a ubiquitous physical phenomenon, plays an important role in various research fields of science and engineering. Traditional understanding of thermal radiation mainly relies on Planck’s law, which describes the energy exchanging efficiency of entire thermal radiation process. However, recent studies indicated that comparing with the macroscopic object obeying Planck’s law, the thermal radiation in nanophotonic structures is obviously abnormal. This is due to the fact that the nanostructures’ featured size or neighboring space are much smaller than the thermal wavelength. It is important to notice that by well designing the material, size, and structure pattern, the thermal radiation is tunable and controllable. Furthermore, the nanophotonic structures enabling the radiative cooling effects promise to possess the tremendous applications including energy, ecology, etc. In this review paper, firstly, we briefly describe the fundamental theory of thermal radiation, as well as the history and latest progress, such as, enhanced radiative heat transfer, the near-field radiation in two-dimensional materials, and the overall far-field enhancement. Secondly, we focus on the newly available daytime radiative cooling system, which is based on metamaterials or desired nanophotonic structures, pursuing the best cooling performances. Finally, we detail the checklists of remarkable applications, ranging from building cooling and dew collection to solar cell cooling. In addition, we also point out the broad future of radiation cooling technology of nanometer optical materials in promoting the management and transformation of desert ecological environment.
      通信作者: 徐红星, hxxu@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 91850207, 11674256)、国家重点基础研究发展计划(批准号: 2015CB932400)和国家重点研发计划(批准号: 2017YFA0205802)资助的课题
      Corresponding author: Xu Hong-Xing, hxxu@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850207, 11674256), the National Basic Research Program of China (Grant No. 2015CB932400), and the National Key R&D Program of China (Grant No. 2017YFA0205802)
    [1]

    Planck M 1914 The Theory of Thermal Radiation (Philadelphia, PA: P. Blakiston’s Son & Co)

    [2]

    Polder D, Van Hove M 1971 Phys. Rev. B 4 3303Google Scholar

    [3]

    Cuevas J C, García-Vidal F J 2018 ACS Photonics 5 3896Google Scholar

    [4]

    Basu S, Zhang Z M, Fu C J 2009 Int. J. Energy Res. 33 1203Google Scholar

    [5]

    Schuller J A, Taubner T, Brongersma M L 2009 Nat. Photonics 3 658Google Scholar

    [6]

    Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M, Fan S 2017 Nano Energy 41 344Google Scholar

    [7]

    Hossain M M, Gu M 2016 Adv. Sci. 3 1500360Google Scholar

    [8]

    Eriksson T S, Granqvist C G 1982 Appl. Opt. 21 4381Google Scholar

    [9]

    Rytov S M 1953 Theory of Electric Fluctuations and Thermal Radiation US Airforce Cambridge Research Center Report AFCRC-TR-59-162

    [10]

    Joulain K, Mulet J P, Marquier F, Carminati R, Greffet J J 2005 Surf. Sci. Rep. 57 59Google Scholar

    [11]

    Otey C R, Zhu L, Sandhu S, Fan S 2014 J. Quant. Spectrosc. Radiat. Transfer 132 3Google Scholar

    [12]

    Xu H, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar

    [13]

    Chen W, Zhang S, Kang M, Liu W, Ou Z, Li Y, Zhang Y, Guan Z, Xu H 2018 Light Sci. Appl. 7 56Google Scholar

    [14]

    Xu H X, Bjerneld E J, Kall M, Borjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [15]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801Google Scholar

    [16]

    Sun J, Hu H, Zheng D, Zhang D, Deng Q, Zhang S, Xu H 2018 ACS Nano 12 10393Google Scholar

    [17]

    Hargreaves C M 1969 Phys. Lett. A 30 491

    [18]

    Domoto G A, Boehm R F, Tien C L 1970 J. Heat Transfer 92 412Google Scholar

    [19]

    Hu L, Narayanaswamy A, Chen X Y, Chen G 2008 Appl. Phys. Lett. 92 133106Google Scholar

    [20]

    Ottens R S, Quetschke V, Wise S, Alemi A A, Lundock R, Mueller G, Reitze D H, Tanner D B, Whiting B F 2011 Phys. Rev. Lett. 107 014301Google Scholar

    [21]

    Kralik T, Hanzelka P, Zobac M, Musilova V, Fort T, Horak M 2012 Phys. Rev. Lett. 109 224302Google Scholar

    [22]

    Williams C C, Wickramasinghe H K 1986 Microelectron. Eng. 5 509Google Scholar

    [23]

    Dransfeld K, Xu J 1988 J. Microsc. 152 35Google Scholar

    [24]

    Shen S, Narayanaswamy A, Chen G 2009 Nano Lett. 9 2909Google Scholar

    [25]

    de Wilde Y, Formanek F, Carminati R, Gralak B, Lemoine P A, Joulain K, Mulet J P, Chen Y, Greffet J J 2006 Nature 444 740Google Scholar

    [26]

    Kittel A, Müller-Hirsch W, Parisi J, Biehs S A, Reddig D, Holthaus M 2005 Phys. Rev. Lett. 95 224301Google Scholar

    [27]

    Kim K, Song B, Fernández-Hurtado V, Lee W, Jeong W, Cui L, Thompson D, Feist J, Reid M T H, Garcia-Vidal F J, Cuevas J C, Meyhofer E, Reddy P 2015 Nature 528 387Google Scholar

    [28]

    Ilic O, Jablan M, Joannopoulos J D, Celanovic I, Buljan H, Soljačić M 2012 Phys. Rev. B 85 155422Google Scholar

    [29]

    Principi A, Lundeberg M B, Hesp N C H, Tielrooij K-J, Koppens F H L, Polini M 2017 Phys. Rev. Lett. 118 126804Google Scholar

    [30]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421

    [31]

    Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen G C A M, Zhu S E, Jarillo-Herrero P, Fogler M M, Basov D N 2015 Nat. Nanotechnol. 10 682Google Scholar

    [32]

    Tielrooij K-J, Hesp N C H, Principi A, Lundeberg M B, Pogna E A A, Banszerus L, Mics Z, Massicotte M, Schmidt P, Davydovskaya D, Purdie D G, Goykhman I, Soavi G, Lombardo A, Watanabe K, Taniguchi T, Bonn M, Turchinovich D, Stampfer C, Ferrari A C, Cerullo G, Polini M, Koppens F H L 2018 Nat. Nanotechnol. 13 41Google Scholar

    [33]

    Yu R, Manjavacas A, de Abajo F J G 2017 Nat. Commun. 8 2Google Scholar

    [34]

    Brar V W, Sherrott M C, Jang M S, Kim S, Kim L, Choi M, Sweatlock L A, Atwater H A 2015 Nat. Commun. 6 7032Google Scholar

    [35]

    Laroche M, Marquier F, Carminati R, Greffet J J 2005 Opt. Commun. 250 316Google Scholar

    [36]

    Fernández-Hurtado V, Fernández-Domínguez A I, Feist J, García-Vidal F J, Cuevas J C 2018 Phys. Rev. B 97 045408Google Scholar

    [37]

    Thompson D, Zhu L, Mittapally R, Sadat S, Xing Z, McArdle P, Qazilbash M M, Reddy P, Meyhofer E 2018 Nature 561 216Google Scholar

    [38]

    Zeyghami M, Goswami D Y, Stefanakos E 2018 Sol. Energy Mater. Sol. Cells 178 115Google Scholar

    [39]

    Harrison A W, Walton M R 1978 Sol. Energy 20 185Google Scholar

    [40]

    Addeo A, Nicolais L, Romeo G, Bartoli B, Coluzzi B, Silvestrini V 1980 Sol. Energy 24 93Google Scholar

    [41]

    Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V, Troise G 1975 Sol. Energy 17 83Google Scholar

    [42]

    Suryawanshi C N, Lin C-T 2009 ACS Appl. Mater. Interfaces 1 1334Google Scholar

    [43]

    Bartoli B, Catalanotti S, Coluzzi B, Cuomo V, Silvestrini V, Troise G 1977 Appl. Energy 3 267Google Scholar

    [44]

    Orel B, Gunde M K, Krainer A 1993 Sol. Energy 50 477Google Scholar

    [45]

    Ono M, Chen K, Li W, Fan S 2018 Opt. Express 26 A777Google Scholar

    [46]

    Rephaeli E, Raman A, Fan S 2013 Nano Lett. 13 1457Google Scholar

    [47]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540Google Scholar

    [48]

    Hossain M M, Jia B, Gu M 2015 Adv. Opt. Mater. 3 1047Google Scholar

    [49]

    Kou J-l, Jurado Z, Chen Z, Fan S, Minnich A J 2017 ACS Photonics 4 626Google Scholar

    [50]

    Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R, Yin X 2017 Science 355 1062Google Scholar

    [51]

    Mandal J, Fu Y, Overvig A C, Jia M, Sun K, Shi N N, Zhou H, Xiao X, Yu N, Yang Y 2018 Science 362 315Google Scholar

    [52]

    International Energy Agency 2018 The Future of Cooling, Opportunities for Energy-Efficient Air Conditioning (Report)

    [53]

    Kavita A V Benefits of Water-Cooled Systems vs. Air-Cooled Systems for Air-Conditioning Applications Cooling Technology Institute (Report)

    [54]

    Goldstein E A, Raman A P, Fan S 2017 Nat. Energy 2 17143Google Scholar

    [55]

    Ezekwe C I 1990 Energy Convers. Manage. 30 403Google Scholar

    [56]

    Zhao D, Aili A, Zhai Y, Lu J, Kidd D, Tan G, Yin X, Yang R 2019 Joule 3 111

    [57]

    Tong J K, Huang X, Boriskina S V, Loomis J, Xu Y, Chen G 2015 ACS Photonics 2 769Google Scholar

    [58]

    Hsu P C, Song A Y, Catrysse P B, Liu C, Peng Y, Xie J, Fan S, Cui Y 2016 Science 353 1019Google Scholar

    [59]

    Cai L, Song A Y, Li W, Hsu P-C, Lin D, Catrysse P B, Liu Y, Peng Y, Chen J, Wang H, Xu J, Yang A, Fan S, Cui Y 2018 Adv. Mater. 30 1802152Google Scholar

    [60]

    Peng Y, Chen J, Song A Y, Catrysse P B, Hsu P C, Cai L, Liu B, Zhu Y, Zhou G, Wu D S, Lee H R, Fan S, Cui Y 2018 Nat. Sustainability 1 105Google Scholar

    [61]

    Lee G J, Kim Y J, Kim H M, Yoo Y J, Song Y M 2018 Adv. Opt. Mater. 6 1800707Google Scholar

    [62]

    Wiki https://en.wikipedia.org/wiki/Water_supply_and_sanitation_in_Israel [2019-12-8]

    [63]

    Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M 2008 Nature 452 301Google Scholar

    [64]

    Elimelech M, Phillip W A 2011 Science 333 712Google Scholar

    [65]

    Monteith J L 1957 Q. J. R. Meteorol. Soc. 83 322Google Scholar

    [66]

    Beysens D, Milimouk I, Nikolayev V, Muselli M, Marcillat J 2003 J. Hydrol. 276 1Google Scholar

    [67]

    Maestre-Valero J F, Martínez-Alvarez V, Baille A, Martín-Górriz B, Gallego-Elvira B 2011 J. Hydrol. 410 84Google Scholar

    [68]

    Guadarrama-Cetina J, Mongruel A, Medici M G, Baquero E, Parker A R, Milimouk-Melnytchuk I, González-Viñas W, Beysens D 2014 Eur. Phys. J. E 37 109Google Scholar

    [69]

    Benlattar M, Laatioui S, Oualim E M, Mazroui M, Mouhsen A, Harmouchi M 2017 Results in Physics 7 1959Google Scholar

    [70]

    Zhou M, Song H, Xu X, Shahsafi A, Xia Z, Ma Z, Kats M, Zhu J, Ooi B S, Gan Q, Yu Z 2019 Proc. SPIE 11121 1112107

    [71]

    Zhu L, Raman A, Wang K X, Anoma M A, Fan S 2014 Optica 1 32Google Scholar

    [72]

    Zhu L, Raman A P, Fan S 2015 Proc. Natl. Acad. Sci. U.S.A. 112 12282Google Scholar

    [73]

    Li W, Shi Y, Chen K, Zhu L, Fan S 2017 ACS Photonics 4 774Google Scholar

    [74]

    Gentle A R, Smith G B 2016 Sol. Energy Mater. Sol. Cells 150 39Google Scholar

  • 图 1  (a) 黑体向自由空间的热辐射; (b)两个黑体间的热辐射

    Fig. 1.  (a) Free space radiation of black body; (b) the thermal radiation between two neighboring black bodies.

    图 2  (a) 纳米颗粒与环境的热交换; (b)黑体辐射曲线(黑色虚线)和真实颗粒的辐射曲线(红色实线); (c)颗粒在一个衬底表面的热辐射; (d)两个颗粒间的热辐射能量交换

    Fig. 2.  (a) Thermal transfer between nanoparticle and surrounding media; (b) radiation spectrum of black body (black dashed line) and of true nanoparticles (red solid line); (c) thermal radiation of nanoparticle on the certain substrate; (d) thermal radiation enabled energy transfer between two nanoparticles.

    图 3  平行板实验中在(a)室温[17]和(b)低温[18]条件下测得的热导率随间距的变化关系

    Fig. 3.  Distance dependent thermal conductivity of parallel plates, in the condition of (a) room temperature[17] and (b) low temperature[18].

    图 4  (a)热轮廓扫描仪示意图[22]; (b)测量近场热辐射的球型针尖示意图[24]; (c)针尖热辐射测量中的非局域效应[26]; (d)集成化微器件中的热辐射速率测量[27]

    Fig. 4.  (a) Setup schematic of near-field thermal scanning microscopy[22]; (b) schematic of spherical tips for near-field thermal scanning[24]; (c) tips enabled nonlocal effect in thermal radiation[26]; (d) thermal radiation speed of micro integration device[27].

    图 5  (a)两层平行石墨烯间的近场热辐射传导[28]; (b)氮化硼-石墨烯-氮化硼结构中的近场增强热辐射[29]; (c)两个石墨烯圆盘中的超快热辐射[33]

    Fig. 5.  (a) Near-field thermal radiation between parallel graphene[28]; (b) near-field enhanced thermal radiation in boron nitride-graphene-boron nitride structure[29]; (c) superfast thermal radiation between parallel graphene disc[33].

    图 6  两个并列纳米平板间的远场热辐射增强示意图(a)和计算结果(b)[36]; 平行板热辐射结构(c)和实验结果(d)[37]

    Fig. 6.  Schematic (a) and theoretical simulation result (b) of enhanced far-field thermal radiation between parallel nanoplate[36]. Architecture (c) and experimental result (d) of thermal radiation between parallel plate[37].

    图 7  (a)辐射制冷中的热量转移过程示意图; (b)大气的辐射波段和对应黑体辐射强度的对比[7]

    Fig. 7.  (a) Energy transfer schematic of radiative cooling; (b) radiation windows of atmosphere and the corresponding black body radiation[7].

    图 8  (a)可实现日间辐射制冷的周期孔洞多层膜微纳结构(上图)及其吸收和辐射谱(下图)[46]; (b)多层膜结构细节[47]; (c)辐射制冷薄膜和其他薄膜对照物的温度变化曲线[47]

    Fig. 8.  (a) Multi-layered hole array structure (top), of which the radiative cooling could work in the daytime, and the corresponding absorption and radiation spectra (bottom)[46]; (b) detail of layered structure[47]; (c) temperature comparison between the radiative cooling film and the other films[47].

    图 9  低成本纳米结构辐射制冷材料 (a)二氧化硅小球掺杂的高聚物薄膜[50], (i)结构示意图, (ii)连续三天的温度变化; (b) 涂布聚合物多孔薄膜[51], (i)结构电子显微镜图及分子结构示意图, (ii)不同辐射制冷材料覆盖膜的照片, (iii)在中午时的能量变化以及辐射制冷降温效果曲线

    Fig. 9.  Low-cost radiative cooling materials: (a) SiO2 beads embedded polymer film[50], in panel (a), (i) structure schematic, and (ii) temperature changing in 3-days-nonstopping measurements; (b) coated porous polymer film[51], in panel (b), (i) scanning electron microscope imaging and molecular structure schematic, (ii) camera picture of variously coated film, (iii) energy changing during noon time, and the corresponding radiative cooling efficiency.

    图 10  (a) Fan团队制作的辐射制冷系统工作原理图及制冷效果[54], 平均制冷功率超过40 W/m2; (b) Yang 团队搭建的建筑辐射制冷系统[56]

    Fig. 10.  (a) General radiative cooling system, delivered by Fan’s group[54], and the corresponding cooling result, of which the average cooling power is over 40 W/m2; (b) buildings used radiative cooling system, delivered by Yang’s group[56]

    图 11  (a)辐射降温衣物的工作原理[59]; (b)辐射降温织物的照片及扫描电子显微镜图[58]; (c)皮肤温度降温效果[59]; (d)降温织物在可见及红外波段的辐射谱[58]

    Fig. 11.  (a) Principle of radiative cooling cloth[59]; (b) camera picture and scanning electron microscope imaging of radiative cooling textiles[58]; (c) cooling effect on human skin[59]; (d) radiation spectrum of radiative cooling textiles, ranging from visible to infrared frequency[58].

    图 12  (a)辐射制冷薄膜增加冷凝水量的工作原理[70]; (b)多层膜冷凝水收集设备[70]; (c)辐射制冷薄膜的发射谱以及(d)冷凝水增量效果[70]

    Fig. 12.  (a) Principle of radiative cooling effect enabled condensate water[70]; (b) multi-layered radiative cooling system for condensate water[70]; emissivity spectrum (c) of multi-layered radiative cooling system, and (d) the dramatically increased condensate water[70].

    图 13  (a) I为商业太阳能电池照片, II为实验制作的银线电极及铝背电极的太阳能电池, 右图为太阳能电池覆盖上制冷薄膜的照片及其截面示意图[73]; (b)各个器件的吸收谱, 分别为I图中太阳能电池板有无制冷薄膜下的吸收光谱和II图中器件的吸收光谱[73]; (c)对应器件在大气窗口的辐射谱[73]

    Fig. 13.  (a) Commercial solar cell unit (I) and the lab developed unit with silver wire electrode and alumina back electrode (II); the right figure shows the corresponding camera picture with coated cooling film and the detailed cross-section of the film[73]; (b) absorption spectra comparison between commercial solar cells unit (Fig. 13(a) I) with or without radiative cooling film, and lab made solar cell unit (Fig. 13(a) II)[73]; (c) radiation spectra of corresponding solar cell unit, in the frequency region of atmospherically radiative window[73].

  • [1]

    Planck M 1914 The Theory of Thermal Radiation (Philadelphia, PA: P. Blakiston’s Son & Co)

    [2]

    Polder D, Van Hove M 1971 Phys. Rev. B 4 3303Google Scholar

    [3]

    Cuevas J C, García-Vidal F J 2018 ACS Photonics 5 3896Google Scholar

    [4]

    Basu S, Zhang Z M, Fu C J 2009 Int. J. Energy Res. 33 1203Google Scholar

    [5]

    Schuller J A, Taubner T, Brongersma M L 2009 Nat. Photonics 3 658Google Scholar

    [6]

    Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M, Fan S 2017 Nano Energy 41 344Google Scholar

    [7]

    Hossain M M, Gu M 2016 Adv. Sci. 3 1500360Google Scholar

    [8]

    Eriksson T S, Granqvist C G 1982 Appl. Opt. 21 4381Google Scholar

    [9]

    Rytov S M 1953 Theory of Electric Fluctuations and Thermal Radiation US Airforce Cambridge Research Center Report AFCRC-TR-59-162

    [10]

    Joulain K, Mulet J P, Marquier F, Carminati R, Greffet J J 2005 Surf. Sci. Rep. 57 59Google Scholar

    [11]

    Otey C R, Zhu L, Sandhu S, Fan S 2014 J. Quant. Spectrosc. Radiat. Transfer 132 3Google Scholar

    [12]

    Xu H, Aizpurua J, Käll M, Apell P 2000 Phys. Rev. E 62 4318Google Scholar

    [13]

    Chen W, Zhang S, Kang M, Liu W, Ou Z, Li Y, Zhang Y, Guan Z, Xu H 2018 Light Sci. Appl. 7 56Google Scholar

    [14]

    Xu H X, Bjerneld E J, Kall M, Borjesson L 1999 Phys. Rev. Lett. 83 4357Google Scholar

    [15]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801Google Scholar

    [16]

    Sun J, Hu H, Zheng D, Zhang D, Deng Q, Zhang S, Xu H 2018 ACS Nano 12 10393Google Scholar

    [17]

    Hargreaves C M 1969 Phys. Lett. A 30 491

    [18]

    Domoto G A, Boehm R F, Tien C L 1970 J. Heat Transfer 92 412Google Scholar

    [19]

    Hu L, Narayanaswamy A, Chen X Y, Chen G 2008 Appl. Phys. Lett. 92 133106Google Scholar

    [20]

    Ottens R S, Quetschke V, Wise S, Alemi A A, Lundock R, Mueller G, Reitze D H, Tanner D B, Whiting B F 2011 Phys. Rev. Lett. 107 014301Google Scholar

    [21]

    Kralik T, Hanzelka P, Zobac M, Musilova V, Fort T, Horak M 2012 Phys. Rev. Lett. 109 224302Google Scholar

    [22]

    Williams C C, Wickramasinghe H K 1986 Microelectron. Eng. 5 509Google Scholar

    [23]

    Dransfeld K, Xu J 1988 J. Microsc. 152 35Google Scholar

    [24]

    Shen S, Narayanaswamy A, Chen G 2009 Nano Lett. 9 2909Google Scholar

    [25]

    de Wilde Y, Formanek F, Carminati R, Gralak B, Lemoine P A, Joulain K, Mulet J P, Chen Y, Greffet J J 2006 Nature 444 740Google Scholar

    [26]

    Kittel A, Müller-Hirsch W, Parisi J, Biehs S A, Reddig D, Holthaus M 2005 Phys. Rev. Lett. 95 224301Google Scholar

    [27]

    Kim K, Song B, Fernández-Hurtado V, Lee W, Jeong W, Cui L, Thompson D, Feist J, Reid M T H, Garcia-Vidal F J, Cuevas J C, Meyhofer E, Reddy P 2015 Nature 528 387Google Scholar

    [28]

    Ilic O, Jablan M, Joannopoulos J D, Celanovic I, Buljan H, Soljačić M 2012 Phys. Rev. B 85 155422Google Scholar

    [29]

    Principi A, Lundeberg M B, Hesp N C H, Tielrooij K-J, Koppens F H L, Polini M 2017 Phys. Rev. Lett. 118 126804Google Scholar

    [30]

    Woessner A, Lundeberg M B, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens F H L 2015 Nat. Mater. 14 421

    [31]

    Dai S, Ma Q, Liu M K, Andersen T, Fei Z, Goldflam M D, Wagner M, Watanabe K, Taniguchi T, Thiemens M, Keilmann F, Janssen G C A M, Zhu S E, Jarillo-Herrero P, Fogler M M, Basov D N 2015 Nat. Nanotechnol. 10 682Google Scholar

    [32]

    Tielrooij K-J, Hesp N C H, Principi A, Lundeberg M B, Pogna E A A, Banszerus L, Mics Z, Massicotte M, Schmidt P, Davydovskaya D, Purdie D G, Goykhman I, Soavi G, Lombardo A, Watanabe K, Taniguchi T, Bonn M, Turchinovich D, Stampfer C, Ferrari A C, Cerullo G, Polini M, Koppens F H L 2018 Nat. Nanotechnol. 13 41Google Scholar

    [33]

    Yu R, Manjavacas A, de Abajo F J G 2017 Nat. Commun. 8 2Google Scholar

    [34]

    Brar V W, Sherrott M C, Jang M S, Kim S, Kim L, Choi M, Sweatlock L A, Atwater H A 2015 Nat. Commun. 6 7032Google Scholar

    [35]

    Laroche M, Marquier F, Carminati R, Greffet J J 2005 Opt. Commun. 250 316Google Scholar

    [36]

    Fernández-Hurtado V, Fernández-Domínguez A I, Feist J, García-Vidal F J, Cuevas J C 2018 Phys. Rev. B 97 045408Google Scholar

    [37]

    Thompson D, Zhu L, Mittapally R, Sadat S, Xing Z, McArdle P, Qazilbash M M, Reddy P, Meyhofer E 2018 Nature 561 216Google Scholar

    [38]

    Zeyghami M, Goswami D Y, Stefanakos E 2018 Sol. Energy Mater. Sol. Cells 178 115Google Scholar

    [39]

    Harrison A W, Walton M R 1978 Sol. Energy 20 185Google Scholar

    [40]

    Addeo A, Nicolais L, Romeo G, Bartoli B, Coluzzi B, Silvestrini V 1980 Sol. Energy 24 93Google Scholar

    [41]

    Catalanotti S, Cuomo V, Piro G, Ruggi D, Silvestrini V, Troise G 1975 Sol. Energy 17 83Google Scholar

    [42]

    Suryawanshi C N, Lin C-T 2009 ACS Appl. Mater. Interfaces 1 1334Google Scholar

    [43]

    Bartoli B, Catalanotti S, Coluzzi B, Cuomo V, Silvestrini V, Troise G 1977 Appl. Energy 3 267Google Scholar

    [44]

    Orel B, Gunde M K, Krainer A 1993 Sol. Energy 50 477Google Scholar

    [45]

    Ono M, Chen K, Li W, Fan S 2018 Opt. Express 26 A777Google Scholar

    [46]

    Rephaeli E, Raman A, Fan S 2013 Nano Lett. 13 1457Google Scholar

    [47]

    Raman A P, Anoma M A, Zhu L, Rephaeli E, Fan S 2014 Nature 515 540Google Scholar

    [48]

    Hossain M M, Jia B, Gu M 2015 Adv. Opt. Mater. 3 1047Google Scholar

    [49]

    Kou J-l, Jurado Z, Chen Z, Fan S, Minnich A J 2017 ACS Photonics 4 626Google Scholar

    [50]

    Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R, Yin X 2017 Science 355 1062Google Scholar

    [51]

    Mandal J, Fu Y, Overvig A C, Jia M, Sun K, Shi N N, Zhou H, Xiao X, Yu N, Yang Y 2018 Science 362 315Google Scholar

    [52]

    International Energy Agency 2018 The Future of Cooling, Opportunities for Energy-Efficient Air Conditioning (Report)

    [53]

    Kavita A V Benefits of Water-Cooled Systems vs. Air-Cooled Systems for Air-Conditioning Applications Cooling Technology Institute (Report)

    [54]

    Goldstein E A, Raman A P, Fan S 2017 Nat. Energy 2 17143Google Scholar

    [55]

    Ezekwe C I 1990 Energy Convers. Manage. 30 403Google Scholar

    [56]

    Zhao D, Aili A, Zhai Y, Lu J, Kidd D, Tan G, Yin X, Yang R 2019 Joule 3 111

    [57]

    Tong J K, Huang X, Boriskina S V, Loomis J, Xu Y, Chen G 2015 ACS Photonics 2 769Google Scholar

    [58]

    Hsu P C, Song A Y, Catrysse P B, Liu C, Peng Y, Xie J, Fan S, Cui Y 2016 Science 353 1019Google Scholar

    [59]

    Cai L, Song A Y, Li W, Hsu P-C, Lin D, Catrysse P B, Liu Y, Peng Y, Chen J, Wang H, Xu J, Yang A, Fan S, Cui Y 2018 Adv. Mater. 30 1802152Google Scholar

    [60]

    Peng Y, Chen J, Song A Y, Catrysse P B, Hsu P C, Cai L, Liu B, Zhu Y, Zhou G, Wu D S, Lee H R, Fan S, Cui Y 2018 Nat. Sustainability 1 105Google Scholar

    [61]

    Lee G J, Kim Y J, Kim H M, Yoo Y J, Song Y M 2018 Adv. Opt. Mater. 6 1800707Google Scholar

    [62]

    Wiki https://en.wikipedia.org/wiki/Water_supply_and_sanitation_in_Israel [2019-12-8]

    [63]

    Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Mariñas B J, Mayes A M 2008 Nature 452 301Google Scholar

    [64]

    Elimelech M, Phillip W A 2011 Science 333 712Google Scholar

    [65]

    Monteith J L 1957 Q. J. R. Meteorol. Soc. 83 322Google Scholar

    [66]

    Beysens D, Milimouk I, Nikolayev V, Muselli M, Marcillat J 2003 J. Hydrol. 276 1Google Scholar

    [67]

    Maestre-Valero J F, Martínez-Alvarez V, Baille A, Martín-Górriz B, Gallego-Elvira B 2011 J. Hydrol. 410 84Google Scholar

    [68]

    Guadarrama-Cetina J, Mongruel A, Medici M G, Baquero E, Parker A R, Milimouk-Melnytchuk I, González-Viñas W, Beysens D 2014 Eur. Phys. J. E 37 109Google Scholar

    [69]

    Benlattar M, Laatioui S, Oualim E M, Mazroui M, Mouhsen A, Harmouchi M 2017 Results in Physics 7 1959Google Scholar

    [70]

    Zhou M, Song H, Xu X, Shahsafi A, Xia Z, Ma Z, Kats M, Zhu J, Ooi B S, Gan Q, Yu Z 2019 Proc. SPIE 11121 1112107

    [71]

    Zhu L, Raman A, Wang K X, Anoma M A, Fan S 2014 Optica 1 32Google Scholar

    [72]

    Zhu L, Raman A P, Fan S 2015 Proc. Natl. Acad. Sci. U.S.A. 112 12282Google Scholar

    [73]

    Li W, Shi Y, Chen K, Zhu L, Fan S 2017 ACS Photonics 4 774Google Scholar

    [74]

    Gentle A R, Smith G B 2016 Sol. Energy Mater. Sol. Cells 150 39Google Scholar

  • [1] 韩非, 江舟, 王晨, 周华, 沈向前. 金属纳米图案对钙钛矿电池的光学增强. 物理学报, 2024, 73(16): 168801. doi: 10.7498/aps.73.20240607
    [2] 王宇枭, 成泽帅, 江可扬, 魏琳扬, 历秀明. 基于辐射制冷与电致变色的可调节多层膜性能研究. 物理学报, 2024, 73(21): 214401. doi: 10.7498/aps.73.20240863
    [3] 俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍. 冷凝泵型稀释制冷机实验研究. 物理学报, 2023, 72(8): 080701. doi: 10.7498/aps.72.20222257
    [4] 苏宇航, 张炼, 陶灿, 王宁, 马平准, 钟莹, 刘海涛. 金属镜面上纳米光学天线阵列自发辐射增强与定向辐射. 物理学报, 2023, 72(7): 078101. doi: 10.7498/aps.72.20222007
    [5] 苏玉凤, 彭金璋, 杨红, 黄勇刚. 金属纳米柱的端面修饰对自发辐射增强特性的影响. 物理学报, 2022, 71(16): 166802. doi: 10.7498/aps.71.20220439
    [6] 窦琳, 麻艳娜, 顾兆麒, 刘家彤, 谷付星. 基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像. 物理学报, 2022, 71(4): 044201. doi: 10.7498/aps.71.20211810
    [7] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [8] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [9] 阳润恒, 安顺, 尚文, 邓涛. 仿生辐射制冷的研究进展. 物理学报, 2022, 71(2): 024401. doi: 10.7498/aps.71.20211854
    [10] 窦琳, 麻艳娜, 顾兆麒, 刘家彤, 谷付星. 基于半导体纳米线/锥形微光纤探针的被动式近场光学扫描成像. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211810
    [11] 王波, 张纪红, 李聪颖. 石墨烯增强半导体态二氧化钒近场热辐射. 物理学报, 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [12] 陈浩, 王存海, 程子明, 魏琳扬, 王富强, 张欣欣. 基于辐射制冷-温室效应的热电系统性能分析. 物理学报, 2021, 70(21): 214401. doi: 10.7498/aps.70.20210356
    [13] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [14] 徐飞翔, 李晓光, 张振宇. 量子等离激元光子学在若干方向的最新进展. 物理学报, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [15] 焦悦, 陶海岩, 季博宇, 宋晓伟, 林景全. 用于飞秒激光纳米加工的TiO2粒子阵列诱导多种基底表面近场增强. 物理学报, 2017, 66(14): 144203. doi: 10.7498/aps.66.144203
    [16] 叶松, 王向贤, 侯宜栋, 张志友, 杜惊雷. 自组装银膜增强8-羟基喹啉铝(Alq3)光致发光的实验和理论研究. 物理学报, 2014, 63(8): 087802. doi: 10.7498/aps.63.087802
    [17] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管近场增强特性的研究. 物理学报, 2012, 61(4): 047802. doi: 10.7498/aps.61.047802
    [18] 王 笑, 潘安练, 刘 丹, 白永强, 张朝晖, 邹炳锁, 朱 星. 近场光学显微镜研究CdS0.65Se0.35纳米带空间分辨光致荧光谱. 物理学报, 2007, 56(11): 6352-6357. doi: 10.7498/aps.56.6352
    [19] 周庆, 朱星, 李宏福. 近场光学中光纤探针的光强分布. 物理学报, 2000, 49(2): 210-214. doi: 10.7498/aps.49.210
    [20] 王桂英. 近场光学理论初探. 物理学报, 1997, 46(11): 2154-2159. doi: 10.7498/aps.46.2154
计量
  • 文章访问数:  32506
  • PDF下载量:  1680
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-16
  • 修回日期:  2019-12-19
  • 上网日期:  2020-01-16
  • 刊出日期:  2020-02-05

/

返回文章
返回