搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海环境中基于模态衰减规律加权的子空间检测方法

孔德智 孙超 李明杨

引用本文:
Citation:

浅海环境中基于模态衰减规律加权的子空间检测方法

孔德智, 孙超, 李明杨

Weighted subspace detection method based on modal attenuation law in shallow water

Kong De-Zhi, Sun Chao, Li Ming-Yang
PDF
HTML
导出引用
  • 研究了使用垂直线列阵情况下, 浅海环境中的模态空间检测器(modal space detector, MSD)的检测性能. 推导了MSD的处理增益, 结果表明其处理增益随波导环境中传播模态数的增多而减小, 进而其检测性能也随之下降. 利用各阶模态深度函数之间的正交性, 将MSD分解为若干阶模态子空间检测器(modal subspace detector, MSSD). 推导了各阶MSSD的处理增益, 发现其随各阶模态衰减系数的增大而减小. 根据各阶模态的衰减规律设计加权系数, 提出一种加权模态子空间检测器(weighted modal subspace detector, WMSSD). 以处理增益作为比较参量, 通过理论和仿真实验分析了声源位置和声速剖面对WMSSD检测性能的影响. 结果表明: 1) 当声源位于负梯度声速波导的近海面区域和正梯度声速波导的近海底区域时, 由于低阶模态深度函数存在反转点, WMSSD的处理增益弱于MSD, 而当声源位于其他大部分观测区域时, WMSSD的处理增益都优于或显著优于MSD; 2) 在等声速梯度波导中, 各阶模态深度函数不存在反转点, 在所有观测区域WMSSD的处理增益都显著优于MSD.
    In this paper, the modal space detector (MSD) is investigated in shallow water environment when utilizing a vertical linear array. The processing gain of the MSD is derived, and the result demonstrates that the processing gain of the MSD degrades when the number of the propagated normal modes excited by the underwater acoustic source increases, and therefore the detection performance of the MSD decreases. By exploiting the orthogonality among the modal depth functions, the MSD can be decomposed into a group of modal subspace detectors (MSSDs). The processing gains of these MSSDs are derived as well and it is found out that the processing gain of a MSSD is in direct proportion to its corresponding modal attenuation coefficients. By designing a group of weighting coefficients based on the mode attenuation law, a weighted modal subspace detector (WMSSD) is proposed to alleviate the degradation of the processing gain processing of the MSD. We analyze the influences of acoustic source locations and sound velocity profiles (SVPs) on the detection performance of the WMSSD theoretically, and verify the theoretical analyses by comparing its processing gain with the MSD in simulation experiments. The results show that the WMSSD presents various processing gains versus different acoustic source locations. In the waveguide having a negatively-gradient SVP, there exists a ‘weak detection area’ for the WMSSD, that is, the processing gain of the WMSSD is smaller than that of the MSD when the acoustic source locations are close to sea surface. The reason is because there are inversion points on the lower-order modal depth functions and the depths of the inversion points are close to sea surface. In other most areas, the processing gain of the WMSSD is larger (even remarkably larger) than that of the MSD. In the waveguide having a positively-gradient SVP, due to the phenomenon that the modal inversion points of the lower-order modal depth functions are near sea floor, there is a contrary consequence, that is, the ‘weak detection area’ is close to sea floor. And meanwhile the WMSSD outperforms the MSD in other most areas as well. There are no modal inversion points in the waveguide having a constant SVP, and therefore the WMSSD always outperforms the MSD.
      通信作者: 孙超, csun@nwpu.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:11534009)资助的课题
      Corresponding author: Sun Chao, csun@nwpu.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 11534009)
    [1]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Oceanic Eng. 18 401Google Scholar

    [2]

    Sha L, Nolte L W 2005 J. Acoust. Soc. Am. 117 1942Google Scholar

    [3]

    Sha L, Nolte L W 2006 IEEE J. Oceanic Eng. 31 345Google Scholar

    [4]

    刘宗伟, 孙超, 易锋, 郭国强, 向龙凤 2014 声学学报 3 309

    Liu Z W, Sun C, Yi F, Guo G Q, Xiang L F 2014 Acta Acust. 3 309

    [5]

    刘宗伟, 孙超, 吕连港 2015 声学学报 5 665

    Liu Z W, Sun C, Lv L G 2015 Acta Acust. 5 665

    [6]

    Scharf L L, Friedlander B 1993 IEEE Trans. Signal Process. 42 2146

    [7]

    Krishna K M, Anand G V 2009 IEEE OCEANS Biloxi, USA, October 26−29, 2009 p1

    [8]

    Hari V N, Anand G V, Premkumar A B, Madhukumar A S 2011 IEEE OCEANS Santander, Spain, June 6−9, 2011 p1

    [9]

    Hari V N, Anand G V, Nagesha P V, Nagesha P V, Premkumar A B 2012 Proceedings of the 20th European Signal Processing Conference Bucharest, Romania, August 27−31, 2012 p1334

    [10]

    Hari V N, Anand G V, Premkumar A B 2013 Digit. Signal Process. 23 1645Google Scholar

    [11]

    李明杨, 孙超, 邵炫 2014 物理学报 20 204302Google Scholar

    Li M Y, Sun C, Shao X 2014 Acta Phys. Sin. 20 204302Google Scholar

    [12]

    Li M, Sun C, Willett P 2017 IEEE J. Oceanic Eng. 99 1

    [13]

    Kong D Z, Sun C, Li M Y, Liu X H, Xie L 2019 IEEE Access 7 79644Google Scholar

    [14]

    孔德智, 孙超, 李明杨, 卓颉, 刘雄厚 2019 物理学报 68 174301Google Scholar

    Kong D Z, Sun C, Li M Y, Zhuo J, Liu X H 2019 Acta Phys. Sin. 68 174301Google Scholar

    [15]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp258−263

    [16]

    张仁和 1979 声学学报 2 16

    Zhang R H 1979 Acta Acust. 2 16

    [17]

    Wang Q, Zhang RH 1990 J. Acoust. Soc. Am. 87 633Google Scholar

    [18]

    汪德昭, 尚尔昌2013 水声学(第二版) (北京: 科学出版社) pp92−94

    Wang D Z, Shang E C 2013 Underwater Acoustics (Vol. 2) (Beijing: Science Press) pp92−94 (in Chinese)

    [19]

    斯蒂芬Kay著 (罗鹏飞, 张文明译) 2011 统计信号处理基础 (北京: 电子工业出版社) 第573−574页

    Kay S M (translated by Luo P F, Zhang W M) 2011 Fundamentals of Statistical Signal Processing (Beijing: Publishing House of Electronics Industry) pp573−574 (in Chinese)

    [20]

    Morgan D R, Smith T M 1990 J. Acoust. Soc. Am. 87 737Google Scholar

  • 图 1  浅海波导环境及其相关参数

    Fig. 1.  The shallow water waveguide and its environmental parameters.

    图 2  不同传播模态数下MSD的检测性能曲线 (a) 检测概率随输入信噪比的变化, ${P_{{\rm{FA}}}} = 0.1$; (b) 检测概率随虚警概率的变化, $SNR = - 15\;{\rm{ dB}}$

    Fig. 2.  Detection performance curves of the MSD under various numbers of normal modes: (a) Probabilities of detection versus SNRs, ${P_{{\rm{FA}}}} = 0.1$; (b) probabilities of detection versus probabilities of false alarm, $SNR = - 15\;{\rm{dB}}$.

    图 3  MSD的处理增益随模态数的变化曲线

    Fig. 3.  The processing gains of the MSD versus the numbers of normal modes.

    图 4  各阶MSSD处理增益随阶数的变化

    Fig. 4.  The processing gains of MSSD versus the orders of normal modes.

    图 5  MSD, WMSSD, OWMSSD的检测性能曲线, f = 100 Hz (a) 检测概率随输入信噪比的变化, ${P_{{\rm{FA}}}} = 0.1$; (b) 检测概率随虚警概率的变化, $SNR = - 15\;{\rm{dB}}$

    Fig. 5.  Detection performance curves of the MSD, WMSSD and OWMSSD with f = 100 Hz: (a) Probabilities of detection versus SNR, ${P_{{\rm{FA}}}} = 0.1$; (b) probabilities of detection versus probabilities of false alarm, $SNR = - 15\;{\rm{dB}}$.

    图 6  MSD, WMSSD, OWMSSD的检测性能曲线, f = 300 Hz (a) 检测概率随输入信噪比的变化, ${P_{{\rm{FA}}}} = 0.1$; (b) 检测概率随虚警概率的变化, $SNR = - 15\;{\rm{dB}}$

    Fig. 6.  Detection performance curves of the MSD, WMSSD and OWMSSD with f = 300 Hz: (a) Probabilities of detection versus SNR, ${P_{{\rm{FA}}}} = 0.1$; (b) probabilities of detection versus probabilities of false alarm, $SNR = - 15\;{\rm{dB}}$.

    图 7  MSD, WMSSD, OWMSSD的处理增益随声源位置的变化, f = 300 Hz (a) MSD; (b) WMSSD; (c) OWMSSD

    Fig. 7.  The processing gains of the MSD, WMSSD and OWMSSD versus acoustic source locations with f = 300 Hz: (a) MSD; (b) WMSSD; (c) OWMSSD.

    图 8  各阶模态函数及其反转点深度, f = 300 Hz (a) 波导环境中的各阶模态函数分布; (b) 各阶模态函数的反转点深度

    Fig. 8.  The modal depth functions and their turning-depths with f = 300 Hz: (a) Each modal depth function in the waveguide; (b) the turning-depth of each modal depth function.

    图 9  各阶MSSD的加权系数与处理增益, f = 300 Hz, 声源距离15 km (a)声源深度10 m; (b) 声源深度80 m

    Fig. 9.  The weighting coefficients and the processing gains of the MSSD with f = 300 Hz and source range of 15 km: (a) Source depth of 10 m; (b) source depth of 80 m.

    图 10  不同频率时临界深度随距离的变化图

    Fig. 10.  The critical depths versus ranges under various frequencies.

    图 11  各阶MSSD归一化的加权系数与处理增益, f = 300 Hz, 声源深度10 m, 声源距离25 km

    Fig. 11.  The weighting coefficients and the processing gains of the MSSD with f = 300 Hz, source depth of 10 m and source range of 25 km.

    图 12  等声速剖面与正梯度声速剖面图

    Fig. 12.  Constant sound velocity profile (SVP) and positive gradient SVP.

    图 13  各阶模态函数的反转深度, f = 300 Hz

    Fig. 13.  The turning-depth of each modal depth function with f = 300 Hz.

    图 14  两种声速剖面波导中的各阶模态函数, f = 300 Hz (a) 等声速剖面; (b) 正梯度声速剖面

    Fig. 14.  Each modal depth function in the two kinds of waveguides with f = 300 Hz: (a) Constant SVP; (b) positive gradient SVP.

    图 15  两种声速剖面下, 不同声源位置处的WMSSD处理增益, f = 300 Hz (a)等声速剖面; (b) 正梯度声速剖面

    Fig. 15.  The processing gains of the WMSSD versus acoustic source locations with f = 300 Hz: (a) Constant SVP; (b) positive gradient SVP.

  • [1]

    Baggeroer A B, Kuperman W A, Mikhalevsky P N 1993 IEEE J. Oceanic Eng. 18 401Google Scholar

    [2]

    Sha L, Nolte L W 2005 J. Acoust. Soc. Am. 117 1942Google Scholar

    [3]

    Sha L, Nolte L W 2006 IEEE J. Oceanic Eng. 31 345Google Scholar

    [4]

    刘宗伟, 孙超, 易锋, 郭国强, 向龙凤 2014 声学学报 3 309

    Liu Z W, Sun C, Yi F, Guo G Q, Xiang L F 2014 Acta Acust. 3 309

    [5]

    刘宗伟, 孙超, 吕连港 2015 声学学报 5 665

    Liu Z W, Sun C, Lv L G 2015 Acta Acust. 5 665

    [6]

    Scharf L L, Friedlander B 1993 IEEE Trans. Signal Process. 42 2146

    [7]

    Krishna K M, Anand G V 2009 IEEE OCEANS Biloxi, USA, October 26−29, 2009 p1

    [8]

    Hari V N, Anand G V, Premkumar A B, Madhukumar A S 2011 IEEE OCEANS Santander, Spain, June 6−9, 2011 p1

    [9]

    Hari V N, Anand G V, Nagesha P V, Nagesha P V, Premkumar A B 2012 Proceedings of the 20th European Signal Processing Conference Bucharest, Romania, August 27−31, 2012 p1334

    [10]

    Hari V N, Anand G V, Premkumar A B 2013 Digit. Signal Process. 23 1645Google Scholar

    [11]

    李明杨, 孙超, 邵炫 2014 物理学报 20 204302Google Scholar

    Li M Y, Sun C, Shao X 2014 Acta Phys. Sin. 20 204302Google Scholar

    [12]

    Li M, Sun C, Willett P 2017 IEEE J. Oceanic Eng. 99 1

    [13]

    Kong D Z, Sun C, Li M Y, Liu X H, Xie L 2019 IEEE Access 7 79644Google Scholar

    [14]

    孔德智, 孙超, 李明杨, 卓颉, 刘雄厚 2019 物理学报 68 174301Google Scholar

    Kong D Z, Sun C, Li M Y, Zhuo J, Liu X H 2019 Acta Phys. Sin. 68 174301Google Scholar

    [15]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp258−263

    [16]

    张仁和 1979 声学学报 2 16

    Zhang R H 1979 Acta Acust. 2 16

    [17]

    Wang Q, Zhang RH 1990 J. Acoust. Soc. Am. 87 633Google Scholar

    [18]

    汪德昭, 尚尔昌2013 水声学(第二版) (北京: 科学出版社) pp92−94

    Wang D Z, Shang E C 2013 Underwater Acoustics (Vol. 2) (Beijing: Science Press) pp92−94 (in Chinese)

    [19]

    斯蒂芬Kay著 (罗鹏飞, 张文明译) 2011 统计信号处理基础 (北京: 电子工业出版社) 第573−574页

    Kay S M (translated by Luo P F, Zhang W M) 2011 Fundamentals of Statistical Signal Processing (Beijing: Publishing House of Electronics Industry) pp573−574 (in Chinese)

    [20]

    Morgan D R, Smith T M 1990 J. Acoust. Soc. Am. 87 737Google Scholar

  • [1] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2022, 71(2): 021401. doi: 10.7498/aps.71.20211083
    [2] 胥守振, 黄林, 谢实梦, 迟子惠, 吴丹. 基于声学扫描振镜的超声/光声双模态成像技术. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211394
    [3] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211132
    [4] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211083
    [5] 王红霞, 张清华, 侯维君, 魏一苇. 不同模态沙尘暴对太赫兹波的衰减分析. 物理学报, 2021, 70(6): 064101. doi: 10.7498/aps.70.20201393
    [6] 许子非, 岳敏楠, 李春. 优化递归变分模态分解及其在非线性信号处理中的应用. 物理学报, 2019, 68(23): 238401. doi: 10.7498/aps.68.20191005
    [7] 孔德智, 孙超, 李明杨, 卓颉, 刘雄厚. 深海波导中基于采样简正波模态降维处理的广义似然比检测. 物理学报, 2019, 68(17): 174301. doi: 10.7498/aps.68.20190700
    [8] 李佳蔚, 鹿力成, 郭圣明, 马力. warping变换提取单模态反演海底衰减系数. 物理学报, 2017, 66(20): 204301. doi: 10.7498/aps.66.204301
    [9] 孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章. 基于多模态信号的金属材料缺陷无损检测方法. 物理学报, 2016, 65(16): 167802. doi: 10.7498/aps.65.167802
    [10] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场. 物理学报, 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [11] 刘宗伟, 孙超, 向龙凤, 易锋. 不确定海洋环境中的模态子空间重构稳健定位方法. 物理学报, 2014, 63(3): 034304. doi: 10.7498/aps.63.034304
    [12] 李明杨, 孙超, 邵炫. 模态信息非完备采样对水下声源检测的影响及改进方法. 物理学报, 2014, 63(20): 204302. doi: 10.7498/aps.63.204302
    [13] 王文波, 汪祥莉. 噪声模态单元预判的经验模态分解脉冲星信号消噪. 物理学报, 2013, 62(20): 209701. doi: 10.7498/aps.62.209701
    [14] 王文波, 张晓东, 汪祥莉. 脉冲星信号的经验模态分解模态单元比例萎缩消噪算法. 物理学报, 2013, 62(6): 069701. doi: 10.7498/aps.62.069701
    [15] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟. 水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响. 物理学报, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [16] 杨永锋, 吴亚锋, 任兴民, 裘焱. 随机噪声对经验模态分解非线性信号的影响. 物理学报, 2010, 59(6): 3778-3784. doi: 10.7498/aps.59.3778
    [17] 裴利军, 邱本花. 模态分解法在非恒同耦合系统同步研究中的推广. 物理学报, 2010, 59(1): 164-170. doi: 10.7498/aps.59.164
    [18] 侯王宾, 刘天琪, 李兴源. 基于经验模态分解滤波的低频振荡Prony分析. 物理学报, 2010, 59(5): 3531-3537. doi: 10.7498/aps.59.3531
    [19] 龚志强, 邹明玮, 高新全, 董文杰. 基于非线性时间序列分析经验模态分解和小波分解异同性的研究. 物理学报, 2005, 54(8): 3947-3957. doi: 10.7498/aps.54.3947
    [20] 王克斌, 李士, 唐孝威. 应用共振吸收谱仪测量Al对γ射线的衰减系数. 物理学报, 1981, 30(9): 1279-1283. doi: 10.7498/aps.30.1279
计量
  • 文章访问数:  6173
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-23
  • 修回日期:  2020-05-12
  • 上网日期:  2020-05-19
  • 刊出日期:  2020-08-20

/

返回文章
返回