搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用双色激光场下阈上电离谱鉴别$ \rm H_3^{2+} $ 两种不同分子构型

周旭聪 石尚 李飞 孟庆田 王兵兵

引用本文:
Citation:

利用双色激光场下阈上电离谱鉴别$ \rm H_3^{2+} $ 两种不同分子构型

周旭聪, 石尚, 李飞, 孟庆田, 王兵兵

Identifying two different configurations of the $ \rm H_3^{2+} $ by the direct above-threshold ionization spectrum in two-color laser field

Zhou Xu-Cong, Shi Shang, Li Fei, Meng Qing-Tian, Wang Bing-Bing
PDF
HTML
导出引用
  • 我们最近证明, 利用红外和深紫外双色激光场, SF6分子的结构信息可以通过其电离谱上的相干条纹获得[arXiv,1912.08499(2019)]. 在本文中, 我们利用该方法考察了两种不同几何结构的分子离子$ \rm H_3^{2+} $ 在激光场中的直接阈上电离(ATI)过程. 通过与单色激光场中电离谱的比较发现, 双色激光场的电离谱可以分辨分子的不同几何结构. 由相干条件导出的公式可以很好地解释直接ATI动能谱和动量谱中的干涉条纹. 此外, 还发现通过改变分子核间距或改变激光强度可以改变电离谱的形状. 由此可以推断, 双色激光场诱导的ATI谱具有鉴别分子不同构型的能力, 对复杂分子的几何结构成像具有一定的参考意义.
    Since imaging the geometrical structure of molecules can help to understand the microscopic world intuitively, and thereby to promote the development of physics, chemistry, material science and biological science, it has long been an important subject for scientists to probe the molecular internal structure. Generally, however, because of the relative complexity of the molecular internal structure, it is difficult to obtain the relevant information by ordinary experimental means. With the development of laser technology, especially the advent of intense ultrafast laser field, ultrafast laser pulse provides an unprecedented detection tool to investigate the related ultrafast dynamics. In recent years, strong field high-order nonlinear ultrafast processes, such as above-threshold ionization(ATI), high-order above-threshold ionization(HATI), high harmonic generation(HHG), and non-sequential double ionization (NSDI), were produced by using femtosecond ultrafast laser to excite molecules. Since the molecules excited in these processes emit the photon and electron signals pertinent to their internal structures, it is natural that one can obtain the imaging of molecular structure by extracting the signals. Recently, we have demonstrated that the structural information of SF6 molecules can be obtained by the interference fringes on the ATI spectrum using the infrared and ultraviolet bichromatic laser fields[arXiv, 1912.08499 (2019)]. In this paper, we use frequency-domian method, which is based on non-perturbed quantum electrodynamics, to investigate the direct above-threshold ionization (ATI) process of triatomic molecular ion $ \rm H_3^{2+} $ with two different geometrical structures by monochromatic and bichromatic laser fields, and given the detailed analysis of the spectra for each case. Compared with the monochromatic laser field, it is found that the ATI spectrum by the bichromatic laser field is more sensitive to the geometrical configuration of molecular ion, thereby it can be applied to identify the different geometrical structure of molecules. In the case of bichromatic laser fields, the direct ATI spectrum show different interference fringes with different molecular configurations. We give the beginning and cutoff curves of each platform by employing the saddle-point approximation. Furthermore, we derive the destructive curves formulas for different molecular configurations in angle-resolved direct ATI energy spectra and momentum spectra, respectively, which carries the information about themolecular structure. In addition, it is found that the shape of the spectra can be modified by changing the molecular internuclear distance or varying the laser intensity. Thereby, it can be inferred that the ATI spectrum induced by bichromatic laser field has the ability to identify different configurations of the same molecules, which is instructive to image geometrical structure of complex molecules.
      通信作者: 王兵兵, wbb@aphy.iphy.ac.cn
    • 基金项目: 国家级-国家自然科学基金(11474348)
      Corresponding author: Wang Bing-Bing, wbb@aphy.iphy.ac.cn
    [1]

    Agostini P, Fabre F, Mainfray G, Petite G, RahmanN K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [2]

    Becker W, Liu X, Ho P J, Eberly J H 2012 Rev. Mod.Phys. 84 1011Google Scholar

    [3]

    SchaferK J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar

    [4]

    Paulus G G, Nicklich W, Xu H, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851Google Scholar

    [5]

    Walker B, Sheehy B, Kulander K C, DiMauro L F 1996 Phys. Rev. Lett. 77 5031Google Scholar

    [6]

    Okunishi M, et al. 2008 Phys. Rev. Lett 100 143001Google Scholar

    [7]

    Li X F, LHuillier A, Ferry M, Lompre L A, Mainfray G 1989 Phys. Rev. A. 39 5751Google Scholar

    [8]

    LHuillier A, Lompre L A, Mainfray G, Manus C 1992 Adv. At. Mol. Opt. Phys. Suppl. 1 139

    [9]

    Walker B, Sheehy B, DiMauro L F, Agostini P, SchaferK J, Kulander K C 1994 Phys. Rev. Lett. 73 1227Google Scholar

    [10]

    Becker A, Faisal F H 1999 Phys. Rev. A. 59 R1742Google Scholar

    [11]

    Meckel M, Comtois D, Zeidler D, et al. 2008 Science 320 5882

    [12]

    Huismans Y, Rouzee A, Gijsbertsen A, et al. 2011 Science 331 6013

    [13]

    Lötstedt E, Midorikawa K 2014 J. Phys. B. 47 204018Google Scholar

    [14]

    Yuan K, Lu H, Bandrauk A D 2017 J. Phys. B. 50 124004Google Scholar

    [15]

    Zhou X, Shi S, Li F, Guo Y, Yang Y, Meng Q, Chen J, Liu X and Wang B 2019 arXiv, 1912.08499

    [16]

    Guo D S, Aberg T 1988 J. Phys. A: Math. Gen. 21 4577Google Scholar

    [17]

    Guo D S, Aberg T, and Crasemann B 1989 Phys. Rev. A. 40 4997Google Scholar

    [18]

    Gao L, Li X, Fu P, Freeman R R, Guo D S 2000 Phys. Rev A. 61 063407Google Scholar

    [19]

    Wang B, Gao L, Li X, Guo D S, Fu P 2007 Phys. Rev A. 75 063419Google Scholar

    [20]

    Kang H, et al. 2010 Phys. Rev. Lett 104 203001Google Scholar

    [21]

    Wang B , Guo Y, Chen J, Yan Z C, Fu P 2012 Phys. Rev. A 85 023402Google Scholar

    [22]

    Fu P, Wang B, Li X, Gao L 2001 Phys. Rev. A. 64 063401Google Scholar

    [23]

    Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G, Walther H 2002 Adv. Atom. Mol. Opt. Phys. 48 35Google Scholar

    [24]

    Shi S, Jin F, Wang B 2019 Chin. Phys. B 28 023202Google Scholar

    [25]

    Guo D-S, G W F Drake 1992 J. Phys. A: Math. Gen. 25 5377Google Scholar

    [26]

    Zhang K, Chen J, Hao X L, Fu P, Yan Z C, Wang B 2013 Phys. Rev. A. 88 043435Google Scholar

  • 图 1  $ \rm H_3^{2+} $分子的几何构型 (a)线形构型; (b)三角形构型. 核间距为r0 = 2.0 a.u.

    Fig. 1.  Geometrical configuration of $ \rm H_3^{2+} $ at internuclear distance r0 = 2.0 a.u.: (a) Linear molecule; (b) triangular molecule.

    图 2  在单色线性偏振激光场下两种不同几何构型的H32+分子角分辨直接ATI能谱 (a)线形; (b)三角形. 核间距为r0 = 2.0 a.u.

    Fig. 2.  Angle-resolved direct ATI spectra of H32+molecular ions at internuclear distance r0 = 2.0 a.u. by monochromatic linearly polarized laser fields: (a) Linear; (b) triangular.

    图 3  在双色线性偏振激光场下两种不同几何构型的H32+分子角分辨直接ATI能谱 (a)线形; (b)三角形. 核间距为r0 = 2.0 a.u., ${t_{c{q_2}}} = {\omega _1}{t_0} ({q_2} = 1, 2)$

    Fig. 3.  Angle-resolved direct ATI spectra of H32+molecular ions at internuclear distance r0 = 2.0 a.u. by bichromatic linearly polarized laser fields: (a) Linear; (b) triangular. Here, ${t_{c{q_2}}} = {\omega _1}{t_0} ({q_2} = 1, 2)$.

    图 4  在双色线性偏振激光场下两种不同几何构型的$ \rm H_3^{2+} $分子在XZ平面的动量谱 (a)线形; (b)三角形. 核间距为r0 = 2.0 a.u.

    Fig. 4.  The direct ATI momentum spectra of $ \rm H_3^{2+} $molecular ions at internuclear distance r0 = 2.0 a.u. by bichromatic linearly polarized laser fields: (a) Linear; (b) triangular.

    图 5  在双色线性偏振激光场下两种几何构型的$ \rm H_3^{2+} $分子不同的核间距条件下角分辨直接ATI能谱 (a)−(c)线形; (b)−(f)三角形. (a), (d)核间距为r0 = 1.0 a.u., (b), (e)核间距为r0 = 2.0 a.u., (c), (f)核间距为r0 = 3.0 a.u.

    Fig. 5.  Angle-resolved direct ATI spectra for linear (a)−(c) and triangular (b)−(f) $ \rm H_3^{2+} $molecular ions by bichromatic linearly polarized laser field with r0 = 1.0 a.u. (a), (d), r0 = 2.0 a.u. (b), (e), r0 = 3.0 a.u. (c), (f).

    图 6  在双色线性偏振激光场下两种几何构型的$ \rm H_3^{2+} $分子不同激光强度条件下角分辨直接ATI能谱 (a)−(c)线形; (b)−(f)三角形. 核间距为r0 = 2.0 a.u., (a), (d)激光强度为${I_1} = {I_2} = 1.0 \times {10^{12}}$ W/cm2, (b), (e)${I_1} = {I_2} = 1.0 \times {10^{13}}$ W/cm2, (c), (f)${I_1} = {I_2} = 1.0 \times {10^{14}}$ W/cm2

    Fig. 6.  Angle-resolved direct ATI spectra for linear (a)−(c) and triangular (b)−(f) $ \rm H_3^{2+} $molecular ions with r0 = 2.0 a.u. by bichromatic linearly polarized laser fields. The intensity of laser fields are${I_1} = {I_2} = 1.0 \times {10^{12}}$ W/cm2 (a), (d), ${I_1} = {I_2} = 1.0 \times {10^{13}}$ W/cm2 (b), (e), ${I_1} = {I_2} = 1.0 \times {10^{14}}$ W/cm2 (c), (f), respectively.

  • [1]

    Agostini P, Fabre F, Mainfray G, Petite G, RahmanN K 1979 Phys. Rev. Lett. 42 1127Google Scholar

    [2]

    Becker W, Liu X, Ho P J, Eberly J H 2012 Rev. Mod.Phys. 84 1011Google Scholar

    [3]

    SchaferK J, Yang B, DiMauro L F, Kulander K C 1993 Phys. Rev. Lett. 70 1599Google Scholar

    [4]

    Paulus G G, Nicklich W, Xu H, Lambropoulos P, Walther H 1994 Phys. Rev. Lett. 72 2851Google Scholar

    [5]

    Walker B, Sheehy B, Kulander K C, DiMauro L F 1996 Phys. Rev. Lett. 77 5031Google Scholar

    [6]

    Okunishi M, et al. 2008 Phys. Rev. Lett 100 143001Google Scholar

    [7]

    Li X F, LHuillier A, Ferry M, Lompre L A, Mainfray G 1989 Phys. Rev. A. 39 5751Google Scholar

    [8]

    LHuillier A, Lompre L A, Mainfray G, Manus C 1992 Adv. At. Mol. Opt. Phys. Suppl. 1 139

    [9]

    Walker B, Sheehy B, DiMauro L F, Agostini P, SchaferK J, Kulander K C 1994 Phys. Rev. Lett. 73 1227Google Scholar

    [10]

    Becker A, Faisal F H 1999 Phys. Rev. A. 59 R1742Google Scholar

    [11]

    Meckel M, Comtois D, Zeidler D, et al. 2008 Science 320 5882

    [12]

    Huismans Y, Rouzee A, Gijsbertsen A, et al. 2011 Science 331 6013

    [13]

    Lötstedt E, Midorikawa K 2014 J. Phys. B. 47 204018Google Scholar

    [14]

    Yuan K, Lu H, Bandrauk A D 2017 J. Phys. B. 50 124004Google Scholar

    [15]

    Zhou X, Shi S, Li F, Guo Y, Yang Y, Meng Q, Chen J, Liu X and Wang B 2019 arXiv, 1912.08499

    [16]

    Guo D S, Aberg T 1988 J. Phys. A: Math. Gen. 21 4577Google Scholar

    [17]

    Guo D S, Aberg T, and Crasemann B 1989 Phys. Rev. A. 40 4997Google Scholar

    [18]

    Gao L, Li X, Fu P, Freeman R R, Guo D S 2000 Phys. Rev A. 61 063407Google Scholar

    [19]

    Wang B, Gao L, Li X, Guo D S, Fu P 2007 Phys. Rev A. 75 063419Google Scholar

    [20]

    Kang H, et al. 2010 Phys. Rev. Lett 104 203001Google Scholar

    [21]

    Wang B , Guo Y, Chen J, Yan Z C, Fu P 2012 Phys. Rev. A 85 023402Google Scholar

    [22]

    Fu P, Wang B, Li X, Gao L 2001 Phys. Rev. A. 64 063401Google Scholar

    [23]

    Becker W, Grasbon F, Kopold R, Milosevic D B, Paulus G G, Walther H 2002 Adv. Atom. Mol. Opt. Phys. 48 35Google Scholar

    [24]

    Shi S, Jin F, Wang B 2019 Chin. Phys. B 28 023202Google Scholar

    [25]

    Guo D-S, G W F Drake 1992 J. Phys. A: Math. Gen. 25 5377Google Scholar

    [26]

    Zhang K, Chen J, Hao X L, Fu P, Yan Z C, Wang B 2013 Phys. Rev. A. 88 043435Google Scholar

  • [1] 邢晔, 李娜, 杨翎彬, 胡晓会. 基于分子态构型研究单粲味五夸克态的产生. 物理学报, 2024, 73(13): 131401. doi: 10.7498/aps.73.20240447
    [2] 彭兰沁, 李小雨, 幸运, 赵涵, 邓炎滔, 于迎辉. 铜氧化层上钒氧酞菁分子的吸附构型及组装结构. 物理学报, 2024, 73(12): 120704. doi: 10.7498/aps.73.20240043
    [3] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [4] 张斌, 赵健, 赵增秀. 基于多组态含时Hartree-Fock方法研究电子关联对于H2分子强场电离的影响. 物理学报, 2018, 67(10): 103301. doi: 10.7498/aps.67.20172701
    [5] 李强, 邵水军, 李世顺. 复杂型腔充模过程中分子构型演化的数值模拟. 物理学报, 2016, 65(24): 244601. doi: 10.7498/aps.65.244601
    [6] 王品懿, 贾欣燕, 樊代和, 陈京. 不同波长下氩原子高阶阈上电离的类共振增强结构. 物理学报, 2015, 64(14): 143201. doi: 10.7498/aps.64.143201
    [7] 田原野, 郭福明, 杨玉军. 原子势对阈上电离平台的影响. 物理学报, 2013, 62(7): 073202. doi: 10.7498/aps.62.073202
    [8] 刘秀英, 李晓凤, 张丽英, 樊志琴, 马兴科. 甲烷在不同分子筛中吸附的理论对比研究. 物理学报, 2012, 61(14): 146802. doi: 10.7498/aps.61.146802
    [9] 陈玉红, 杜瑞, 张致龙, 王伟超, 张材荣, 康龙, 罗永春. H2 分子在Li3N(110)表面吸附的第一性原理研究. 物理学报, 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [10] 冯胜奇, 邱庆春. 具有D4h对称性构型的C2+4分子的Jahn-Teller效应与能级分裂. 物理学报, 2011, 60(5): 057106. doi: 10.7498/aps.60.057106
    [11] 童爱红, 廖青, 周月明, 陆培祥. 不同分子取向下氢分子非次序双电离对核间距的依赖关系. 物理学报, 2011, 60(4): 043301. doi: 10.7498/aps.60.043301
    [12] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 3He(4He)与H2分子碰撞的同位素效应研究. 物理学报, 2008, 57(6): 3452-3457. doi: 10.7498/aps.57.3452
    [13] 阎世英, 马美仲, 朱正和. B2H6分子的几何构型. 物理学报, 2005, 54(7): 3106-3110. doi: 10.7498/aps.54.3106
    [14] 仝晓民, 李家明. 强激光场阈上电离理论. 物理学报, 1991, 40(2): 190-197. doi: 10.7498/aps.40.190
    [15] 陈荣清, 徐至展, 姚关华, 余玮. 包含自电离过程的阈上离化. 物理学报, 1990, 39(6): 25-32. doi: 10.7498/aps.39.25
    [16] 陈宝振. 氢原子阈上电离角分布. 物理学报, 1990, 39(1): 40-45. doi: 10.7498/aps.39.40
    [17] 仝晓民, 李家明. 分子近阈结构的理论研究. 物理学报, 1989, 38(12): 1951-1957. doi: 10.7498/aps.38.1951
    [18] 饶子和, 万柱礼, 梁栋材. 钩吻素溴氢酸盐的晶体结构及其分子的绝对构型. 物理学报, 1982, 31(4): 547-553. doi: 10.7498/aps.31.547
    [19] 通关藤结构组. 通关藤晶Ⅰ的分子结构、晶体结构与绝对构型. 物理学报, 1980, 29(8): 1014-1022. doi: 10.7498/aps.29.1014
    [20] 范海福, 林政炯. 南氨酸高氯酸盐的晶体结构及分子的绝对构型. 物理学报, 1965, 21(2): 253-262. doi: 10.7498/aps.21.253
计量
  • 文章访问数:  6357
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-03
  • 修回日期:  2020-02-11
  • 刊出日期:  2020-04-05

/

返回文章
返回