-
在BNU400注入机上搭建的离子激发发光(ion beam induced luminescence, IBIL)测量装置上, 开展了相同能量(100 keV)条件下的3种离子(H+、He+以及O+)辐照氟化锂材料时的IBIL光谱的原位测量工作, 对比研究离子种类对氟化锂材料辐照缺陷的生成及其演变行为的影响. 结合SRIM(Stopping and Range of Ions in Matter)模拟的结果, 可以发现He+辐照时的IBIL光谱强度最高, 这是由于He+激发产生的电子空穴对密度高于H+,而O+辐照时由于激发出的电子空穴对密度过高引起的非辐射复合比例增加, 从而导致发光效率过低; 质量数越大的离子辐照时, 核阻止本领越大, 会加快缺陷的生成和湮灭速率, 降低达到平衡状态时的发光强度. 近红外波段的
$ \rm F_3^{-}/F_2^+ $ 色心发光峰强度及其演变行为表明其耐辐照性能好于可见光波段的F2色心.To contrast the generation and their evolution behaviors of irradiation damage in lithium fluoride under various ion, in situ luminescence measurements from lithium fluoride are carried out under 100 keV H+, He+ and O+ on the ion beam induced luminescence(IBIL) experimental setup on BNU400 ion implanter. Combined with Stopping and Range of Ions in Matter (SRIM) calculation of 100 keV H+, He+ and O+ stopping power in lithium fluoride, the emission intensity under He+ is the strongest,due to the higher excitation density of electron-hole pairs than them under H+ and the rising non-radiative recombination ratio under heavy ion O+. With the mass number increase of the incident ion, the nuclear stopping power would be increased, resulting in the faster rate of both formation and annihilation of point defects、the lower fluence for F-type centers reaching the highest intensity and the weaker luminescence intensity at the state of equilibrium. The irradiation resistance of$ \rm F_3^{-}/F_2^+ $ centers at 880 nm are better than the F2 centers at 670 nm, shown not only in the slower formation and annihilation rates of$ \rm F_3^{-}/F_2^+ $ centers but also the higher luminescence intensity of$ \rm F_3^{-}/F_2^+ $ centers under heavy ion O+.-
Keywords:
- ion beam induced luminescence /
- lithium fluoride /
- various ions
[1] 黄振辉 1983 人工晶体学报 4 36
Huang Z H, 1983 J. Synthetic. Cryst. 4 36
[2] Dergachev A Y, Mirov S B 1998 Opt. Commun. 147 107Google Scholar
[3] Baldacchini G, Davidson A T, Kalinov V S, KozakiewiczA G, Montereali R M, Nichelatti E, Voitovich A P 2007 J. Lumin. 122 371
[4] Ribeiro D R S, Souza D N, Maia A F, Baldochi S L, Caldas L V E 2008 Radiat. Meas. 43 1132Google Scholar
[5] Shiran N, Belsky A, Gektin A, Gridin S, Boiaryntseva I 2013 Radiat. Meas. 56 23Google Scholar
[6] Voitovich A P, Kalinov V S, Runets L P, Stupak A P, Martynovich E F, Montereali R M, Baldacchini G 2013 J. Lumin. 143 207Google Scholar
[7] Qiu M L, Chu Y J, Wang G F, Xu M, Zheng L 2017 Chin. Phys. Lett. 34 016104Google Scholar
[8] Baldacchini G 2002 J. Lumin. 100 333Google Scholar
[9] Skuratov V A, Gun K J, Stano J, Zagorski D L 2006 Nucl. Instrum.Meth. Phys. Res. B 245 194Google Scholar
[10] 杨百瑞, 李文琪 1993 人工晶体学报 2 163
Yang B R, Li W Q 1993 J. Synthetic. Cryst. 2 163
[11] Townsend P D, Wang Y F 2013 Energy.Proced. 41 64Google Scholar
[12] Crespillo M L, Graham J T, Zhang Y, Weber W J 2016 J. Lumin. 172 208Google Scholar
[13] Skuratov V A, Didyk A Y, Alazm S A 1997 Radiat. Phys. Chem. 50 183Google Scholar
[14] Valotto G, Quaranta A, Piccinini M, Montereali R M 2015 Opt. Mater. 49 1Google Scholar
[15] 仇猛淋, 王广甫, 褚莹洁, 郑力, 胥密, 殷鹏 2017 物理学报 66 207801Google Scholar
Qiu M L, Wang G F, Chu Y J, Zheng L, Xu M, Yin P 2017 Acta Phys. Sin. 66 207801Google Scholar
[16] Chu Y J, Wang G F, Zheng L, Qiu M L, Yin P, Xu M 2018 Surf. Coat. Tech. 348 91Google Scholar
[17] Bachiller-Perea D, Jiménez-Rey D, Muñoz-Martín A, Agulló-López, F 2016 J. Phys. D. Appl. Phys. 49 085501Google Scholar
[18] Jiménez-Rey D, Peña-Rodríguez O, Manzano-Santamaría J, Olivares J, Muñoz-Martín A, Rivera A, Agulló-López F 2012 Nucl.Instrum.Meth. Phys. Res. B 286 282Google Scholar
[19] Crespillo M L, Graham J T, Agullo-Lopez F, Zhang Y, Weber W J 2017 J. Phys. Chem. C. 121 19758Google Scholar
[20] Agullo-Lopez F, Climent-Font A, Muñoz-Martín Á, Olivares J, Zucchiatti A 2016 Prog. Mater. Sci. 76 1Google Scholar
[21] Rivera A, Méndez A, García G, Olivares J, Cabrera J M, Agulló-López F 2008 J. Lumin. 128 703Google Scholar
-
表 1 100 keV的H+、He+和O+3种离子辐照氟化锂材料的结果对比
Table 1. Comparisons of lithium fluoride under 100 keV H+, He+ and O+
离子种类 $ \rm F_3^{-} $色心 Φmax/cm–2 F2色心 Φmax/cm–2 $ \rm F_3^{-}/F_2^+ $色心 Φmax/cm–2 Se/eV·Å–1 Sn/eV·Å–1 Rp/μm H+ 10 × 1013 11.5 × 1013 24.3 × 1013 13.92 0.0232 0.8336 He+ 5 × 1013 3.3 × 1013 9.5 × 1013 21.04 0.3004 0.6708 O+ 3.8 × 1013 3 × 1013 5.9 × 1013 25.64 10.15 0.2459 -
[1] 黄振辉 1983 人工晶体学报 4 36
Huang Z H, 1983 J. Synthetic. Cryst. 4 36
[2] Dergachev A Y, Mirov S B 1998 Opt. Commun. 147 107Google Scholar
[3] Baldacchini G, Davidson A T, Kalinov V S, KozakiewiczA G, Montereali R M, Nichelatti E, Voitovich A P 2007 J. Lumin. 122 371
[4] Ribeiro D R S, Souza D N, Maia A F, Baldochi S L, Caldas L V E 2008 Radiat. Meas. 43 1132Google Scholar
[5] Shiran N, Belsky A, Gektin A, Gridin S, Boiaryntseva I 2013 Radiat. Meas. 56 23Google Scholar
[6] Voitovich A P, Kalinov V S, Runets L P, Stupak A P, Martynovich E F, Montereali R M, Baldacchini G 2013 J. Lumin. 143 207Google Scholar
[7] Qiu M L, Chu Y J, Wang G F, Xu M, Zheng L 2017 Chin. Phys. Lett. 34 016104Google Scholar
[8] Baldacchini G 2002 J. Lumin. 100 333Google Scholar
[9] Skuratov V A, Gun K J, Stano J, Zagorski D L 2006 Nucl. Instrum.Meth. Phys. Res. B 245 194Google Scholar
[10] 杨百瑞, 李文琪 1993 人工晶体学报 2 163
Yang B R, Li W Q 1993 J. Synthetic. Cryst. 2 163
[11] Townsend P D, Wang Y F 2013 Energy.Proced. 41 64Google Scholar
[12] Crespillo M L, Graham J T, Zhang Y, Weber W J 2016 J. Lumin. 172 208Google Scholar
[13] Skuratov V A, Didyk A Y, Alazm S A 1997 Radiat. Phys. Chem. 50 183Google Scholar
[14] Valotto G, Quaranta A, Piccinini M, Montereali R M 2015 Opt. Mater. 49 1Google Scholar
[15] 仇猛淋, 王广甫, 褚莹洁, 郑力, 胥密, 殷鹏 2017 物理学报 66 207801Google Scholar
Qiu M L, Wang G F, Chu Y J, Zheng L, Xu M, Yin P 2017 Acta Phys. Sin. 66 207801Google Scholar
[16] Chu Y J, Wang G F, Zheng L, Qiu M L, Yin P, Xu M 2018 Surf. Coat. Tech. 348 91Google Scholar
[17] Bachiller-Perea D, Jiménez-Rey D, Muñoz-Martín A, Agulló-López, F 2016 J. Phys. D. Appl. Phys. 49 085501Google Scholar
[18] Jiménez-Rey D, Peña-Rodríguez O, Manzano-Santamaría J, Olivares J, Muñoz-Martín A, Rivera A, Agulló-López F 2012 Nucl.Instrum.Meth. Phys. Res. B 286 282Google Scholar
[19] Crespillo M L, Graham J T, Agullo-Lopez F, Zhang Y, Weber W J 2017 J. Phys. Chem. C. 121 19758Google Scholar
[20] Agullo-Lopez F, Climent-Font A, Muñoz-Martín Á, Olivares J, Zucchiatti A 2016 Prog. Mater. Sci. 76 1Google Scholar
[21] Rivera A, Méndez A, García G, Olivares J, Cabrera J M, Agulló-López F 2008 J. Lumin. 128 703Google Scholar
计量
- 文章访问数: 7340
- PDF下载量: 98
- 被引次数: 0