搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能

沈永青 张志强 廖斌 吴先映 张旭 华青松 鲍曼雨

引用本文:
Citation:

高功率脉冲磁控溅射技术制备掺氮类金刚石薄膜的磨蚀性能

沈永青, 张志强, 廖斌, 吴先映, 张旭, 华青松, 鲍曼雨

Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique

Shen Yong-Qing, Zhang Zhi-Qiang, Liao Bin, Wu Xian-Ying, Zhang Xu, Hua Qing-Song, Bao Man-Yu
PDF
HTML
导出引用
  • 掺氮类金刚石薄膜在生物应用中很有前景, 研究其摩擦和腐蚀的协同作用有很大的实际意义. 论文使用高功率脉冲磁控溅射(high-power impulse magnetron sputtering, HiPIMS)技术, 在奥氏体不锈钢和单晶硅片上以Ar气和氮气为前驱气体, 室温下制备了致密的掺氮类金刚石薄膜. 使用配备三电极电化学池的往复型摩擦磨损试验机, 在Hank’s平衡盐溶液中研究了不同靶脉冲持续时间制备的薄膜的摩擦腐蚀性能, 并在滑动之前、期间和之后监测了薄膜的开路电位(open circuit potential, OCP). 电化学工作站用于表征摩擦前薄膜的电化学行为. 结果表明: 60 μs制备的掺氮类金刚石薄膜展示了优异的耐磨蚀性能, 其摩擦系数最低(0.05)且在摩擦阶段OCP显示了最高的稳定值(39 mV), 这主要归功于其致密的结构和较大的表面能; 而90 μs下制备的薄膜由于可以形成交联结构的sp3键含量明显下降, 从而导致薄膜孔隙率增加, 薄膜的抗腐蚀性下降, 在磨蚀过程中由于电解液在孔隙的腐蚀使得薄膜/基体的界面结合强度减弱, 在摩擦的综合作用下, 薄膜脱落, 发生失效.
    Nitrogen-doped diamond like carbon film is promising in biological applications, studying the synergistic tribocorrosion performance is indispensable. In this paper, Nitrogen-doped diamond like carbon films were deposited on AISI 304L austenitic stainless steels and Si substrate by using the high power impulse magnetron sputtering technique using Ar and N2 as precursors at room temperature. The effect of target pulse duration on the structure, mechanical properties, corrosion resistance and tribocorrosion properties in Hank's equilibrium salt solution and the corresponding mechanism were studied. The results of scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and nano-hardness test showed that the nitrogen-doped diamond like carbon coatings prepared at a target pulse duration of 60 μs showed the sp3 bonding content of 33.9% with the hardness of 12.4 GPaand the root mean square roughness of 0.63 nm. With the increase in pulse duration to 90 μs, the sp2 bonding increased, meanwhile the surface roughness increased. The results of potentiodynamic polarization indicated that the Nitrogen-doped diamond like carbon coating prepared at 60μs had best corrosion resistance with the corrosion current density of 7.65 × 10–8 A·cm–2. The effect of the target pulse duration on tribocorrosionbehaviour of the Nitrogen-doped diamond like carboncoating was investigated in Hank’s solution by a reciprocating tribometer equipped with a three-electrode electrochemical cell.The coatings at 60 μs exhibited excellent tribocorrosion properties with high open circuit potential of 39 mV, low COF of 0.05 without pitting corrosion due to high corrosionresistance, low contact angel and dense microstructure.The results indicated that corrosion can be accelerated by friction, but it also affect the mechanical properties of the Nitrogen-doped diamond like carbon coatings. The increase in pulse duration to 90 μs, leading to the reduction of sp3 bonds which can form a cross-linking structure. The degraded cross-linking structure decreased the corrosion resistance of the coating via the increased porosity in the coating, which weakened the interfacial strength of the coating, and ultimately led to failure of the coatingunder the action of wear.
      通信作者: 张旭, zhangxu@bnu.edu.cn
    • 基金项目: 省部级-广东省重点领域研发计划(2019B090909002)
      Corresponding author: Zhang Xu, zhangxu@bnu.edu.cn
    [1]

    Tyagi A, Walia R S, Murtaza Q, Pandey S M, Bajaj B 2019 Int. J. Refract. Met. Hard Mater. 78 107Google Scholar

    [2]

    Corona-Gomez J, Shiri S, Mohammadtaheri M, Yang Q 2017 Surf. Coat. Technol. 332 120Google Scholar

    [3]

    Son M J, Zhang T F, Jo Y J, Kim K H 2017 Surf. Coat. Technol. 329 77Google Scholar

    [4]

    Wang C, Yang S, Zhang J 2008 J. Non. Cryst. Solids 354 1608Google Scholar

    [5]

    Muhl S, Mendez J M 1999 Diam. Relat. Mater. 8 1809Google Scholar

    [6]

    Zheng C L, Cui F Z, Meng B, Ge J, Liu D P, Lee I S 2005 Surf. Coat. Technol. 193 361Google Scholar

    [7]

    Dress D, Celis J P, Dekempeneer E, Meneve J 1996 Surf. Coat. Technol. 85-86 575

    [8]

    Ronkainen H, Varjus S, Holmberg K 1998 Wear 222 120Google Scholar

    [9]

    Park S J, Lee K R, Ahn S H, Kim J G 2008 Diam. Relat. Mater. 17 247Google Scholar

    [10]

    Ohana T, Nakamura T, Suzuki M, Tanaka A, Koga Y 2004 Diam. Relat. Mater. 13 1500Google Scholar

    [11]

    Lü Y, Li J, Liu X, Li H, Zhou H, Chen J 2012 Appl. Surf. Sci. 258 3864Google Scholar

    [12]

    Cheng H C, Chiou S Y, Liu C M, Lin M H, Chen C C, Ou K L 2009 J. Alloy. Compd. 477 931Google Scholar

    [13]

    Kim D H, Kim H E, Lee K R, Whang C N, Lee I S 2002 Mater. Sci. Eng. C 22 9Google Scholar

    [14]

    Manhabosco T M, Müller I L 2009 Tribol. Lett. 33 193Google Scholar

    [15]

    Azzi M, Paquette M, Szpunar J A, Klemberg-Sapieha J E, Martinu L 2009 Wear 267 860Google Scholar

    [16]

    Sharifahmadian O, Mahboubi F 2019 Ceram. Int. 45 16424Google Scholar

    [17]

    Guerino M, Massi M, Maciel H S 2003 Microelectronic. J. 34 639Google Scholar

    [18]

    Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284Google Scholar

    [19]

    Ricard A, Nouvellon C, Konstantinidis S, Dauchot J, Wautelet M, Hecq M 2002 J. Vac. Sci. Technol. A 20 1488Google Scholar

    [20]

    Christou C, Barber Z H 2000 J. Vac. Sci. Technol. A 18 2897Google Scholar

    [21]

    Kouznetsov V, Macak K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [22]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661Google Scholar

    [23]

    Alami J, Sarakinos K, Uslu F, Wuttig M 2009 J. Phys. D: Appl. Phys 42 015304Google Scholar

    [24]

    Wu Z R, Zhang M, Cui F Z 2007 Surf. Coat. Technol. 201 5710Google Scholar

    [25]

    Bouchetfabre B, Lazar G, Ballutaud D, Godet C, Zellama K 2008 Diam. Relat. Mater. 17 700Google Scholar

    [26]

    Ujvári T, Szikora B, Tóth A, Mohai M, Bertóti I 2002 Diam. Relat. Mater. 11 1200

    [27]

    Gago R, Jiménez I, Cáceres D, Agulló-Rueda F, Sajavara T, Albella J M, Climent-Font A, Vergara I, Räisänen J, Raühala E 2001 Chem. Mater. 13 129Google Scholar

    [28]

    Ferrari A, Rodil S, Robertson J 2003 Phys. Rev. B 67 155306Google Scholar

    [29]

    Wei S, Shao T, Peng D 2010 Diam. Relat. Mater. 19 648Google Scholar

    [30]

    Niu L F, Zhang S J, Li D J, Zhang J K, Yang S G, Tian Z, Huang Z G, Zhang H L J 2001 Adhes. Sci. Technol. 15 1121Google Scholar

    [31]

    Matthews A, Franklin S, Holmberg K 2007 J. Phys. D. Appl. Phys. 40 5463Google Scholar

    [32]

    Philippon D, Godinho V, Nagy P M, Delplancke-Ogletree M P, Fernández A 2011 Wear 270 541

    [33]

    Beake B D, Vishnyakov V M, Valizadeh R, Colligon J S 2006 J. Phys. D: Appl. Phys. 39 1392Google Scholar

    [34]

    Ou Y X, Chen H, Li Z Y, Lin J, Lei M K 2018 J. Am. Ceram. Soc. 101 5166Google Scholar

    [35]

    Martini E M A, Muller I L 2000 Corros. Sci. 42 443Google Scholar

    [36]

    Parfenov E V, Yerokhin A L, Matthews A 2007 Thin Solid Films 516 428Google Scholar

    [37]

    Matthes B, Broszeit E, Aromaa J, Ronkainen H, Hannula SP, Leyland A, Matthews A 1991 Surf. Coat. Technol. 49 489Google Scholar

    [38]

    Pu J, Wang J, He D, Wan S 2016 Surf. Interface Anal. 48 360Google Scholar

    [39]

    Stansbury E E, Buchanan R A 1981 ASM International (USA: Materials Park, OH) p55

    [40]

    Písařík P, Mikšovský J, Remsa J, Zemek J, Tolde Z, Jelínek M 2018 Appl. Phys. A 124 85

    [41]

    Wang Y, Wang L, Wang S C, Zhang G, Wood R J K, Xue Q 2010 Tribol. Lett. 40 301Google Scholar

  • 图 1  不同脉冲持续时间制备薄膜的横截面SEM图片 (a) 30 μs; (b) 60 μs; (c) 90 μs

    Fig. 1.  Cross-sectional SEM images of the films deposited at different pulse durations: (a) 30 μs; (b) 60 μs; (c) 90 μs.

    图 2  不同脉冲持续时间制备薄膜的3D AFM形貌 (a) 30 μs; (b) 60 μs; (c) 90 μs

    Fig. 2.  AFM surface micrographs of the N-DLC films deposited at different pulse durations: (a) 30 μs; (b) 60 μs; (c) 90 μs.

    图 3  在不同脉冲持续时间制备的掺氮类金刚石薄膜的XPS C1s和N1s的拟合光谱 (a), (b) 30 μs; (c), (d) 60 μs; (e), (f) 90 μs

    Fig. 3.  XPS C1s and N1s spectra of the N-DLC films deposited at different pulse durations: (a), (b) 30 μs; (c), (d) 60 μs; (e), (f) 90 μs

    图 4  在不同靶脉冲持续时间制备的N-DLC薄膜的XPS C1s光谱的拟合结果

    Fig. 4.  The fitting result of the C1s spectra of the N-DLC films deposited at different pulse durations.

    图 5  不同脉冲持续时间制备薄膜的机械性能 (a) 纳米硬度和弹性模量; (b) H/E *H 3/E *2

    Fig. 5.  Mechanical properties of the N-DLC films deposited at different pulse durations: (a) Hardness and elasticity modulus; (b) H/E * and H 3/E *2.

    图 6  N-DLC膜和不锈钢衬底浸入Hank’s平衡盐混合溶液中的动电位极化曲线

    Fig. 6.  Potentiodynamic polarization curves of the N-DLC films and substrate immersed in Hank’s solution.

    图 7  (a)摩擦腐蚀试验的电解池结构图示意图; (b)摩蚀测试中按OCP进程操作顺序

    Fig. 7.  (a) The structure diagram of electrolytic cells used for tribocorrosion tests; (b) sequence of operations during the tribocorrosion test illustrated by the OCP evolution.

    图 8  (a)—(c)磨蚀实验中OCP和摩擦系数随着滑行时间的变化以及磨痕的光学图片; (d)摩擦实验中90 μs制备膜的摩擦系数和磨痕图

    Fig. 8.  (a)–(c) The changes of OCP and coefficient of friction as a function of sliding times and the inserted optical micrographs of tribocorrosion tracks for coatings; (d) the normal coefficient of friction and micrographs of wear tracks.

    图 9  不同靶脉冲持续时间下制备的N-DLC薄膜在去离子水(a)—(c)和Hank’s溶液(d)—(f) 滴到表面中的接触角形貌 (a), (d) 30 μs; (b), (e) 60 μs; (c), (f) 90 μs

    Fig. 9.  The contact angle of films: the morphologies of deionized water (a)–(c) and Hank’s solution (d)–(f) droplets on the surfaces: (a), (d) 30 μs: (b), (e) 60 μs: (c), (f) 90 μs.

    表 1  不锈钢衬底和N-DLC膜的动电位极化曲线的拟合结果

    Table 1.  The fitting results of the potentiodynamic polarization curves of the N-DLC films and substrate.

    样品Ecorr/Vicorr/A·cm–2ba/mVbc/mVRp/Ω·cm2P
    304 L–0.311.69 × 10–6323.47117.752.21 × 107
    30 μs–0.159.87 × 10–8289.51119.613.72 × 1080.042
    60 μs–0.137.65 × 10–8408.84113.725.05 × 1080.026
    90 μs–0.121.55 × 10–7298.2482.912.05 × 1080.079
    下载: 导出CSV
  • [1]

    Tyagi A, Walia R S, Murtaza Q, Pandey S M, Bajaj B 2019 Int. J. Refract. Met. Hard Mater. 78 107Google Scholar

    [2]

    Corona-Gomez J, Shiri S, Mohammadtaheri M, Yang Q 2017 Surf. Coat. Technol. 332 120Google Scholar

    [3]

    Son M J, Zhang T F, Jo Y J, Kim K H 2017 Surf. Coat. Technol. 329 77Google Scholar

    [4]

    Wang C, Yang S, Zhang J 2008 J. Non. Cryst. Solids 354 1608Google Scholar

    [5]

    Muhl S, Mendez J M 1999 Diam. Relat. Mater. 8 1809Google Scholar

    [6]

    Zheng C L, Cui F Z, Meng B, Ge J, Liu D P, Lee I S 2005 Surf. Coat. Technol. 193 361Google Scholar

    [7]

    Dress D, Celis J P, Dekempeneer E, Meneve J 1996 Surf. Coat. Technol. 85-86 575

    [8]

    Ronkainen H, Varjus S, Holmberg K 1998 Wear 222 120Google Scholar

    [9]

    Park S J, Lee K R, Ahn S H, Kim J G 2008 Diam. Relat. Mater. 17 247Google Scholar

    [10]

    Ohana T, Nakamura T, Suzuki M, Tanaka A, Koga Y 2004 Diam. Relat. Mater. 13 1500Google Scholar

    [11]

    Lü Y, Li J, Liu X, Li H, Zhou H, Chen J 2012 Appl. Surf. Sci. 258 3864Google Scholar

    [12]

    Cheng H C, Chiou S Y, Liu C M, Lin M H, Chen C C, Ou K L 2009 J. Alloy. Compd. 477 931Google Scholar

    [13]

    Kim D H, Kim H E, Lee K R, Whang C N, Lee I S 2002 Mater. Sci. Eng. C 22 9Google Scholar

    [14]

    Manhabosco T M, Müller I L 2009 Tribol. Lett. 33 193Google Scholar

    [15]

    Azzi M, Paquette M, Szpunar J A, Klemberg-Sapieha J E, Martinu L 2009 Wear 267 860Google Scholar

    [16]

    Sharifahmadian O, Mahboubi F 2019 Ceram. Int. 45 16424Google Scholar

    [17]

    Guerino M, Massi M, Maciel H S 2003 Microelectronic. J. 34 639Google Scholar

    [18]

    Bootkul D, Supsermpol B, Saenphinit N, Aramwit C, Intarasiri S 2014 Appl. Surf. Sci. 310 284Google Scholar

    [19]

    Ricard A, Nouvellon C, Konstantinidis S, Dauchot J, Wautelet M, Hecq M 2002 J. Vac. Sci. Technol. A 20 1488Google Scholar

    [20]

    Christou C, Barber Z H 2000 J. Vac. Sci. Technol. A 18 2897Google Scholar

    [21]

    Kouznetsov V, Macak K, Schneider J M, Helmersson U, Petrov I 1999 Surf. Coat. Technol. 122 290Google Scholar

    [22]

    Sarakinos K, Alami J, Konstantinidis S 2010 Surf. Coat. Technol. 204 1661Google Scholar

    [23]

    Alami J, Sarakinos K, Uslu F, Wuttig M 2009 J. Phys. D: Appl. Phys 42 015304Google Scholar

    [24]

    Wu Z R, Zhang M, Cui F Z 2007 Surf. Coat. Technol. 201 5710Google Scholar

    [25]

    Bouchetfabre B, Lazar G, Ballutaud D, Godet C, Zellama K 2008 Diam. Relat. Mater. 17 700Google Scholar

    [26]

    Ujvári T, Szikora B, Tóth A, Mohai M, Bertóti I 2002 Diam. Relat. Mater. 11 1200

    [27]

    Gago R, Jiménez I, Cáceres D, Agulló-Rueda F, Sajavara T, Albella J M, Climent-Font A, Vergara I, Räisänen J, Raühala E 2001 Chem. Mater. 13 129Google Scholar

    [28]

    Ferrari A, Rodil S, Robertson J 2003 Phys. Rev. B 67 155306Google Scholar

    [29]

    Wei S, Shao T, Peng D 2010 Diam. Relat. Mater. 19 648Google Scholar

    [30]

    Niu L F, Zhang S J, Li D J, Zhang J K, Yang S G, Tian Z, Huang Z G, Zhang H L J 2001 Adhes. Sci. Technol. 15 1121Google Scholar

    [31]

    Matthews A, Franklin S, Holmberg K 2007 J. Phys. D. Appl. Phys. 40 5463Google Scholar

    [32]

    Philippon D, Godinho V, Nagy P M, Delplancke-Ogletree M P, Fernández A 2011 Wear 270 541

    [33]

    Beake B D, Vishnyakov V M, Valizadeh R, Colligon J S 2006 J. Phys. D: Appl. Phys. 39 1392Google Scholar

    [34]

    Ou Y X, Chen H, Li Z Y, Lin J, Lei M K 2018 J. Am. Ceram. Soc. 101 5166Google Scholar

    [35]

    Martini E M A, Muller I L 2000 Corros. Sci. 42 443Google Scholar

    [36]

    Parfenov E V, Yerokhin A L, Matthews A 2007 Thin Solid Films 516 428Google Scholar

    [37]

    Matthes B, Broszeit E, Aromaa J, Ronkainen H, Hannula SP, Leyland A, Matthews A 1991 Surf. Coat. Technol. 49 489Google Scholar

    [38]

    Pu J, Wang J, He D, Wan S 2016 Surf. Interface Anal. 48 360Google Scholar

    [39]

    Stansbury E E, Buchanan R A 1981 ASM International (USA: Materials Park, OH) p55

    [40]

    Písařík P, Mikšovský J, Remsa J, Zemek J, Tolde Z, Jelínek M 2018 Appl. Phys. A 124 85

    [41]

    Wang Y, Wang L, Wang S C, Zhang G, Wood R J K, Xue Q 2010 Tribol. Lett. 40 301Google Scholar

  • [1] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [2] 李体军, 崔岁寒, 刘亮亮, 李晓渊, 吴忠灿, 马正永, 傅劲裕, 田修波, 朱剑豪, 吴忠振. 筒形溅射阴极的磁场优化及其高功率放电特性研究. 物理学报, 2021, 70(4): 045202. doi: 10.7498/aps.70.20201540
    [3] 陈畅子, 马东林, 李延涛, 冷永祥. 高功率脉冲磁控溅射钛靶材的放电模型及等离子特性. 物理学报, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [4] 陈淑年, 廖斌, 陈琳, 张志强, 沈永青, 王浩琦, 庞盼, 吴先映, 华青松, 何光宇. 基于磁过滤技术TiAlCN/TiAlN/TiAl复合体系腐蚀及摩擦学性能. 物理学报, 2020, 69(10): 107202. doi: 10.7498/aps.69.20200012
    [5] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [6] 崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋. 筒内高功率脉冲磁控放电的电磁控制与优化. 物理学报, 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [7] 肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪. 筒形高功率脉冲磁控溅射源的开发与放电特性. 物理学报, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [8] 孟献才, 左桂忠, 任君, 孙震, 徐伟, 黄明, 李美姮, 邓辉球, 胡建生, 胡望宇. HT-7装置液态锂限制器实验中锂的腐蚀与沉积特性的研究. 物理学报, 2015, 64(21): 212801. doi: 10.7498/aps.64.212801
    [9] 吴忠振, 田修波, 潘锋, Ricky K. Y. Fu, 朱剑豪. 高压耦合高功率脉冲磁控溅射的增强放电效应. 物理学报, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [10] 吴忠振, 田修波, 李春伟, Ricky K. Y. Fu, 潘锋, 朱剑豪. 高功率脉冲磁控溅射的阶段性放电特征. 物理学报, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [11] 王培君, 江美福, 杜记龙, 戴永丰. 射频反应磁控溅射法制备的氟化类金刚石薄膜摩擦特性研究. 物理学报, 2010, 59(12): 8920-8926. doi: 10.7498/aps.59.8920
    [12] 刘贵立, 方戈亮. Sc在Al-Zn-Mg-Cu超高强铝合金中作用机理的电子理论研究. 物理学报, 2009, 58(7): 4872-4877. doi: 10.7498/aps.58.4872
    [13] 刘贵立. 钛的腐蚀与钝化机理电子理论研究. 物理学报, 2008, 57(7): 4441-4445. doi: 10.7498/aps.57.4441
    [14] 肖剑荣, 徐 慧, 郭爱敏, 王焕友. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅱ)射频功率对薄膜光学带隙的影响. 物理学报, 2007, 56(3): 1809-1814. doi: 10.7498/aps.56.1809
    [15] 牛燕雄, 黄 峰, 段晓峰, 汪岳峰, 张 鹏, 何琛娟, 禹 晔, 姚建铨. 脉冲激光对类金刚石(DLC)薄膜的热冲击效应研究. 物理学报, 2005, 54(10): 4816-4821. doi: 10.7498/aps.54.4816
    [16] 李红轩, 徐 洮, 陈建敏, 周惠娣, 刘惠文. 射频功率对类金刚石薄膜结构和性能的影响. 物理学报, 2005, 54(4): 1885-1889. doi: 10.7498/aps.54.1885
    [17] 杨武保, 范松华, 张谷令, 马培宁, 张守忠, 杜 健. 非平衡磁控溅射法类金刚石薄膜的制备及分析. 物理学报, 2005, 54(10): 4944-4948. doi: 10.7498/aps.54.4944
    [18] 江美福, 宁兆元. 反应磁控溅射法制备的氟化类金刚石薄膜的XPS结构研究. 物理学报, 2004, 53(9): 3220-3224. doi: 10.7498/aps.53.3220
    [19] 张谷令, 王久丽, 杨武保, 范松华, 刘赤子, 杨思泽. 内表面栅极等离子体源离子注入TiN薄膜及其特性研究. 物理学报, 2003, 52(9): 2213-2218. doi: 10.7498/aps.52.2213
    [20] 顾长志, 金曾孙, 吕宪义, 邹广田, 张纪法, 方容川. 高导热金刚石薄膜的研究. 物理学报, 1997, 46(10): 1984-1989. doi: 10.7498/aps.46.1984
计量
  • 文章访问数:  11115
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-06
  • 修回日期:  2020-02-14
  • 刊出日期:  2020-05-20

/

返回文章
返回