-
极端服役条件的出现对涡轮喷气发动机压气机叶片防护涂层提出了越来越高的性能要求, 具备厚且韧, 同时满足结合力高且耐磨性好的硬质涂层是未来极端服役环境下的潜在涂层. 本文利用磁过滤阴极真空弧技术在304L不锈钢基底上成功地沉积了厚且韧的TiN硬质涂层, 并利用扫描电子显微镜、X射线衍射仪等对涂层的形貌、结构和性能进行了研究. 实验结果表明: 沉积过程中, 对TiN涂层进行周期性地高能离子轰击处理, 能够实现TiN大晶粒抑制, 降低涂层内应力, 使TiN涂层实现连续生长, 涂层的厚度可达到50 μm, 沉积速率接近0.2 μm/min; 同时控制N2气流量不变生成稳定的非化学计量TiNx, 使TiN涂层具有一定的韧性. 制备的TiN涂层属于超硬涂层, 硬度和弹性模量最高分别可达到38.24和386.53 GPa; TiN涂层的结合力良好, 压痕无剥落形貌和径向裂纹, 涂层的韧性优良; TiN涂层的
$ H/E^* $ 和$ H^3/E^{*2} $ 值最高可达到0.0989和0.3742; 厚且韧的TiN硬质涂层表现出优良的耐磨性, 摩擦系数最低为0.26.There are some high requirements for mechanical property to protective coatings of turbojet engine compressor blades as the appearance of extreme service conditions. The hard coating with high toughness, good adhesion, good wear resistance and excellent load carrying capacity is a potential coating for extreme service conditions in the future. Thick yet tough TiN hard coatings were successfully deposited on 304L stainless steel substrates by magnetic filtered cathodic vacuum arc technology. The morphology, structure and properties of the coatings were studied by SEM and XRD, etc.The results show that the continuous growth of TiN coatings attributed to periodic high energy ion bombardment which can suppress the large grain size and reduce the internal stress. The thickness of TiN coating can reach to 50 μm and the deposition rate was close to 0.2 μm/min. At the same time, the stable non stoichiometric TiN0.9 can be formed by controlling the constant N2 flow rate, which can improve the toughness of TiN coatings. All TiN ciatings belong to superhard coating and the max value of hardness and modulus of elasticity were 38.24 GPa and 386.53 GPa respectively. TiN coatings have good adhesion and excellent toughness.The highest$ H/E^{*} $ and$ H^3/E^{*2} $ rate of TiN coating can reach to 0.0989 and 0.3742. Thick yet tough TiN hard coatings have excellent wear resistance with the lowest friction coefficient of 0.26.-
Keywords:
- compressor blades /
- thick yet tough TiN coatings /
- ion bombardment /
- wear resistance
[1] Chavda M R, Dave D P, Chauhan K V, Rawal S K 2016 Proc. Technol. 23 36Google Scholar
[2] Sun Z P, He G Y, Meng Q J, Li Y Q, Tian X D 2019 Chin. J. Aeronaut
[3] Liang W, Yang J J, Zhang F F, Lu C Y, Wang L M, Liao J L, Yang Y Y, Liu N 2018 J. Nucl. Mater. 501 388Google Scholar
[4] Swadźba L, Formanek B, Gabriel H M, Liberski P, Podolski P 1993 Surf. Coat. Technol. 62 486Google Scholar
[5] Zhou D P, Peng H, Zhu L, Guo H B, Gong S K 2014 Surf. Coat. Technol. 258 102Google Scholar
[6] Hetmańczyk M, Swadźba L, Mendala B 2007 J. Achiev. Mater. Manuf. Eng. 24 372
[7] Li J Z, Zheng H, Sinkovits T, Hee A C, Zhao Y 2015 Appl. Surf. Sci. 355 502Google Scholar
[8] Djabella H, Arnell R 1993 Thin Solid Films 235 156Google Scholar
[9] Hintermann H 1984 Wear 100 381Google Scholar
[10] Wang L, Zhong X H, Zhao YX, Tao S Y, Zhang W, Wang Y, Sun X G 2014 J.Asian Ceram. Soc. 2 102Google Scholar
[11] Wang J, Pu J, Zhang G G, Wang L P 2013 ACS Appl. Mater. Interfaces 5 5015Google Scholar
[12] Wei R, Langa E, Rincon C, Arps J H 2006 Surf. Coat. Technol. 201 4453Google Scholar
[13] Li Z C, Wang Y X, Cheng X Y, Zeng Z X, Li J L, Lu X, Wang L P, Xue Q J 2018 ACS Appl. Mater. Interfaces 10 2965Google Scholar
[14] Dong Y C, Yang Y, Chu Z H, Zhang J X, He J N, Yan D R, Li D Y 2017 Ceram. Int. 43 9303Google Scholar
[15] Janka L, Norpoth J, Eicher S, Rodríguez Ripoll M, Vuoristo P 2016 Mater. Des. 98 135Google Scholar
[16] Ou Y X, Lin J, Tong S, Sproul W D, Lei M K 2016 Surf. Coat. Technol. 293 21Google Scholar
[17] Wang L, Zhang S H, Chen Z, Li J L, Li M X 2012 Appl. Surf. Sci. 258 3629Google Scholar
[18] Volkhonskii A O, Vereshchaka A A, Blinkov I V, Vereshchaka A S, Batako A D 2016 Int. J. Adv. 84 1647Google Scholar
[19] Rebenne H E, Bhat D G 1994 Surf. Coat. Technol. 63 1Google Scholar
[20] Wang C T, Ye Y W, Guan X Y, Hu J M, Wang Y X, Li J L 2016 Tribol. Int. 96 77Google Scholar
[21] Guan X Y, Wang L P 2012 Tribol. Lett. 47 67Google Scholar
[22] Donnet C, Belin M, Auge J C, Martin J M, Grill A, Patel V 1994 Surf. Coat. Technol. 68 626
[23] Zhu Y, Cheng L F, Ma B S, Liu Y S, Zhang L T 2018 Surf. Coat. Technol. 337 209Google Scholar
[24] Lien S Y, Cho Y S, Hsu C H, Shen K Y, Zhang S, Wu W Y 2019 Surf. Coat. Technol. 359 247Google Scholar
[25] Ou Y X, Ouyang X P, Liao B, Zhang X, Zhang S 2019 Appl. Surf. Sci. 144 168
[26] Wang P, Wang X, Chen Y, Zhang G, Liu W, Zhang J 2007 Appl. Surf. Sci. 253 3722Google Scholar
[27] Lin Y H, Lin H D, Liu C K, Huang M W, Chen J R, Shih H C 2010 Diamond Relat. Mater. 19 1034Google Scholar
[28] Luo J, Ou Y X, Zhang Z Q, Pang P, Chen L, Liao B B, Shang H Z, Zhang X, Wu X Y 2019 Mater. Res. Express 6 096418Google Scholar
[29] Cao H S, Qi F G, Ouyang X P, Zhao N, Zhou Y, Li B, Luo W Z, Liao B, Luo J 2018 Materials 11 1742Google Scholar
[30] Pelleg J, Zevin L Z, Lungo S, Croitoru N 1991 Thin Solid Films 197 117Google Scholar
[31] Lee S C, Ho W Y, Huang C C, Meletis E L, Liu Y 1996 J. Mater. Eng. Perform. 5 64Google Scholar
[32] He Z, Zhang S, Sun D 2019 Thin Solid Films 676 60Google Scholar
[33] Hu J H, Shi Y N, Sauvage X, Sha G, Lu K 2017 Science 355 1292Google Scholar
[34] Shulga Y U M, Troitskii V N, Aivazov M I, Borodko Y U G 1976 Zh. Neorg. Khim. 21 2621
[35] Prieto P, Kirby R E 1995 J. Vac. Sci. Technol. A. 13 2819
[36] Lee K, Kang N, Bae J S, Lee C W 2016 Met. Mater.Int. 22 842Google Scholar
[37] Ou Y X, Lin J, Tong S E, Che H L, Sproul W D, Lei M K 2015 Appl. Surf. Sci. 351 332Google Scholar
[38] Ou Y X, Chen H, Li Z Y, Lin J, Pan W, Lei M K 2018 J. Am. Ceram. Soc. 101 5166Google Scholar
[39] Leyland A, Matthews A 2004 Surf. Coat. Technol. 177 317
[40] Dang C Q, Li J L, Wang Y, Chen J M 2016 Appl. Surf. Sci. 386 224Google Scholar
-
图 6 不同沉积时间下的TiN涂层的AFM图及表面粗糙度 (a) 125 min; (b) 150 min; (c) 190 min; (d) 210 min; (e) 270 min; (f) 不同TiN涂层的表面粗糙度
Fig. 6. The AFM and roughness of all of the TiN coatings with different deposition time: (a) 125 min; (b) 150 min; (c) 190 min; (d) 210 min; (e) 270 min; (f) roughness of all of the TiN coatings.
-
[1] Chavda M R, Dave D P, Chauhan K V, Rawal S K 2016 Proc. Technol. 23 36Google Scholar
[2] Sun Z P, He G Y, Meng Q J, Li Y Q, Tian X D 2019 Chin. J. Aeronaut
[3] Liang W, Yang J J, Zhang F F, Lu C Y, Wang L M, Liao J L, Yang Y Y, Liu N 2018 J. Nucl. Mater. 501 388Google Scholar
[4] Swadźba L, Formanek B, Gabriel H M, Liberski P, Podolski P 1993 Surf. Coat. Technol. 62 486Google Scholar
[5] Zhou D P, Peng H, Zhu L, Guo H B, Gong S K 2014 Surf. Coat. Technol. 258 102Google Scholar
[6] Hetmańczyk M, Swadźba L, Mendala B 2007 J. Achiev. Mater. Manuf. Eng. 24 372
[7] Li J Z, Zheng H, Sinkovits T, Hee A C, Zhao Y 2015 Appl. Surf. Sci. 355 502Google Scholar
[8] Djabella H, Arnell R 1993 Thin Solid Films 235 156Google Scholar
[9] Hintermann H 1984 Wear 100 381Google Scholar
[10] Wang L, Zhong X H, Zhao YX, Tao S Y, Zhang W, Wang Y, Sun X G 2014 J.Asian Ceram. Soc. 2 102Google Scholar
[11] Wang J, Pu J, Zhang G G, Wang L P 2013 ACS Appl. Mater. Interfaces 5 5015Google Scholar
[12] Wei R, Langa E, Rincon C, Arps J H 2006 Surf. Coat. Technol. 201 4453Google Scholar
[13] Li Z C, Wang Y X, Cheng X Y, Zeng Z X, Li J L, Lu X, Wang L P, Xue Q J 2018 ACS Appl. Mater. Interfaces 10 2965Google Scholar
[14] Dong Y C, Yang Y, Chu Z H, Zhang J X, He J N, Yan D R, Li D Y 2017 Ceram. Int. 43 9303Google Scholar
[15] Janka L, Norpoth J, Eicher S, Rodríguez Ripoll M, Vuoristo P 2016 Mater. Des. 98 135Google Scholar
[16] Ou Y X, Lin J, Tong S, Sproul W D, Lei M K 2016 Surf. Coat. Technol. 293 21Google Scholar
[17] Wang L, Zhang S H, Chen Z, Li J L, Li M X 2012 Appl. Surf. Sci. 258 3629Google Scholar
[18] Volkhonskii A O, Vereshchaka A A, Blinkov I V, Vereshchaka A S, Batako A D 2016 Int. J. Adv. 84 1647Google Scholar
[19] Rebenne H E, Bhat D G 1994 Surf. Coat. Technol. 63 1Google Scholar
[20] Wang C T, Ye Y W, Guan X Y, Hu J M, Wang Y X, Li J L 2016 Tribol. Int. 96 77Google Scholar
[21] Guan X Y, Wang L P 2012 Tribol. Lett. 47 67Google Scholar
[22] Donnet C, Belin M, Auge J C, Martin J M, Grill A, Patel V 1994 Surf. Coat. Technol. 68 626
[23] Zhu Y, Cheng L F, Ma B S, Liu Y S, Zhang L T 2018 Surf. Coat. Technol. 337 209Google Scholar
[24] Lien S Y, Cho Y S, Hsu C H, Shen K Y, Zhang S, Wu W Y 2019 Surf. Coat. Technol. 359 247Google Scholar
[25] Ou Y X, Ouyang X P, Liao B, Zhang X, Zhang S 2019 Appl. Surf. Sci. 144 168
[26] Wang P, Wang X, Chen Y, Zhang G, Liu W, Zhang J 2007 Appl. Surf. Sci. 253 3722Google Scholar
[27] Lin Y H, Lin H D, Liu C K, Huang M W, Chen J R, Shih H C 2010 Diamond Relat. Mater. 19 1034Google Scholar
[28] Luo J, Ou Y X, Zhang Z Q, Pang P, Chen L, Liao B B, Shang H Z, Zhang X, Wu X Y 2019 Mater. Res. Express 6 096418Google Scholar
[29] Cao H S, Qi F G, Ouyang X P, Zhao N, Zhou Y, Li B, Luo W Z, Liao B, Luo J 2018 Materials 11 1742Google Scholar
[30] Pelleg J, Zevin L Z, Lungo S, Croitoru N 1991 Thin Solid Films 197 117Google Scholar
[31] Lee S C, Ho W Y, Huang C C, Meletis E L, Liu Y 1996 J. Mater. Eng. Perform. 5 64Google Scholar
[32] He Z, Zhang S, Sun D 2019 Thin Solid Films 676 60Google Scholar
[33] Hu J H, Shi Y N, Sauvage X, Sha G, Lu K 2017 Science 355 1292Google Scholar
[34] Shulga Y U M, Troitskii V N, Aivazov M I, Borodko Y U G 1976 Zh. Neorg. Khim. 21 2621
[35] Prieto P, Kirby R E 1995 J. Vac. Sci. Technol. A. 13 2819
[36] Lee K, Kang N, Bae J S, Lee C W 2016 Met. Mater.Int. 22 842Google Scholar
[37] Ou Y X, Lin J, Tong S E, Che H L, Sproul W D, Lei M K 2015 Appl. Surf. Sci. 351 332Google Scholar
[38] Ou Y X, Chen H, Li Z Y, Lin J, Pan W, Lei M K 2018 J. Am. Ceram. Soc. 101 5166Google Scholar
[39] Leyland A, Matthews A 2004 Surf. Coat. Technol. 177 317
[40] Dang C Q, Li J L, Wang Y, Chen J M 2016 Appl. Surf. Sci. 386 224Google Scholar
计量
- 文章访问数: 9982
- PDF下载量: 167
- 被引次数: 0