搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性

李雪健 曹敏 汤敏 芈月安 陶洪 古皓 任文华 简伟 任国斌

引用本文:
Citation:

M型少模光纤中模间受激布里渊散射特性及其温度和应变传感特性

李雪健, 曹敏, 汤敏, 芈月安, 陶洪, 古皓, 任文华, 简伟, 任国斌

Inter-mode stimulated Brillouin scattering and simultaneous temperature and strain sensing in M-shaped few-mode fiber

Li Xue-Jian, Cao Min, Tang Min, Mi Yue-An, Tao Hong, Gu Hao, Ren Wen-Hua, Jian Wei, Ren Guo-Bin
PDF
HTML
导出引用
  • 少模光纤的受激布里渊散射对于分布式温度/应变传感具有重要应用价值. 本文提出一种纤芯折射率呈M型分布的少模光纤, 详细研究了光学模式LP01和LP11模式内及模式间的布里渊增益谱. 研究结果表明: LP01-LP11模式对的布里渊增益谱中, 其相邻两个布里渊散射峰的频率间隔较宽、增益峰值较大且峰值相差较小. 通过优化光纤结构参数, 提高了基于LP01-LP11模式对布里渊增益谱的温度和应变传感性能, 最小误差分别为0.23 ℃和5.67 με. 该研究对探究少模光纤中模式内及模式间的受激布里渊散射特性具有一定的指导意义, 对提升同时温度和应变传感测量的性能具有一定参考价值.
    Stimulated Brillouin scattering (SBS) in a few-mode fiber (FMF) is of significance for the distributed temperature and strain sensing. An FMF with M-shaped refractive index distribution (M-FMF) is proposed in order to improve the performance of simultaneous temperature and strain sensing based on SBS. Propagation of four optical modes is supported by the M-FMF, so that the Brillouin gain spectrum (BGS) can be obtained by both intra-mode and inter-mode SBS. The BGSs produced by the interactions of LP01-LP01 mode pair, LP01-LP11 mode pair, and LP11-LP11 mode pair are analyzed, respectively. Meanwhile, the temperature and strain sensing performance based on the BGS of LP01-LP11 mode pair are studied in detail. Considering a common step-index FMF, only one obvious scattering peak is usually present in the BGS obtained from the interaction between different optical mode pairs, therefore, it is inconvenient to achieve multi-parameter sensing measurement. In this paper, the BGS of LP01-LP11 mode pair has two scattering peaks, which are contributed by the acousto-optic coupling between the acoustic modes L1n (n = 1, 2) and the optical modes LP01 and LP11. The two Brillouin scattering peaks have large gain values of 0.1004 m–1·W–1 and 0.0463 m–1·W–1, respectively. More importantly, the gain difference between two Brillouin scattering peaks is small, and the frequency interval is 75 MHz, which can be applied to simultaneous temperature and strain sensing. The influences of the refractive index and the fiber core radius on the BGS of LP01-LP11 mode pair are studied. By selecting the optimal structure parameters, we discuss the effect of temperature and strain on the BGS of LP01-LP11 mode pair. The errors for simultaneous temperature and strain measurement are reduced to 0.23 ℃ and 5.67 με. Compared with other reported results, our obtained temperature and strain sensitivity are high and sensing errors are low in the considered M-FMF. In other words, based on the BGS of LP01-LP11 mode pair, the performance of temperature and strain sensing are improved in the M-FMF. This work is of great significance for studying intra-mode and inter-mode SBS in an FMF. Moreover, the results also provide a guideline for further improving the performance of simultaneous temperature and strain sensing.
      通信作者: 任国斌, gbren@bjtu.edu.cn
    • 基金项目: 国家级-国家自然科学基金(61875008,61275092)
      Corresponding author: Ren Guo-Bin, gbren@bjtu.edu.cn
    [1]

    Essiambre R J, Kramer G, Winzer P J, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662Google Scholar

    [2]

    Randel S, Ryf R, Sierra A, Winzer P J, Gnauck A H, Bolle A C, Essiambre R J, Peckham D W, McCurdy A, Lingle R 2011 Opt. Express 19 16697Google Scholar

    [3]

    Smith S P, Zarinetchi F, Ezekiel S 1991 Opt. Lett. 16 393Google Scholar

    [4]

    Cowie G J, Yu D, Chieng Y T 1997 J. Lightwave Technol. 15 1198Google Scholar

    [5]

    Li B W, Wei X M, Wang X, Wong K K Y 2014 IEEE Photonics Technol. Lett. 26 2387Google Scholar

    [6]

    Alahbabi M N, Cho Y T, Newson T P 2004 Opt. Lett. 29 26Google Scholar

    [7]

    Zadok A, Zilka E, Eyal A, Thévenaz L, Tur M 2008 Opt. Express 16 21692Google Scholar

    [8]

    刘玉 2012 硕士学位论文 (陕西: 西北大学)

    Liu Y 2012 M.S. Dissertation (Shanxi: Northwest University) (in Chinese)

    [9]

    Herráez M G, Song K Y, Thévenaz L 2006 Opt. Express 14 1395Google Scholar

    [10]

    Loayssa A, Benito D, Garde M J 2000 Opt. Lett. 25 1234Google Scholar

    [11]

    Preussler S, Schneider T 2015 Opt. Eng. 55 031110Google Scholar

    [12]

    Ballmann C W, Meng Z K, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar

    [13]

    Krug B, Koukourakis N, Czarske J W 2019 Opt. Express 27 26910Google Scholar

    [14]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1Google Scholar

    [15]

    Koyamada Y, Sato S, Nakamura S, Sotobayashi H, Chujo W 2004 J. Lightwave Technol. 22 631Google Scholar

    [16]

    Nikles M, Thevenaz L, Robert P A 1997 J. Lightwave Technol. 15 1842Google Scholar

    [17]

    Zou L F, Bao X Y, Afshar S, Chen L 2004 Opt. Lett. 29 1485Google Scholar

    [18]

    Horiguchi T, Kurashima T, Tateda M 1989 IEEE Photonics Technol. Lett. 1 107Google Scholar

    [19]

    Mocofanescu A, Wang L, Jain R, Shaw K D, Gavrielides A, Peterson P, Sharma M P 2005 Opt. Express 13 2019Google Scholar

    [20]

    Floch S L, Cambon P 2003 J. Opt. Soc. Am. A 20 1132Google Scholar

    [21]

    王振宝, 邵碧波, 张磊, 闫燕, 杨鹏翎, 陈绍武 2011 激光与光电子学进展 48 090603Google Scholar

    Wang Z B, Shao B B, Zhang L, Yan Y, Yang P L, Chen S W 2011 Laser Optoelect. Prog. 48 090603Google Scholar

    [22]

    Afshar S, Kalosha V P, Bao X Y, Chen L 2005 Opt. Lett. 30 2685Google Scholar

    [23]

    Liu A P 2007 Opt. Express 15 977Google Scholar

    [24]

    Li H L, Zhang W, Huang Y D, Peng J D 2011 Chin. Phys. B 20 104211Google Scholar

    [25]

    Dong Y, Ren G B, Xiao H, Gao Y X, Li H S, Xiao S Y, Jian S S 2017 IEEE Photonics Technol. Lett. 29 1955Google Scholar

    [26]

    Xing C, Ke C J, Guo Z, Yang K Y, Wang H Y, Zhong Y B, Liu D M 2018 Opt. Express 26 28793Google Scholar

    [27]

    Xiao S Y, Dong Y, Xiao H, Ren G B, Jian S S 2018 IEEE Sens. J. 18 1087

    [28]

    Song K Y, Kim Y H, Kim B Y 2013 Opt. Lett. 38 1805Google Scholar

    [29]

    Song K Y, Kim Y H 2013 Opt. Lett. 38 4841Google Scholar

    [30]

    Ke W W, Wang X J, Tang X 2014 IEEE J. Sel. Top. Quantum Electron. 20 305Google Scholar

    [31]

    Minardo A, Bernini R, Zeni L 2014 Opt. Express 22 17480Google Scholar

    [32]

    Song K Y, Kim Y H 2014 Optical Fiber Communications Conference San Francisco, CA, USA, March 9–13, 2014 pW3D.6

    [33]

    张燕君, 高皓雷, 付兴虎, 田永胜 2017 物理学报 66 024207Google Scholar

    Zhang Y J, Gao H L, Fu X H, Tian Y S 2017 Acta Phys. Sin. 66 024207Google Scholar

    [34]

    王旭, 秦祖军, 熊显名, 张文涛 2019 激光与光电子进展 56 162901Google Scholar

    Wang X, Qin Z J, Xiong X M, Zhang W T 2019 Laser Optoelect. Prog. 56 162901Google Scholar

    [35]

    Lü H B, Zhou P, Wang X L, Jiang Z F 2015 J. Lightwave Technol. 33 4464Google Scholar

    [36]

    Zou W W, He Z Y, Hotate K 2009 Opt. Express 17 1248Google Scholar

    [37]

    Xu Y P, Ren M Q, Lu Y, Lu P, Lu P, Bao X Y, Wang L X, Messaddeq Y, Larochelle S 2016 Opt. Lett. 41 1138Google Scholar

    [38]

    Zhou X, Guo Z, Ke C J, Liu D M 2016 IEEE Photonics Conference(IPC) Waikoloa, HI, October 2–6, 2016 p817

    [39]

    Li A, Wang Y F, Hu Q, Shieh W 2015 Opt. Express 23 1139Google Scholar

    [40]

    Fang J, Milione G, Stone J, Peng G Z, Li M J, Ip E, Li Y W, Ji P N, Huang Y K, Huang M F, Murakami S, Shieh W, Wang T 2019 Opt. Lett. 44 1096Google Scholar

    [41]

    Weng Y, Ip E, Pan Z Q, Wang T 2015 Opt. Express 23 9024Google Scholar

  • 图 1  SI-FMF中${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$模式对的BGS (插图为SI-FMF的结构分布)

    Fig. 1.  The BGS of ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$ mode pair in SI-FMF (Inset: The structure of SI-FMF).

    图 2  M-FMF的结构分布以及光学模式的模场分布 (a) M-FMF的结构分布; (b) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$; (c) ${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$; (d) ${\rm{L}}{{\rm{P}}_{{\rm{21}}}}$; (e) ${\rm{L}}{{\rm{P}}_{{\rm{02}}}}$

    Fig. 2.  The structure of M-FMF and the field distribution of optical modes in M-FMF: (a) The structure of M-FMF: (b) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$; (c) ${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$; (d) ${\rm{L}}{{\rm{P}}_{{\rm{21}}}}$; (e) ${\rm{L}}{{\rm{P}}_{{\rm{02}}}}$.

    图 3  不同光学模式对的BGS (a) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}\text-{\rm{L}}{{\rm{P}}_{{\rm{01}}}}$; (b) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$; (c) ${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$

    Fig. 3.  The BGS of different optical mode pairs: (a) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}\text-{\rm{L}}{{\rm{P}}_{{\rm{01}}}}$; (b) ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$; (c) ${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$.

    图 4  M-FMF的结构对${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$模式对BGS的影响 (a) n1; (b) n2; (c) r1; (d) r2

    Fig. 4.  The BGS of ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$ mode pair in M-FMF versus: (a) n1; (b) n2; (c) r1; (d) r2.

    图 5  ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$模式对激励的声学模式的位移场分布 (a) ${{\rm{L}}_{{\rm{11}}}}$; (b) ${{\rm{L}}_{{\rm{12}}}}$

    Fig. 5.  The displacement field distribution of acoustic mode excited by the interaction of ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$ mode pair: (a) ${{\rm{L}}_{{\rm{11}}}}$; (b) ${{\rm{L}}_{{\rm{12}}}}$.

    图 6  ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$模式对的BGS随温度和应变的变化 (a) BGS随温度的变化; (b) BGS随应变的变化

    Fig. 6.  The BGS of ${\rm{L}}{{\rm{P}}_{{\rm{01}}}}$-${\rm{L}}{{\rm{P}}_{{\rm{11}}}}$ mode pair versus: (a) Temperature; (b) strain.

    图 7  声学模式${{\rm{L}}_{{\rm{11}}}}$${{\rm{L}}_{{\rm{12}}}}$对应散射峰的BFS随温度和应变的变化 (a) BFS随温度的变化关系; (b) BFS随应变的变化关系

    Fig. 7.  The BFS corresponding to ${{\rm{L}}_{{\rm{11}}}}$ and ${{\rm{L}}_{{\rm{12}}}}$ acoustic modes versus: (a) Temperature; (b) strain.

    表 1  不同光学模式对与声学模式之间相互耦合的声光有效面积(单位: μm2)

    Table 1.  Acousto-optic effective area by the coupling between different optical mode pairs and acoustic modes (in μm2).

    LP01-LP01LP01-LP11LP11-LP11
    m = 0 m = 1m = 0m = 2
    Lm1251.63208.71156.24180.74
    Lm2162.48449.521.65 × 1031.09 × 103
    Lm32.12 × 1054.54 × 1043.82 × 1031.11 × 104
    下载: 导出CSV

    表 2  不同研究报道中基于SBS的温度应变系数和误差

    Table 2.  The coefficients and errors of temperature and strain based on SBS in different literatures.

    Fiber$C_T^1$/MHz·℃–1$C_T^2$/MHz·℃–1$C_S^1$/MHz·℃–1$C_S^2$/MHz·℃–1δT/℃δS/με
    M-FMF4.34003.93150.193730.177150.235.67
    M-SMF[25]1.51871.16420.066400.052800.4712.30
    SSMF[26]1.19001.15000.062280.050090.9319.48
    SMF[27]1.19001.11900.035600.040300.9028.80
    IPGIF[37]0.743230.90160.042020.038250.8517.40
    GIFMF[38]5.27004.3000.237000.189001.8041.00
    c-core FMF[39]1.01690.99090.059240.048721.2021.90
    e-core FMF[40]1.24201.27800.061300.036400.377.61
    下载: 导出CSV
  • [1]

    Essiambre R J, Kramer G, Winzer P J, Foschini G J, Goebel B 2010 J. Lightwave Technol. 28 662Google Scholar

    [2]

    Randel S, Ryf R, Sierra A, Winzer P J, Gnauck A H, Bolle A C, Essiambre R J, Peckham D W, McCurdy A, Lingle R 2011 Opt. Express 19 16697Google Scholar

    [3]

    Smith S P, Zarinetchi F, Ezekiel S 1991 Opt. Lett. 16 393Google Scholar

    [4]

    Cowie G J, Yu D, Chieng Y T 1997 J. Lightwave Technol. 15 1198Google Scholar

    [5]

    Li B W, Wei X M, Wang X, Wong K K Y 2014 IEEE Photonics Technol. Lett. 26 2387Google Scholar

    [6]

    Alahbabi M N, Cho Y T, Newson T P 2004 Opt. Lett. 29 26Google Scholar

    [7]

    Zadok A, Zilka E, Eyal A, Thévenaz L, Tur M 2008 Opt. Express 16 21692Google Scholar

    [8]

    刘玉 2012 硕士学位论文 (陕西: 西北大学)

    Liu Y 2012 M.S. Dissertation (Shanxi: Northwest University) (in Chinese)

    [9]

    Herráez M G, Song K Y, Thévenaz L 2006 Opt. Express 14 1395Google Scholar

    [10]

    Loayssa A, Benito D, Garde M J 2000 Opt. Lett. 25 1234Google Scholar

    [11]

    Preussler S, Schneider T 2015 Opt. Eng. 55 031110Google Scholar

    [12]

    Ballmann C W, Meng Z K, Traverso A J, Scully M O, Yakovlev V V 2017 Optica 4 124Google Scholar

    [13]

    Krug B, Koukourakis N, Czarske J W 2019 Opt. Express 27 26910Google Scholar

    [14]

    Kobyakov A, Sauer M, Chowdhury D 2010 Adv. Opt. Photonics 2 1Google Scholar

    [15]

    Koyamada Y, Sato S, Nakamura S, Sotobayashi H, Chujo W 2004 J. Lightwave Technol. 22 631Google Scholar

    [16]

    Nikles M, Thevenaz L, Robert P A 1997 J. Lightwave Technol. 15 1842Google Scholar

    [17]

    Zou L F, Bao X Y, Afshar S, Chen L 2004 Opt. Lett. 29 1485Google Scholar

    [18]

    Horiguchi T, Kurashima T, Tateda M 1989 IEEE Photonics Technol. Lett. 1 107Google Scholar

    [19]

    Mocofanescu A, Wang L, Jain R, Shaw K D, Gavrielides A, Peterson P, Sharma M P 2005 Opt. Express 13 2019Google Scholar

    [20]

    Floch S L, Cambon P 2003 J. Opt. Soc. Am. A 20 1132Google Scholar

    [21]

    王振宝, 邵碧波, 张磊, 闫燕, 杨鹏翎, 陈绍武 2011 激光与光电子学进展 48 090603Google Scholar

    Wang Z B, Shao B B, Zhang L, Yan Y, Yang P L, Chen S W 2011 Laser Optoelect. Prog. 48 090603Google Scholar

    [22]

    Afshar S, Kalosha V P, Bao X Y, Chen L 2005 Opt. Lett. 30 2685Google Scholar

    [23]

    Liu A P 2007 Opt. Express 15 977Google Scholar

    [24]

    Li H L, Zhang W, Huang Y D, Peng J D 2011 Chin. Phys. B 20 104211Google Scholar

    [25]

    Dong Y, Ren G B, Xiao H, Gao Y X, Li H S, Xiao S Y, Jian S S 2017 IEEE Photonics Technol. Lett. 29 1955Google Scholar

    [26]

    Xing C, Ke C J, Guo Z, Yang K Y, Wang H Y, Zhong Y B, Liu D M 2018 Opt. Express 26 28793Google Scholar

    [27]

    Xiao S Y, Dong Y, Xiao H, Ren G B, Jian S S 2018 IEEE Sens. J. 18 1087

    [28]

    Song K Y, Kim Y H, Kim B Y 2013 Opt. Lett. 38 1805Google Scholar

    [29]

    Song K Y, Kim Y H 2013 Opt. Lett. 38 4841Google Scholar

    [30]

    Ke W W, Wang X J, Tang X 2014 IEEE J. Sel. Top. Quantum Electron. 20 305Google Scholar

    [31]

    Minardo A, Bernini R, Zeni L 2014 Opt. Express 22 17480Google Scholar

    [32]

    Song K Y, Kim Y H 2014 Optical Fiber Communications Conference San Francisco, CA, USA, March 9–13, 2014 pW3D.6

    [33]

    张燕君, 高皓雷, 付兴虎, 田永胜 2017 物理学报 66 024207Google Scholar

    Zhang Y J, Gao H L, Fu X H, Tian Y S 2017 Acta Phys. Sin. 66 024207Google Scholar

    [34]

    王旭, 秦祖军, 熊显名, 张文涛 2019 激光与光电子进展 56 162901Google Scholar

    Wang X, Qin Z J, Xiong X M, Zhang W T 2019 Laser Optoelect. Prog. 56 162901Google Scholar

    [35]

    Lü H B, Zhou P, Wang X L, Jiang Z F 2015 J. Lightwave Technol. 33 4464Google Scholar

    [36]

    Zou W W, He Z Y, Hotate K 2009 Opt. Express 17 1248Google Scholar

    [37]

    Xu Y P, Ren M Q, Lu Y, Lu P, Lu P, Bao X Y, Wang L X, Messaddeq Y, Larochelle S 2016 Opt. Lett. 41 1138Google Scholar

    [38]

    Zhou X, Guo Z, Ke C J, Liu D M 2016 IEEE Photonics Conference(IPC) Waikoloa, HI, October 2–6, 2016 p817

    [39]

    Li A, Wang Y F, Hu Q, Shieh W 2015 Opt. Express 23 1139Google Scholar

    [40]

    Fang J, Milione G, Stone J, Peng G Z, Li M J, Ip E, Li Y W, Ji P N, Huang Y K, Huang M F, Murakami S, Shieh W, Wang T 2019 Opt. Lett. 44 1096Google Scholar

    [41]

    Weng Y, Ip E, Pan Z Q, Wang T 2015 Opt. Express 23 9024Google Scholar

  • [1] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用. 物理学报, 2024, 73(17): 174205. doi: 10.7498/aps.73.20240861
    [2] 杨熙飞, 尚磊, 邹林儿, 沈云. 带空气狭缝倒置结构的脊型硫系光波导后向受激布里渊散射研究. 物理学报, 2024, 73(1): 014206. doi: 10.7498/aps.73.20231272
    [3] 冯云龙, 侯尚林, 雷景丽, 武刚, 晏祖勇. 声波导单模光纤中后向受激布里渊散射的声模分析. 物理学报, 2024, 73(5): 054207. doi: 10.7498/aps.73.20231710
    [4] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [5] 许锦, 郭洋宁, 罗宁宁, 李淑静, 史久林, 何兴道. 水体参数对受激布里渊散射阈值及增益的影响. 物理学报, 2021, 70(15): 154205. doi: 10.7498/aps.70.20210326
    [6] 涂兴华, 赵宜超. 对称熔融拉锥型光纤光栅温度和应力传感特性. 物理学报, 2019, 68(24): 244204. doi: 10.7498/aps.68.20191034
    [7] 董永康, 周登望, 滕雷, 姜桃飞, 陈曦. 布里渊动态光栅原理及其在光纤传感中的应用. 物理学报, 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [8] 张燕君, 高浩雷, 付兴虎, 田永胜. 少模光纤的不同模式布里渊散射特性. 物理学报, 2017, 66(2): 024207. doi: 10.7498/aps.66.024207
    [9] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [10] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟. 物理学报, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [11] 陈蔚, 陈学岗, 史久林, 何兴道, 莫小凤, 刘娟. 变温条件下受激布里渊散射增益系数的实验测量. 物理学报, 2013, 62(10): 104213. doi: 10.7498/aps.62.104213
    [12] 高玮, 刘胜男, 毕雅凤, 胡晓博, 浦绍质, 赵洪. 液芯光纤中基于多线抽运调制的带宽可控平顶布里渊增益谱. 物理学报, 2013, 62(19): 194206. doi: 10.7498/aps.62.194206
    [13] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究. 物理学报, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [14] 何兴道, 夏健, 史久林, 刘娟, 李淑静, 刘建安, 方伟. 水的衰减系数及有效增益长度对受激布里渊散射输出能量的影响. 物理学报, 2011, 60(5): 054207. doi: 10.7498/aps.60.054207
    [15] 哈斯乌力吉, 李杏, 郭翔宇, 鲁欢欢, 吕志伟, 林殿阳, 何伟明, 范瑞清. 选用混合介质优化介质和控制受激布里渊散射特性的研究. 物理学报, 2011, 60(3): 034208. doi: 10.7498/aps.60.034208
    [16] 哈斯乌力吉, 李杏, 郭翔宇, 鲁欢欢, 吕志伟, 林殿阳, 何伟明, 范瑞清. 受激布里渊散射介质——全氟聚醚的温度特性研究. 物理学报, 2010, 59(12): 8554-8558. doi: 10.7498/aps.59.8554
    [17] 汪 莎, 陈 军, 童立新, 高清松, 刘 崇, 唐 淳. 熔石英棒-光纤构成的新型复合相位共轭镜的实验和理论研究. 物理学报, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
    [18] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [19] 邓少永, 郭少锋, 陆启生, 程湘爱. 抽运光参数对受激布里渊散射的影响. 物理学报, 2005, 54(7): 3164-3172. doi: 10.7498/aps.54.3164
    [20] 林殿阳, 高洪岩, 王双义, 蒋萧村, 吕志伟. 多纵模受激布里渊散射阈值. 物理学报, 2005, 54(9): 4151-4156. doi: 10.7498/aps.54.4151
计量
  • 文章访问数:  6838
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-15
  • 修回日期:  2020-03-12
  • 刊出日期:  2020-06-05

/

返回文章
返回