搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

点间隧穿调控五能级M型三量子点电磁感应透明介质中的孤子碰撞性质

杨璇 王胤 王登龙 丁建文

引用本文:
Citation:

点间隧穿调控五能级M型三量子点电磁感应透明介质中的孤子碰撞性质

杨璇, 王胤, 王登龙, 丁建文

Controlling collision properties of solitons in five-level M-type triple quantum dot electromagnetically induced transparency medium by inter-dot tunneling coupling

Yang Xuan, Wang Yin, Wang Deng-Long, Ding Jian-Wen
PDF
HTML
导出引用
  • 基于现有实验, 本文构建一束弱线性偏振光在平行于传播方向的磁场作用下分裂为两正交偏振光, 当其与三角形三量子点相互作用后形成五能级M型三量子点电磁感应透明介质模型. 随后, 利用多重尺度结合傅里叶积分方法研究体系中的光孤子传播及两孤子间的碰撞特性, 结果发现孤子间的碰撞方式是由其初始相位差所决定. 当孤子间初相位差为0时, 孤子间的碰撞为周期性弹性碰撞; 当初相位差为$\text{π} /4$, $ \text{π} /2$$ \text{π} $时, 孤子间会产生排斥作用力而使两孤子分离. 有趣的是, 孤子间的碰撞特征受量子点间的隧穿强度的调控. 当点间隧穿强度的增加, 初相位差为0的孤子间的碰撞周期减小; 而初相位差为$ \text{π} /4$, $ \text{π} /2$$ \text{π} $时孤子间的排斥力增大. 这为实验上如何操控半导体量子点器件中的孤子动力学提供了一定的理论依据.
    Experimentally, the triple-quantum-dots system can be produced on a GaAs $ \left[ {001} \right]$ substrate by molecular beam epitaxy or in-situ atomic layer precise etching, thus enabling a triangle triple quantum dot (QD) aligned along the $ \left[ {1\bar 10} \right]$ direction. According to this, we first propose a five-level M-type triple QD electromagnetically induced transparency (EIT) model which consists of a triple QD molecule interacting with a weakly linearly polarized probe field with two orthogonal polarization components under the action of a magnetic field parallel to the light propagation direction. Subsequently, by using the multiple-scale method combined with the Fourier integration method, the propagation characteristics of the optical solitons and the collision characteristics of two solitons in the system are studied. It is shown that the optical solitons can form and propagate stably in this system under the action of quantum inter-dot tunneling coupling whose formation mechanism is different from the soliton-forming mechanism in ultra-cold atomic, single QD, and double QD EIT system. This is because the necessary condition for forming a soliton is to use a strong light beam to modulate a weak light beam, whether it is in an ultra-cold atom system, or a single quantum dot EIT medium or a double quantum dot EIT medium. In a word, the formation of soliton in previous EIT systems needs an additional strong controlling field, while the five-level M-type triple QD EIT system is dependent on the inter-dot tunneling.Since the solitons can propagate stably, the collision properties of the solitons may be studied in this system. Finally, by applying Fourier integration method, it is found that the collision behaviors of two solitons are determined by their initial phase difference. When their initial phase difference is 0, the collision behavior between the solitons is periodic elastic collision. While their initial phase difference is separately $ {\rm{\pi }}/4$, $ \text{π}/2$, and $ \text{π}$, the collision behaviors exhibit separation phenomenon due to repulsive effect. Interestingly, the collision characteristics of two solitons are controlled by the inter-dot tunneling strength. With the increase of inter-dot tunneling strength, the collision period of two solitons with the initial phase difference of 0 decreases, and the repulsive force of two solitons with the initial phase difference being separately π/4, π/2 and π increases. This provides some theoretical basis for experimentally controlling the soliton dynamical properties in semiconductor quantum dot devices.
      通信作者: 王登龙, dlwang@xtu.edu.cn
      Corresponding author: Wang Deng-Long, dlwang@xtu.edu.cn
    [1]

    Scott A C, Chu F Y F, McLaughlin D W 1973 P IEEE 61 1443Google Scholar

    [2]

    Dudley J M, Taylor J R 2009 Nat. Photonics 3 85Google Scholar

    [3]

    Song W W, Li Q Y, Li Z D, Fu G S 2010 Chin. Phys. B 19 070503Google Scholar

    [4]

    Wang Q, Wen L, Li Z D 2012 Chin. Phys. B 21 080501Google Scholar

    [5]

    Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar

    [6]

    Mollenauer L F, Stolen R H, Gordon J P 1980 Phys. Rev. Lett. 45 1095Google Scholar

    [7]

    Haus H A, Wong W S 1996 Rev. Mod. Phys. 68 423Google Scholar

    [8]

    Essiambre R J, Agrawal G P 1996 Opt. Lett. 21 116Google Scholar

    [9]

    Xie C, Karlsson M, Andrekson P A, Sunnerud H, Li J 2002 IEEE J. Sel. Top. Quantum Electron. 8 575Google Scholar

    [10]

    Badraoui N, Berceli T, Singh S 2017 19th International Conference on Transparent Optical Networks (ICTON) Girona, Spain, July 2–6, 2017 p1

    [11]

    Li Z D, He P B, Li L, Liang J Q, Liu W M 2005 Phys. Rev. A 71 053611Google Scholar

    [12]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611Google Scholar

    [13]

    Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613Google Scholar

    [14]

    Zhang X F, Zhang P, He W Q, Lin X X 2011 Chin. Phys. B 20 020307Google Scholar

    [15]

    Yao S F, Li Q Y, Li Z D 2011 Chin. Phys. B 20 110307Google Scholar

    [16]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [17]

    Harris S E 1997 Phys. Today 50 36Google Scholar

    [18]

    Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601Google Scholar

    [19]

    Kasapi A, Jain M, Yin G Y 1995 Phys. Rev. Lett. 74 2447Google Scholar

    [20]

    Hau L V, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594Google Scholar

    [21]

    唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202Google Scholar

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar

    [22]

    Wu Y, Deng L 2004 Opt. Lett. 29 2064Google Scholar

    [23]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [24]

    Huang G X, Hang C, Deng L 2008 Phys. Rev. A 77 011803Google Scholar

    [25]

    Kumar V R, Radha R, Wadati M 2008 Phys. Rev. A 78 041803Google Scholar

    [26]

    Chen Y, Bai Z, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [27]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D, 1996 Science 273 87Google Scholar

    [28]

    Borr P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang D, Bimberg D 2001 Phys. Rev. Lett. 87 157401Google Scholar

    [29]

    Guo R H, Shi H Y, Sun X D 2005 Photonics Asia 2004; Optoelectronics, Microelectronics, and Nanotech Beijing, China, November 8–11, 2004 p313

    [30]

    Borges H S, Sanz L, Villas-Bôas J M, Alcalde A M 2010 Phys. Rev. B 81 075322Google Scholar

    [31]

    Högele A, Seidl S, Kroner M, Karrai K, Warburton R J, Gerardot B D, Petroff P M 2004 Phys. Rev. Lett. 93 217401Google Scholar

    [32]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar

    [33]

    Kuo D M T, Guo G Y, Chang Y C 2001 Appl. Phys. Lett. 79 3851Google Scholar

    [34]

    Kouklin N, Menon L, Bandyopadhyay S 2002 Appl. Phys. Lett. 80 1649Google Scholar

    [35]

    Borges H S, Sanz L, Villas-Bôas J M, Diniz Neto O O, Alcalde A M 2012 Phys. Rev. B 85 115425Google Scholar

    [36]

    Yuan C H, Zhu K D 2006 Appl. Phys. Lett. 89 052115Google Scholar

    [37]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392Google Scholar

    [38]

    Tian S C, Wan R G, Tong C Z, Fu X H, Cao J S, Ning Y Q 2015 Laser Phys. Lett. 12 125203Google Scholar

    [39]

    Wang J Y, Huang S, Huang G Y, Pan D, Zhao J, Xu H Q 2017 Nano Lett. 17 4158Google Scholar

    [40]

    Grove-Rasmussen K, Jørgensen H I, Hayashi T, Lindelof P E, Fujisawa T 2008 Nano Lett. 8 1055Google Scholar

    [41]

    Saraga D S, Loss D 2003 Phys. Rev. Lett. 90 166803Google Scholar

    [42]

    Fafard S, Spanner M, McCaffrey J P, Wasilewski Z R 2000 Appl. Phys. Lett. 76 2268Google Scholar

    [43]

    Beirne G J, Hermannstädter C, Wang L, Rastelli A, Schmidt O G, Michler P 2006 Phys. Rev. Lett. 96 137401Google Scholar

    [44]

    Krause B, Metzger T H, Rastelli A, Songmuang R, Kiravittaya S, Schmidt O G 2005 Phys. Rev. B 72 085339Google Scholar

    [45]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830Google Scholar

    [46]

    佘艳超, 张蔚曦, 王登龙 2011 物理学报 60 064205Google Scholar

    She Y C, Zhang W X, Wang D L 2011 Acta. Phys. Sin. 60 064205Google Scholar

    [47]

    Si L G, Yang W X, Lü X Y, Li J H, Yang X X 2009 Eur. Phys. J. D 55 161Google Scholar

  • 图 1  五能级M型三量子点电磁感应透明介质能级结构图. $ \left| 0 \right\rangle $表示基态, $ \left| 1 \right\rangle $$ \left| 2 \right\rangle $表示直接激子态, $ \left| 3 \right\rangle $$ \left| 4 \right\rangle $是间接激子态, $ T{e_1}$$ T{e_2}$分别表示中间量子点与左、右量子点间的点间隧穿耦合强度

    Fig. 1.  Energy level structure diagram of a five-level M-type three-quantum-dot electromagnetically induced transparent medium. Here $ \left| 0 \right\rangle $ is the ground state, $ \left| 1 \right\rangle $ and $ \left| 2 \right\rangle $ are the direct exciton state, $ \left| 3 \right\rangle $ and $ \left| 4 \right\rangle $ represent the indirect exciton state, and $ T{e_1}$ and $ T{e_2}$ represent the strength of tunneling coupling between the intermediate quantum dot and the left and right quantum dot, respectively.

    图 2  (a) 色散系数和 (b) 非线性系数的虚部与实部的比值随量子点间隧穿强度的变化关系. 图中所选参数已在正文中给出

    Fig. 2.  The ratio of the imaginary part to the real part of (a) dispersion coefficient and (b) nonlinear coefficient as a function of tunneling strength of the quantum inter-dot. The parameters used are given in the text.

    图 3  不同时刻线性探测光的两偏振分量(a) $ {\left| {{\varOmega _{{\rm{p}}1}}/{U_0}} \right|^2}$和(b)$ {\left| {{\varOmega _{{\rm{p}}2}}/{U_0}} \right|^2}$的传播情况, 图中所用参数为$ {C_1} = 1$, $ T{e_1} = T{e_2} = 2.16\;{\rm{meV}}$, 其他的参数已在文中给出

    Fig. 3.  The propagation behaviors of two polarized components (a) $ {\left| {{\varOmega _{{\rm{p}}1}}/{U_0}} \right|^2}$ and (b) $ {\left| {{\varOmega _{{\rm{p}}2}}/{U_0}} \right|^2}$ of the linear probe field under the different time. The parameters used are $ {C_1} = 1$, $ T{e_1} = T{e_2} = 2.16\;{\rm{meV}}$. Other parameters used are given in the text.

    图 4  当两点间隧穿强度均为2.16 meV时, 孤子对在不同初相位差时的碰撞行为 (a) $ {\theta _1} = 0$; (b) $ {\theta _1} = {{\text{π}} / 4}$; (c) $ {\theta _1} = {{\text{π}} / 2}$; (d) $ {\theta _1} = {{\text{π}} }$

    Fig. 4.  The collision behaviors of two solitons with the different initial phase differences under the condition that both tunneling strengths are 2.16 meV: (a) $ {\theta _1} = 0$; (b) $ {\theta _1} = {{\text{π}} / 4}$; (c) $ {\theta _1} = {{\text{π}} / 2}$; (d) $ {\theta _1} = {{\text{π}} }$.

    图 5  左旋偏振光的振幅随着点间隧穿强度变化关系. 图中所用各参数已在文中给出

    Fig. 5.  The amplitude of the left-handed polarized light as a function of the tunneling strength of the inter-dot. The parameters used are given in the text.

    图 6  当隧穿强度为4.32 meV时, 孤子对在不同初相位差时的碰撞行为 (a) $ {\theta _1} = 0$; (b) $ {\theta _1} = {{\text{π}} / 4}$; (c) $ {\theta _1} = {{\text{π}} / 2}$; (d) $ {\theta _1} = {{\text{π}} }$

    Fig. 6.  When the tunneling strength is 4.32 meV, the collision behaviors of two solitons with the different initial phase: (a) $ {\theta _1} = 0$; (b) $ {\theta _1} = {{\text{π}} / 4}$; (c) $ {\theta _1} = {{\text{π}} / 2}$; (d) $ {\theta _1} = {{\text{π}} }$.

  • [1]

    Scott A C, Chu F Y F, McLaughlin D W 1973 P IEEE 61 1443Google Scholar

    [2]

    Dudley J M, Taylor J R 2009 Nat. Photonics 3 85Google Scholar

    [3]

    Song W W, Li Q Y, Li Z D, Fu G S 2010 Chin. Phys. B 19 070503Google Scholar

    [4]

    Wang Q, Wen L, Li Z D 2012 Chin. Phys. B 21 080501Google Scholar

    [5]

    Li Z D, Wang Y Y, He P B 2019 Chin. Phys. B 28 010504Google Scholar

    [6]

    Mollenauer L F, Stolen R H, Gordon J P 1980 Phys. Rev. Lett. 45 1095Google Scholar

    [7]

    Haus H A, Wong W S 1996 Rev. Mod. Phys. 68 423Google Scholar

    [8]

    Essiambre R J, Agrawal G P 1996 Opt. Lett. 21 116Google Scholar

    [9]

    Xie C, Karlsson M, Andrekson P A, Sunnerud H, Li J 2002 IEEE J. Sel. Top. Quantum Electron. 8 575Google Scholar

    [10]

    Badraoui N, Berceli T, Singh S 2017 19th International Conference on Transparent Optical Networks (ICTON) Girona, Spain, July 2–6, 2017 p1

    [11]

    Li Z D, He P B, Li L, Liang J Q, Liu W M 2005 Phys. Rev. A 71 053611Google Scholar

    [12]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611Google Scholar

    [13]

    Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613Google Scholar

    [14]

    Zhang X F, Zhang P, He W Q, Lin X X 2011 Chin. Phys. B 20 020307Google Scholar

    [15]

    Yao S F, Li Q Y, Li Z D 2011 Chin. Phys. B 20 110307Google Scholar

    [16]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [17]

    Harris S E 1997 Phys. Today 50 36Google Scholar

    [18]

    Kang H, Zhu Y 2003 Phys. Rev. Lett. 91 093601Google Scholar

    [19]

    Kasapi A, Jain M, Yin G Y 1995 Phys. Rev. Lett. 74 2447Google Scholar

    [20]

    Hau L V, Harris S E, Zachary D, Cyrus H B 1999 Nature 397 594Google Scholar

    [21]

    唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国 2017 物理学报 66 034202Google Scholar

    Tang H, Wang D L, Zhang W X, Ding J W, Xiao S G 2017 Acta. Phys. Sin. 66 034202Google Scholar

    [22]

    Wu Y, Deng L 2004 Opt. Lett. 29 2064Google Scholar

    [23]

    Wu Y, Deng L 2004 Phys. Rev. Lett. 93 143904Google Scholar

    [24]

    Huang G X, Hang C, Deng L 2008 Phys. Rev. A 77 011803Google Scholar

    [25]

    Kumar V R, Radha R, Wadati M 2008 Phys. Rev. A 78 041803Google Scholar

    [26]

    Chen Y, Bai Z, Huang G X 2014 Phys. Rev. A 89 023835Google Scholar

    [27]

    Gammon D, Snow E S, Shanabrook B V, Katzer D S, Park D, 1996 Science 273 87Google Scholar

    [28]

    Borr P, Langbein W, Schneider S, Woggon U, Sellin R L, Ouyang D, Bimberg D 2001 Phys. Rev. Lett. 87 157401Google Scholar

    [29]

    Guo R H, Shi H Y, Sun X D 2005 Photonics Asia 2004; Optoelectronics, Microelectronics, and Nanotech Beijing, China, November 8–11, 2004 p313

    [30]

    Borges H S, Sanz L, Villas-Bôas J M, Alcalde A M 2010 Phys. Rev. B 81 075322Google Scholar

    [31]

    Högele A, Seidl S, Kroner M, Karrai K, Warburton R J, Gerardot B D, Petroff P M 2004 Phys. Rev. Lett. 93 217401Google Scholar

    [32]

    Yang W X, Chen A X, Lee R K, Wu Y 2011 Phys. Rev. A 84 013835Google Scholar

    [33]

    Kuo D M T, Guo G Y, Chang Y C 2001 Appl. Phys. Lett. 79 3851Google Scholar

    [34]

    Kouklin N, Menon L, Bandyopadhyay S 2002 Appl. Phys. Lett. 80 1649Google Scholar

    [35]

    Borges H S, Sanz L, Villas-Bôas J M, Diniz Neto O O, Alcalde A M 2012 Phys. Rev. B 85 115425Google Scholar

    [36]

    Yuan C H, Zhu K D 2006 Appl. Phys. Lett. 89 052115Google Scholar

    [37]

    She Y C, Zheng X J, Wang D L, Zhang W X 2013 Opt. Express 21 17392Google Scholar

    [38]

    Tian S C, Wan R G, Tong C Z, Fu X H, Cao J S, Ning Y Q 2015 Laser Phys. Lett. 12 125203Google Scholar

    [39]

    Wang J Y, Huang S, Huang G Y, Pan D, Zhao J, Xu H Q 2017 Nano Lett. 17 4158Google Scholar

    [40]

    Grove-Rasmussen K, Jørgensen H I, Hayashi T, Lindelof P E, Fujisawa T 2008 Nano Lett. 8 1055Google Scholar

    [41]

    Saraga D S, Loss D 2003 Phys. Rev. Lett. 90 166803Google Scholar

    [42]

    Fafard S, Spanner M, McCaffrey J P, Wasilewski Z R 2000 Appl. Phys. Lett. 76 2268Google Scholar

    [43]

    Beirne G J, Hermannstädter C, Wang L, Rastelli A, Schmidt O G, Michler P 2006 Phys. Rev. Lett. 96 137401Google Scholar

    [44]

    Krause B, Metzger T H, Rastelli A, Songmuang R, Kiravittaya S, Schmidt O G 2005 Phys. Rev. B 72 085339Google Scholar

    [45]

    Hang C, Huang G X 2008 Phys. Rev. A 77 033830Google Scholar

    [46]

    佘艳超, 张蔚曦, 王登龙 2011 物理学报 60 064205Google Scholar

    She Y C, Zhang W X, Wang D L 2011 Acta. Phys. Sin. 60 064205Google Scholar

    [47]

    Si L G, Yang W X, Lü X Y, Li J H, Yang X X 2009 Eur. Phys. J. D 55 161Google Scholar

  • [1] 谭聪, 王登龙, 董耀勇, 丁建文. V型三能级金刚石氮空位色心电磁诱导透明体系中孤子的存取. 物理学报, 2024, 73(10): 107601. doi: 10.7498/aps.73.20232006
    [2] 王胤, 王壬颍, 陈桥, 邓永和. 点间隧穿耦合对四能级三量子点电磁感应透明介质孤子动力学的影响. 物理学报, 2024, 73(4): 044202. doi: 10.7498/aps.73.20231194
    [3] 王胤, 周驷杰, 陈桥, 邓永和. 能级构型对InAs/GaAs量子点电磁感应透明介质中光孤子存储的影响. 物理学报, 2023, 72(8): 084204. doi: 10.7498/aps.72.20221965
    [4] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究. 物理学报, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [5] 谭康伯, 路宏敏, 官乔, 张光硕, 陈冲冲. 电磁诱导透明暗孤子的耗散变分束缚分析. 物理学报, 2018, 67(6): 064207. doi: 10.7498/aps.67.20172567
    [6] 牛海莎, 祝连庆, 宋建军, 董明利, 娄小平. 激光器内腔频差对双折射外腔激光回馈系统输出影响的理论及实验研究. 物理学报, 2018, 67(15): 154201. doi: 10.7498/aps.67.20180230
    [7] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转. 物理学报, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [8] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [9] 黄翔东, 孟天伟, 丁道贤, 王兆华. 前后向子分段相位差频率估计法. 物理学报, 2014, 63(21): 214304. doi: 10.7498/aps.63.214304
    [10] 周青春, 狄尊燕. 声子对隧穿量子点分子辐射场系统量子相位的影响. 物理学报, 2013, 62(13): 134206. doi: 10.7498/aps.62.134206
    [11] 岳松, 张兆传, 高冬平. 阻抗匹配条件下磁控管的注入锁频. 物理学报, 2013, 62(17): 178401. doi: 10.7498/aps.62.178401
    [12] 罗群, 黄林海, 顾乃庭, 李斐, 饶长辉. 相位差波前检测方法应用于平移误差检测的实验研究. 物理学报, 2012, 61(6): 069501. doi: 10.7498/aps.61.069501
    [13] 李斐, 饶长辉. 基于相位差混合处理方法的高分辨力成像技术. 物理学报, 2012, 61(2): 029502. doi: 10.7498/aps.61.029502
    [14] 李斐. 相位差图像复原技术研究. 物理学报, 2012, 61(23): 230203. doi: 10.7498/aps.61.230203
    [15] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [16] 杨丽君, 马立金, 吕东启, 张连水. 四能级系统中相位控制电磁诱导透明研究. 物理学报, 2011, 60(10): 104205. doi: 10.7498/aps.60.104205
    [17] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [18] 李政颖, 王洪海, 姜宁, 程松林, 赵磊, 余鑫. 光纤气体传感器解调方法的研究. 物理学报, 2009, 58(6): 3821-3826. doi: 10.7498/aps.58.3821
    [19] 黄春福, 郭 儒, 刘思敏. 饱和对数非线性介质中非相干孤子碰撞对相干性的改善. 物理学报, 2006, 55(3): 1218-1223. doi: 10.7498/aps.55.1218
    [20] 刘 明, 王子欧, 何宇亮, 江兴流. 通过纳米硅中量子点的共振隧穿. 物理学报, 1998, 47(4): 699-704. doi: 10.7498/aps.47.699
计量
  • 文章访问数:  5875
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-20
  • 修回日期:  2020-05-22
  • 上网日期:  2020-06-05
  • 刊出日期:  2020-09-05

/

返回文章
返回