搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外尔超构材料里频率分离外尔点的数值设计

周萧溪 胡传灯 陆伟新 赖耘 侯波

引用本文:
Citation:

外尔超构材料里频率分离外尔点的数值设计

周萧溪, 胡传灯, 陆伟新, 赖耘, 侯波

Numerical design of frequency-split Weyl points in Weyl metamaterial

Zhou Xiao-Xi, Hu Chuan-Deng, Lu Wei-Xin, Lai Yun, Hou Bo
PDF
HTML
导出引用
  • 外尔半金属是指三维能带结构具有手性拓扑点简并特征的无能隙固体材料, 并且简并点附近的色散关系遵从外尔方程的描述. 它具有很多独特的电子输运性质, 比如: 费米弧表面态、负磁阻效应、手性朗道能级等. 类比电子系统的外尔半金属材料, 人们设计出理想外尔超构材料, 在电磁波体系里实现了频率一致的外尔点简并. 本文打破这种超构材料的镜面对称性, 通过数值计算发现了原本频率一致的外尔点出现了依赖手性的频移, 频移的正负由外尔点的手性决定, 因此实现了手性不同的外尔点在频率上的分离, 同时也检验了$\left\langle {001} \right\rangle $晶面上外尔点之间的费米弧表面态.
    Weyl semimetal has the massless and chiral low-energy electronic excitation charateristic, and its quasi-particle behavior can be described by Weyl equation, and may lead to appealing transport properties, such as Fermi arc surface state, negative magnetic resistance, chiral Landau level, etc. By analogous with Weyl semimetal, one has realized Weyl point degeneracy of electromagnetic wave in an ideal Weyl metamaterial. In this article, by breaking the mirror symmetry of the saddle-shaped meta-atom structure, we theoretically investigate chirality-dependent split and shift effect of Weyl point frequencies which would otherwise be identical. The frequency shift can be tuned by the symmetry-broken intensity. Finally, we study the Fermi arc surface state connecting two Weyl points on $\left\langle {001} \right\rangle $ crystal surface.
      通信作者: 胡传灯, chuae@connect.ust.hk ; 侯波, houbo@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11474212)资助的课题
      Corresponding author: Hu Chuan-Deng, chuae@connect.ust.hk ; Hou Bo, houbo@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474212)
    [1]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (New York: Holt, Rinehart and Winston) pp284–311

    [2]

    张智强, 蒋庆东, 陈垂针, 江华 2018 物理学进展 38 101Google Scholar

    Zhang Z Q, Jiang Q D, Chen C Z, Jiang H 2018 Progr. Phys. 38 101Google Scholar

    [3]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [4]

    Burkov A A, Balents L 2011 Phys. Rev. Lett. 107 127205Google Scholar

    [5]

    Xu G, Weng H M, Wang Z J, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [6]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [7]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M, Zahid 2015 Science 349 613Google Scholar

    [8]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 0110291

    [9]

    Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [10]

    Huang L N, Mccormick T M, Ochi M, Zhao Z Y, Suzuki M T, Arita R, Wu Y, Mou D X, Cao H B, Yan J Q, Trivedi N, Kaminski A 2016 Nat. Mater. 15 1155Google Scholar

    [11]

    Lu L, Joannopoulos J D, Soljacic M 2014 Nat. Photonics 8 821Google Scholar

    [12]

    Lu L, Wang Z Y, Ye D X, Ran L X, Fu L, Joannopoulos J D, Soljacic M 2015 Science 349 622Google Scholar

    [13]

    Chen W J, Xiao M, Chan C T 2016 Nat. Commun. 7 13038Google Scholar

    [14]

    Noh J, Huang S, Leykam D, Chong Y D, Chen K P, Rechtsman M C 2017 Nat. Phys. 13 611Google Scholar

    [15]

    Yang B, Guo Q H, Tremain B, Barr L E, Gao W L, Liu H C, Beri B, Xiang Y J, Fan D Y, Hibbins A P, Zhang S 2017 Nat. Commun. 8 7Google Scholar

    [16]

    Yang Y H, Gao Z, Xue H R, Zhang L, He M J, Yang Z J, Singh R J, Chong Y D, Zhang B L, Chen H S 2019 Nature 565 622Google Scholar

    [17]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [18]

    Zhang X J, Wang H X, Lin Z K, Tian Y, Xie B Y, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582Google Scholar

    [19]

    Yang B, Guo Q, Tremain B, Liu R, Barr L E, Yan Q, Gao W, Liu H, Xiang Y, Chen J, Fang C, Hibbins A, Lu L, Zhang S 2018 Science 359 1013Google Scholar

    [20]

    Nguyen V H, Charlier J C 2018 Phys. Rev. B 97 235113Google Scholar

    [21]

    Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y, Yao Y, Yang S A 2017 NPJ Quantum Mater. 2 23Google Scholar

    [22]

    Westström A, Ojanen T 2017 Phys. Rev. X 7 041026

    [23]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [24]

    Urzhumov Y A, Smith D R 2010 Phys. Rev. Lett. 105 163901Google Scholar

    [25]

    Lu H Z 2019 Natl. Sci. Rev. 6 208Google Scholar

    [26]

    Zhang C, Zhang Y, Yuan X, Lu S H, Zhang J L, Narayan A, Liu Y W, Zhang H Q, Ni Z L, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C, Xiu F X 2019 Nature 565 331Google Scholar

  • 图 1  (a)马鞍形超构原子, 灰色阴影为z方向的截面; (b)−(d)圆柱在截面上的正方形分布到菱形分布的变化过程

    Fig. 1.  (a) Unit cell where the gray surface is a cut plane along z direction; (b)−(d) the process of changing the positions of four metallic rods from square to rhombus structure.

    图 2  (a)$ \theta $ = 77.31°的晶胞结构; (b)第一布里渊区示意图, 蓝色点和红色点代表不同手性的外尔点, 分布在$ {k}_{z} $ = 0的切面; (c)数值计算的能带结构, 蓝色阴影代表只有外尔点简并能带出现的频率区间

    Fig. 2.  (a) Unit cell where $ \theta $ = 77.31°; (b) the first Brillouin zone where blue dots and red dots represent, respectively, the Weyl points of different chirality; (c) the numerically calculated band structure, where shaded region denotes the frequency range with only Weyl degenerate bands appears.

    图 3  (a)−(d) 不同$ \theta $角度下的能带结构, 分别对应$ \theta $ = 90°, 81.18°, 77.31°, 60°, 其中示意插图是超构原子的顶视图, 蓝色阴影代表只有外尔点简并能带出现的频率区间

    Fig. 3.  (a)−(d) Band structure with $ \theta $ = 90°, 81.18°, 77.31° and 60°, respectively. The inset is the top view of meta-atom, and the shaded region denotes the frequency range with only Weyl degenerate bands appears.

    图 4  (a) 第一布里渊区内两个切面示意图, 黄色平面代表$ {k}_{x} $ = 0.432的切面, 虚线代表两个切面的交线; (b) $ {k}_{x} $ = 0.432时的体投影能带(灰色曲线)和$\left\langle {001} \right\rangle $晶面的表面态(蓝色和红色曲线); (c) 相应的电场强度剖面图, 标记对应于(b)里的位置, 水平方向为z方向; (d) 第一布里渊区内两个切面示意图, 黄色平面代表$ {k}_{x}={k}_{y} $的切面, 虚线代表两个切面的交线; (e) Γ M方向的体投影能带(灰色曲线)和$\left\langle {001} \right\rangle $晶面的表面态(桔色曲线); (f)相应的电场强度剖面图, 标记对应于(e)里的位置, 水平方向为z方向

    Fig. 4.  (a) Two cut planes in the first Brillouin zone where the yellow plane represents the plane of $ {k}_{x} $ = 0.432 and the dashed line denotes the intersecting line of two planes; (b) the projected bulk bands (grey curves) and the associated $\left\langle {001} \right\rangle $ surface state (blue and red curves) at $ {k}_{x} $ = 0.432; (c) the magnitude of E -fields of the eigenmodes for different marks in (b), where z axis is horizontal; (d) two cut planes in the first Brillouin zone where the yellow plane represents the plane of $ {k}_{x}={k}_{y} $ and the dashed line denotes the intersecting line of two planes; (e) the projected bulk bands (grey curves) and the associated $\left\langle {001} \right\rangle $ surface state (orange curves) along ΓM; (f) the magnitude of E -fields of the eigenmodes for different marks in (e), where z axis is horizontal.

    表 1  外尔点的频移效应

    Table 1.  Frequency shift of Weyl points.

    角度/(°)外尔点频率/GHz频差/GHz带宽/GHz
    $ {f}_{1} $中心频率$ {f}_{2} $
    9015.7015.7015.7003.07
    81.1815.9015.6915.480.432.29
    77.3116.0715.7015.330.741.93
    6016.4015.58514.771.630
    下载: 导出CSV
  • [1]

    Ashcroft N W, Mermin N D 1976 Solid State Physics (New York: Holt, Rinehart and Winston) pp284–311

    [2]

    张智强, 蒋庆东, 陈垂针, 江华 2018 物理学进展 38 101Google Scholar

    Zhang Z Q, Jiang Q D, Chen C Z, Jiang H 2018 Progr. Phys. 38 101Google Scholar

    [3]

    Wan X G, Turner A M, Vishwanath A, Savrasov S Y 2011 Phys. Rev. B 83 205101Google Scholar

    [4]

    Burkov A A, Balents L 2011 Phys. Rev. Lett. 107 127205Google Scholar

    [5]

    Xu G, Weng H M, Wang Z J, Dai X, Fang Z 2011 Phys. Rev. Lett. 107 186806Google Scholar

    [6]

    Armitage N P, Mele E J, Vishwanath A 2018 Rev. Mod. Phys. 90 015001Google Scholar

    [7]

    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C L, Sankar R, Chang G Q, Yuan Z J, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B K, Bansil A, Chou F C, Shibayev P P, Lin H, Jia S, Hasan M, Zahid 2015 Science 349 613Google Scholar

    [8]

    Weng H M, Fang C, Fang Z, Bernevig B A, Dai X 2015 Phys. Rev. X 5 0110291

    [9]

    Soluyanov A A, Gresch D, Wang Z J, Wu Q S, Troyer M, Dai X, Bernevig B A 2015 Nature 527 495Google Scholar

    [10]

    Huang L N, Mccormick T M, Ochi M, Zhao Z Y, Suzuki M T, Arita R, Wu Y, Mou D X, Cao H B, Yan J Q, Trivedi N, Kaminski A 2016 Nat. Mater. 15 1155Google Scholar

    [11]

    Lu L, Joannopoulos J D, Soljacic M 2014 Nat. Photonics 8 821Google Scholar

    [12]

    Lu L, Wang Z Y, Ye D X, Ran L X, Fu L, Joannopoulos J D, Soljacic M 2015 Science 349 622Google Scholar

    [13]

    Chen W J, Xiao M, Chan C T 2016 Nat. Commun. 7 13038Google Scholar

    [14]

    Noh J, Huang S, Leykam D, Chong Y D, Chen K P, Rechtsman M C 2017 Nat. Phys. 13 611Google Scholar

    [15]

    Yang B, Guo Q H, Tremain B, Barr L E, Gao W L, Liu H C, Beri B, Xiang Y J, Fan D Y, Hibbins A P, Zhang S 2017 Nat. Commun. 8 7Google Scholar

    [16]

    Yang Y H, Gao Z, Xue H R, Zhang L, He M J, Yang Z J, Singh R J, Chong Y D, Zhang B L, Chen H S 2019 Nature 565 622Google Scholar

    [17]

    Xie B Y, Su G X, Wang H F, Su H, Shen X P, Zhan P, Lu M H, Wang Z L, Chen Y F 2019 Phys. Rev. Lett. 122 233903Google Scholar

    [18]

    Zhang X J, Wang H X, Lin Z K, Tian Y, Xie B Y, Lu M H, Chen Y F, Jiang J H 2019 Nat. Phys. 15 582Google Scholar

    [19]

    Yang B, Guo Q, Tremain B, Liu R, Barr L E, Yan Q, Gao W, Liu H, Xiang Y, Chen J, Fang C, Hibbins A, Lu L, Zhang S 2018 Science 359 1013Google Scholar

    [20]

    Nguyen V H, Charlier J C 2018 Phys. Rev. B 97 235113Google Scholar

    [21]

    Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y, Yao Y, Yang S A 2017 NPJ Quantum Mater. 2 23Google Scholar

    [22]

    Westström A, Ojanen T 2017 Phys. Rev. X 7 041026

    [23]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [24]

    Urzhumov Y A, Smith D R 2010 Phys. Rev. Lett. 105 163901Google Scholar

    [25]

    Lu H Z 2019 Natl. Sci. Rev. 6 208Google Scholar

    [26]

    Zhang C, Zhang Y, Yuan X, Lu S H, Zhang J L, Narayan A, Liu Y W, Zhang H Q, Ni Z L, Liu R, Choi E S, Suslov A, Sanvito S, Pi L, Lu H Z, Potter A C, Xiu F X 2019 Nature 565 331Google Scholar

  • [1] 吴海滨, 刘迎娣, 刘彦军, 李金花, 刘建军. 量子点耦合强度对手性Majorana费米子共振交换的调制. 物理学报, 2024, 73(13): 130502. doi: 10.7498/aps.73.20240739
    [2] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [3] 邹丹旦, 涂忱胜, 胡平子, 李春华, 钱沐杨. 脉冲电磁驱动低温螺旋流注放电机理. 物理学报, 2023, 72(11): 115204. doi: 10.7498/aps.72.20230034
    [4] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展. 物理学报, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [5] 关欣, 陈刚, 潘婧, 游秀芬, 桂志国. 人造霍尔管中的基态手性流. 物理学报, 2022, 71(16): 160303. doi: 10.7498/aps.71.20220293
    [6] 祝可嘉, 郭志伟, 陈鸿. 实验观测非厄米系统奇异点的手性翻转现象. 物理学报, 2022, 71(13): 131101. doi: 10.7498/aps.71.20220842
    [7] 史书姝, 肖姗, 许秀来. 不同抗磁行为量子点发光在波导中的手性传输. 物理学报, 2022, 71(6): 067801. doi: 10.7498/aps.71.20211858
    [8] 陈泽锐, 刘光存, 俞振华. 谐振子势阱中双费米原子光钟的碰撞频移. 物理学报, 2021, 70(18): 180602. doi: 10.7498/aps.70.20210243
    [9] 余鹏, 王保清, 吴小虎, 王文昊, 徐红星, 王志明. 蜂窝状椭圆孔洞吸收器圆二色性研究. 物理学报, 2020, 69(20): 207101. doi: 10.7498/aps.69.20200843
    [10] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [11] 俞杭, 徐锡方, 牛谦, 张力发. 声子角动量与手性声子. 物理学报, 2018, 67(7): 076302. doi: 10.7498/aps.67.20172407
    [12] 邹丹旦, 蔡智超, 吴鹏, 李春华, 曾晗, 张红丽, 崔春梅. 脉冲放电产生螺旋流注的等离子体特性研究. 物理学报, 2017, 66(15): 155202. doi: 10.7498/aps.66.155202
    [13] 王卫东, 李龙龙, 杨晨光, 李明林. 单层二硫化钼纳米带弛豫性能的分子动力学研究. 物理学报, 2016, 65(16): 160201. doi: 10.7498/aps.65.160201
    [14] 强帆, 朱京平, 张云尧, 张宁, 李浩, 宗康, 曹莹瑜. 通道调制型偏振成像系统的偏振参量重建. 物理学报, 2016, 65(13): 130202. doi: 10.7498/aps.65.130202
    [15] 林志立. 左手性介质透镜系统的赛德尔像差特性研究. 物理学报, 2007, 56(10): 5758-5765. doi: 10.7498/aps.56.5758
    [16] 彭永进, 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁手性碳纳米管Γ点E1和E2振动模式. 物理学报, 2006, 55(6): 2860-2864. doi: 10.7498/aps.55.2860
    [17] 沈建其, 庄 飞. 双轴螺旋向性负材料中极化光波的左-右旋偏振耦合. 物理学报, 2004, 53(6): 2000-2004. doi: 10.7498/aps.53.2000
    [18] 徐涵, 常文蔚, 银燕. 尾波场中传播的激光脉冲的频率漂移. 物理学报, 2004, 53(1): 171-175. doi: 10.7498/aps.53.171
    [19] 陶卫东, 夏海平, 白贵儒, 董建峰, 聂秋华. 固体手性材料的研制及其特性测试. 物理学报, 2002, 51(3): 685-689. doi: 10.7498/aps.51.685
    [20] 郑仰东, 李俊庆, 李淳飞. 耦合双振子模型手性分子的微观参量对和频过程的影响. 物理学报, 2002, 51(6): 1279-1285. doi: 10.7498/aps.51.1279
计量
  • 文章访问数:  6852
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-09
  • 修回日期:  2020-03-11
  • 上网日期:  2020-05-12
  • 刊出日期:  2020-08-05

/

返回文章
返回