搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mn掺杂对KNbO3和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响

徐泽 娄路遥 赵纯林 汤浩正 刘亦轩 李昭 齐晓梅 张波萍 李敬锋 龚文 王轲

引用本文:
Citation:

Mn掺杂对KNbO3和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响

徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲

Effect of manganese doping on ferroelectric and piezoelectric properties of KNbO3 and (K0.5Na0.5)NbO3 lead-free ceramics

Xu Ze, Lou Lu-Yao, Zhao Chun-Lin, Tang Hao-Cheng, Liu Yi-Xuan, Li Zhao, Qi Xiao-Mei, Zhang Bo-Ping, Li Jing-Feng, Gong Wen, Wang Ke
PDF
HTML
导出引用
  • (K0.5Na0.5)NbO3基无铅压电陶瓷具有出色的综合铁电压电性能, 已经初步满足了部分实际应用场景的需求. 近期的研究发现, 某些元素的掺杂对优化(K0.5Na0.5)NbO3基陶瓷的机电耦合性能起着至关重要的作用. 本文将MnO2添加到KNbO3和(K0.5Na0.5)NbO3两种压电陶瓷中, 对比研究了Mn掺杂对两种陶瓷微观结构和宏观电学性能的不同影响, 分析了造成这些差异的微观物理机理. 实验结果表明, 掺杂后的两种陶瓷中均存在Mn2+. Mn掺杂会使KNbO3陶瓷的铁电畴尺寸减小、居里温度降低、拉曼光谱中的振动峰宽化、相变过程变得弥散, 并呈现出束腰电滞回线和可回复的双极场致应变曲线; 在(K0.5Na0.5)NbO3陶瓷中掺杂Mn后, 其性能变化却显著不同, 陶瓷的铁电畴尺寸无明显变化、居里温度未发生变化、拉曼光谱中的振动峰未发生宽化, 呈现出饱和的矩形电滞回线和不可回复的双极场致应变曲线. 这可能是因为, (K0.5Na0.5)NbO3陶瓷相比KNbO3陶瓷具有更大的离子无序度和晶格畸变, 从而使得Mn掺杂所产生的影响相对减小.
    Potassium sodium niobate ((K0.5Na0.5)NbO3)-based lead-free piezoelectric ceramics are excellent ferroelectric materials and have been demonstrated to have many practical applications. Recent studies have revealed that chemical doping plays a crucial role in optimizing the electromechanical coupling properties of (K0.5Na0.5)NbO3-based piezoelectric ceramics. In this paper, MnO2 is doped into potassium niobate (KNbO3) and (K0.5Na0.5)NbO3 piezoelectric ceramics prepared by the conventional solid-state reaction method. The influences of doped Mn cation on KNbO3 and (K0.5Na0.5)NbO3 piezoelectric ceramics including microstructure and macroscopic electrical properties are systematically investigated. The doping effects of Mn cation on the KNbO3 and (K0.5Na0.5)NbO3 piezoelectric ceramics are significantly different from each other. For the Mn-doped KNbO3 piezoelectric ceramics, the sizes of ferroelectric domains are reduced. Meanwhile, the diffused orthorhombic-tetragonal phase transition is observed, which is accompanied by reducing dielectric loss and Curie temperature, and broadening vibration peaks in Raman spectrum. It is known that the oxygen vacancy can be formed to compensate for the charges created by the acceptor doping of Mn into the B site of perovskite, and thus forming a defect dipole with the acceptor center. From the ferroelectric measurement, a double hysteresis loop (P-E curve) and a recoverable electric-field-induced strain due to the formation of defect dipole are observed. On the contrary, for the Mn-doped (K0.5Na0.5)NbO3 piezoelectric ceramics, the sizes of ferroelectric domains are not reduced. Meanwhile, the Curie temperature and vibration peaks in Raman spectrum are not changed. A rectangular hysteresis loop (P-E curve) and an unrecoverable electric-field-induced strain are observed in the ferroelectric measurement. The difference between these systems might originate from the greater ionic disorder and lattice distortion in (K0.5Na0.5)NbO3 piezoelectric ceramics. The difference in ionic radius between Na+ and K+ can affect the migration and distribution of oxygen vacancies, which makes it difficult to form stable defect dipoles in the Mn-doped (K0.5Na0.5)NbO3 piezoelectric ceramics. The results will serve as an important reference for preparing high-performance (K0.5Na0.5)NbO3-based piezoelectric ceramics via chemical doping.
      通信作者: 张波萍, bpzhang@ustb.edu.cn ; 龚文, gongwen@tsinghua-zj.edu.cn ; 王轲, wang-ke@tsinghua.edu.cn
    • 基金项目: 国家级-国家自然科学基金优秀青年科学基金项目(51822206)
      Corresponding author: Zhang Bo-Ping, bpzhang@ustb.edu.cn ; Gong Wen, gongwen@tsinghua-zj.edu.cn ; Wang Ke, wang-ke@tsinghua.edu.cn
    [1]

    Wang K, Malič B, Wu J 2018 MRS Bull. 43 607Google Scholar

    [2]

    Thong H C, Zhao C, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar

    [3]

    吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 物理学报 67 207701Google Scholar

    Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar

    [4]

    刘涛, 丁爱丽, 何夕云, 郑鑫森, 仇萍荪, 程文秀 2007 无机材料学报 22 469Google Scholar

    Liu T, Ding A L, He X Y, Zheng X S, Qiu P S, Cheng W X 2007 J. Inorg. Mater. 22 469Google Scholar

    [5]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [6]

    Koruza J, Bell A J, Frömling T, Webber K G, Wang K, Rödel J 2018 J. Materiomics 4 13Google Scholar

    [7]

    Liu Q, Zhang Y, Gao J, Zhou Z, Yang D, Lee K Y, Studer A, Hinterstein M, Wang K, Zhang X, Li L, Li J F 2020 Natl. Sci. Rev. 7 355Google Scholar

    [8]

    Zhang J, Pan Z, Guo F F, Liu W C, Ning H, Chen Y B, Lu M H, Yang B, Chen J, Zhang S T, Xing X, Rödel J, Cao W, Chen Y F 2015 Nat. Commun. 6 1Google Scholar

    [9]

    Wang Y, Luo C, Wang S, Chen C, Yuan G, Luo H, Viehland D 2020 Adv. Electron. Mater. 6 1900949Google Scholar

    [10]

    Wu J, Xiao D, Zhu J 2015 Chem. Rev. 115 2559Google Scholar

    [11]

    Mgbemere H E, Herber R P, Schneider G A 2009 J. Eur. Ceram. Soc. 29 1729Google Scholar

    [12]

    Cheng X, Wu J, Lou X, Wang X, Wang X, Xiao D, Zhu J 2014 ACS Appl. Mater. Inter. 6 750Google Scholar

    [13]

    Hao J, Li W, Zhai J, Chen H 2019 Mat. Sci. Eng. R 135 1Google Scholar

    [14]

    Wang K, Yao F Z, Jo W, Gobeljic D, Shvartsman V V, Lupascu D C, Li J F, Rödel J 2013 Adv. Funct. Mater. 23 4079Google Scholar

    [15]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [16]

    Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater. Sci. 98 552Google Scholar

    [17]

    Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lü X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [18]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [19]

    王轲, 沈宗洋, 张波萍, 李敬锋 2014 无机材料学报 29 13Google Scholar

    Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13Google Scholar

    [20]

    Hollenstein E, Davis M, Damjanovic D, Setter N 2005 Appl. Phys. Lett. 87 182905Google Scholar

    [21]

    Birol H, Damjanovic D, Setter N 2005 J. Am. Ceram. Soc. 88 1754Google Scholar

    [22]

    Kim D H, Joung M R, Seo I T, Hur J, Kim J H, Kim B Y, Lee H J, Nahm S 2014 J. Eur. Ceram. Soc. 34 4193Google Scholar

    [23]

    Du H, Li Z, Tang F, Qu S, Pei Z, Zhou W 2006 Mat. Sci. Eng. B 131 83Google Scholar

    [24]

    Lin D, Kwok K W, Chan H L W 2008 J. Alloys Compd. 461 273Google Scholar

    [25]

    Wu L, Zhang J L, Wang C L, Li J C 2008 J. Appl. Phys. 103 084116Google Scholar

    [26]

    Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society 1988 IEEE Standard on Piezoelectricity (New York: IEEE) ANSI/IEEE Std. 176-1987

    [27]

    Thong H C, Xu Z, Zhao C, Lou L Y, Chen S, Zuo S Q, Li J F, Wang K 2019 J. Am. Ceram. Soc. 102 836Google Scholar

    [28]

    Camargo J, Espinosa P A, Zabotto F, Ramajo L, Castro M 2020 J. Alloys Compd. 826 154129Google Scholar

    [29]

    李睿 2015 物理学报 64 167303Google Scholar

    Li R 2015 Acta Phys. Sin. 64 167303Google Scholar

    [30]

    贺连星, 李承恩 2000 无机材料学报 15 293Google Scholar

    He L X, Li C E 2000 J. Inorg. Mater. 15 293Google Scholar

    [31]

    Kamiya T, Suzuki T, Tsurumi T, Daimon M 1992 Jpn. J. Appl. Phys. 31 3058Google Scholar

    [32]

    Yao F Z, Zhang M H, Wang K, Zhou J J, Chen F, Xu B, Li F, Shen Y, Zhang Q H, Gu L, Zhang X W, Li J F 2018 ACS Appl. Mater. Inter. 10 37298Google Scholar

    [33]

    Cheng L Q, Wang K, Yu Q, Li J F 2014 J. Mater. Chem. C 2 1519Google Scholar

    [34]

    Shen Z X, Hu Z P, Chong T C, Beh C Y, Tang S H, Kuok M H 1995 Phys. Rev. B 52 3976

    [35]

    Sundarakannan B, Kakimoto K, Ohsato H 2004 Ferroelectrics 302 175Google Scholar

    [36]

    路朋献, 许德合, 马秋花, 王改民, 侯永改, 周文俊, 栗政新 2007 红外与毫米波学报 26 69Google Scholar

    Lu P X, Xu D H, Ma Q H, Wang G M, Hou Y G, Zhou W J, Li Z X 2007 J. Infrared Millm. W. 26 69Google Scholar

    [37]

    Wang Z, Gu H, Hu Y, Yang K, Hu M, Zhou D, Guan J 2010 Cryst. Eng. Comm. 12 3157Google Scholar

    [38]

    Li J F, Wang K, Zhu F Y, Cheng L Q, Yao F Z 2013 J. Am. Ceram. Soc. 96 3677Google Scholar

    [39]

    刘霄, 徐小敏, 杜慧玲 2018 无机材料学报 33 683Google Scholar

    Liu X, Xu X M, Du H L 2018 J. Inorg. Mater. 33 683Google Scholar

    [40]

    Lee D, Jeon B C, Baek S H, Yang J S, Kim T H, Kim Y S, Yoon J G, Eom C B, Noh T W 2012 Adv. Mater. 24 6490Google Scholar

    [41]

    Ren X 2004 Nat. Mater. 3 91Google Scholar

    [42]

    Feng Z, Ren X 2007 Appl. Phys. Lett. 91 032904Google Scholar

    [43]

    Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar

    [44]

    Steiner S, Seo I T, Ren P, Li M, Keeble D J, Frömling T 2019 J. Am. Ceram. Soc. 102 5295Google Scholar

    [45]

    Herber R P, Schneider G A, Wagner S, Hoffmann M J 2007 Appl. Phys. Lett. 90 252905Google Scholar

    [46]

    Nakamura K, Tokiwa T, Kawamura Y 2002 J. Appl. Phys. 91 9272Google Scholar

    [47]

    Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027Google Scholar

  • 图 1  KN, KN-Mn, KNN和KNN-Mn陶瓷XRD图谱

    Fig. 1.  XRD patterns of KN, KN-Mn, KNN, and KNN-Mn ceramics.

    图 2  经热腐蚀的表面SEM形貌图 (a) KN陶瓷; (b) KN-Mn陶瓷; (c) KNN陶瓷; (d) KNN-Mn陶瓷

    Fig. 2.  SEM images of the thermally etched surface: (a) KN, (b) KN-Mn, (c) KNN, (d) KNN-Mn ceramics.

    图 3  (a)−(d)纵向压电响应模式(VPFM)、(e)−(h)横向压电响应模式(LPFM)下测试的未极化KN, KN-Mn, KNN, KNN-Mn陶瓷的铁电畴形貌图

    Fig. 3.  Domain images of unpoled KN, KN-Mn, KNN, KNN-Mn ceramics tested in (a)−(d) vertical piezoresponse force microscopy (VPFM) and (e)−(h) lateral piezoresponse force microscopy (LPFM).

    图 4  X波段ESR谱图 (a) KN-Mn陶瓷; (b) KNN-Mn陶瓷

    Fig. 4.  X-band ESR spectra: (a) KN-Mn ceramics; (b) KNN-Mn ceramics.

    图 5  (a) KN, KN-Mn, KNN和KNN-Mn陶瓷的拉曼散射光谱图; (b) NbO6八面体三种内部振动模的示意图, 其中V1和V2为拉伸振动模、V5为弯曲振动模

    Fig. 5.  (a) Raman spectra of KN, KN-Mn, KNN, KNN-Mn ceramics; (b) schematic illustration of three internal vibrational modes of NbO6 octahedra. V1 and V2 are stretching modes, and V5 is bending mode.

    图 6  陶瓷的相对介电常数和介电损耗随温度的变化 (a) KN, KN-Mn陶瓷; (b) KNN, KNN-Mn陶瓷

    Fig. 6.  Temperature dependence of dielectric permittivity and dielectric loss of unpoled for ceramics: (a) KN, KN-Mn ceramics; (b) KNN, KNN-Mn ceramics.

    图 7  (a) KN, (b) KN-Mn, (e) KNN, (f) KNN-Mn陶瓷的电滞回线; (c) KN, (d) KN-Mn, (g) KNN, (h) KNN-Mn陶瓷的双极场致应变曲线

    Fig. 7.  Polarization hysteresis loops of (a) KN, (b) KN-Mn, (e) KNN, (f) KNN-Mn ceramics; bipolar piezoelectric strain curves of (c) KN, (d) KN-Mn, (g) KNN, (h) KNN-Mn ceramics.

    表 1  KN, KN-Mn, KNN和KNN-Mn陶瓷的相对密度、压电性能和介电性能

    Table 1.  Relative density, piezoelectric and dielectric properties of KN, KN-Mn, KNN, and KNN-Mn ceramics.

    d33/pC·N–1Relative density/%kpQmθmax/(°)tanδεr (1 kHz)
    KN9092.00.26177660.042576
    KN-Mn8395.10.27185770.015526
    KNN11594.90.2985640.060393
    KNN-Mn10994.30.32330830.024355
    下载: 导出CSV
  • [1]

    Wang K, Malič B, Wu J 2018 MRS Bull. 43 607Google Scholar

    [2]

    Thong H C, Zhao C, Zhou Z, Wu C F, Liu Y X, Du Z Z, Li J F, Gong W, Wang K 2019 Mater. Today 29 37Google Scholar

    [3]

    吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 物理学报 67 207701Google Scholar

    Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar

    [4]

    刘涛, 丁爱丽, 何夕云, 郑鑫森, 仇萍荪, 程文秀 2007 无机材料学报 22 469Google Scholar

    Liu T, Ding A L, He X Y, Zheng X S, Qiu P S, Cheng W X 2007 J. Inorg. Mater. 22 469Google Scholar

    [5]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [6]

    Koruza J, Bell A J, Frömling T, Webber K G, Wang K, Rödel J 2018 J. Materiomics 4 13Google Scholar

    [7]

    Liu Q, Zhang Y, Gao J, Zhou Z, Yang D, Lee K Y, Studer A, Hinterstein M, Wang K, Zhang X, Li L, Li J F 2020 Natl. Sci. Rev. 7 355Google Scholar

    [8]

    Zhang J, Pan Z, Guo F F, Liu W C, Ning H, Chen Y B, Lu M H, Yang B, Chen J, Zhang S T, Xing X, Rödel J, Cao W, Chen Y F 2015 Nat. Commun. 6 1Google Scholar

    [9]

    Wang Y, Luo C, Wang S, Chen C, Yuan G, Luo H, Viehland D 2020 Adv. Electron. Mater. 6 1900949Google Scholar

    [10]

    Wu J, Xiao D, Zhu J 2015 Chem. Rev. 115 2559Google Scholar

    [11]

    Mgbemere H E, Herber R P, Schneider G A 2009 J. Eur. Ceram. Soc. 29 1729Google Scholar

    [12]

    Cheng X, Wu J, Lou X, Wang X, Wang X, Xiao D, Zhu J 2014 ACS Appl. Mater. Inter. 6 750Google Scholar

    [13]

    Hao J, Li W, Zhai J, Chen H 2019 Mat. Sci. Eng. R 135 1Google Scholar

    [14]

    Wang K, Yao F Z, Jo W, Gobeljic D, Shvartsman V V, Lupascu D C, Li J F, Rödel J 2013 Adv. Funct. Mater. 23 4079Google Scholar

    [15]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [16]

    Zheng T, Wu J, Xiao D, Zhu J 2018 Prog. Mater. Sci. 98 552Google Scholar

    [17]

    Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lü X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [18]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [19]

    王轲, 沈宗洋, 张波萍, 李敬锋 2014 无机材料学报 29 13Google Scholar

    Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13Google Scholar

    [20]

    Hollenstein E, Davis M, Damjanovic D, Setter N 2005 Appl. Phys. Lett. 87 182905Google Scholar

    [21]

    Birol H, Damjanovic D, Setter N 2005 J. Am. Ceram. Soc. 88 1754Google Scholar

    [22]

    Kim D H, Joung M R, Seo I T, Hur J, Kim J H, Kim B Y, Lee H J, Nahm S 2014 J. Eur. Ceram. Soc. 34 4193Google Scholar

    [23]

    Du H, Li Z, Tang F, Qu S, Pei Z, Zhou W 2006 Mat. Sci. Eng. B 131 83Google Scholar

    [24]

    Lin D, Kwok K W, Chan H L W 2008 J. Alloys Compd. 461 273Google Scholar

    [25]

    Wu L, Zhang J L, Wang C L, Li J C 2008 J. Appl. Phys. 103 084116Google Scholar

    [26]

    Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society 1988 IEEE Standard on Piezoelectricity (New York: IEEE) ANSI/IEEE Std. 176-1987

    [27]

    Thong H C, Xu Z, Zhao C, Lou L Y, Chen S, Zuo S Q, Li J F, Wang K 2019 J. Am. Ceram. Soc. 102 836Google Scholar

    [28]

    Camargo J, Espinosa P A, Zabotto F, Ramajo L, Castro M 2020 J. Alloys Compd. 826 154129Google Scholar

    [29]

    李睿 2015 物理学报 64 167303Google Scholar

    Li R 2015 Acta Phys. Sin. 64 167303Google Scholar

    [30]

    贺连星, 李承恩 2000 无机材料学报 15 293Google Scholar

    He L X, Li C E 2000 J. Inorg. Mater. 15 293Google Scholar

    [31]

    Kamiya T, Suzuki T, Tsurumi T, Daimon M 1992 Jpn. J. Appl. Phys. 31 3058Google Scholar

    [32]

    Yao F Z, Zhang M H, Wang K, Zhou J J, Chen F, Xu B, Li F, Shen Y, Zhang Q H, Gu L, Zhang X W, Li J F 2018 ACS Appl. Mater. Inter. 10 37298Google Scholar

    [33]

    Cheng L Q, Wang K, Yu Q, Li J F 2014 J. Mater. Chem. C 2 1519Google Scholar

    [34]

    Shen Z X, Hu Z P, Chong T C, Beh C Y, Tang S H, Kuok M H 1995 Phys. Rev. B 52 3976

    [35]

    Sundarakannan B, Kakimoto K, Ohsato H 2004 Ferroelectrics 302 175Google Scholar

    [36]

    路朋献, 许德合, 马秋花, 王改民, 侯永改, 周文俊, 栗政新 2007 红外与毫米波学报 26 69Google Scholar

    Lu P X, Xu D H, Ma Q H, Wang G M, Hou Y G, Zhou W J, Li Z X 2007 J. Infrared Millm. W. 26 69Google Scholar

    [37]

    Wang Z, Gu H, Hu Y, Yang K, Hu M, Zhou D, Guan J 2010 Cryst. Eng. Comm. 12 3157Google Scholar

    [38]

    Li J F, Wang K, Zhu F Y, Cheng L Q, Yao F Z 2013 J. Am. Ceram. Soc. 96 3677Google Scholar

    [39]

    刘霄, 徐小敏, 杜慧玲 2018 无机材料学报 33 683Google Scholar

    Liu X, Xu X M, Du H L 2018 J. Inorg. Mater. 33 683Google Scholar

    [40]

    Lee D, Jeon B C, Baek S H, Yang J S, Kim T H, Kim Y S, Yoon J G, Eom C B, Noh T W 2012 Adv. Mater. 24 6490Google Scholar

    [41]

    Ren X 2004 Nat. Mater. 3 91Google Scholar

    [42]

    Feng Z, Ren X 2007 Appl. Phys. Lett. 91 032904Google Scholar

    [43]

    Voas B K, Usher T M, Liu X, Li S, Jones J L, Tan X, Cooper V R, Beckman S P 2014 Phys. Rev. B 90 024105Google Scholar

    [44]

    Steiner S, Seo I T, Ren P, Li M, Keeble D J, Frömling T 2019 J. Am. Ceram. Soc. 102 5295Google Scholar

    [45]

    Herber R P, Schneider G A, Wagner S, Hoffmann M J 2007 Appl. Phys. Lett. 90 252905Google Scholar

    [46]

    Nakamura K, Tokiwa T, Kawamura Y 2002 J. Appl. Phys. 91 9272Google Scholar

    [47]

    Qin Y, Zhang J, Yao W, Wang C, Zhang S 2015 J. Am. Ceram. Soc. 98 1027Google Scholar

  • [1] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [2] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展. 物理学报, 2020, 69(12): 127707. doi: 10.7498/aps.69.20200288
    [3] 刘泳, 徐志军, 范立群, 伊文涛, 闫春燕, 马杰, 王坤鹏. 多效应铌酸钾钠基透明铁电陶瓷的制备及性能. 物理学报, 2020, 69(24): 247702. doi: 10.7498/aps.69.20201317
    [4] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [5] 刘士余, 余大书, 吕跃凯, 李德军, 曹茂盛. 四方和正交以及单斜相K0.5Na0.5NbO3的结构稳定性和电子结构的第一性原理研究. 物理学报, 2013, 62(17): 177102. doi: 10.7498/aps.62.177102
    [6] 王斌科, 田晓霞, 徐卓, 屈绍波, 李振荣. 铌酸钾钠基无铅透明陶瓷制备及性能. 物理学报, 2012, 61(19): 197703. doi: 10.7498/aps.61.197703
    [7] 赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓. A位等价与非等价取代对(K0.5Na0.5)NbO3陶瓷极化的影响. 物理学报, 2011, 60(10): 107701. doi: 10.7498/aps.60.107701
    [8] 丁南, 唐新桂, 匡淑娟, 伍君博, 刘秋香, 何琴玉. 锰掺杂对Ba(Zr, Ti)O3陶瓷压电与介电性能的影响. 物理学报, 2010, 59(9): 6613-6619. doi: 10.7498/aps.59.6613
    [9] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [10] 康祥喆, 叶 辉. 铁电钾钠铌酸锶钡薄膜电光性能的研究. 物理学报, 2006, 55(9): 4928-4933. doi: 10.7498/aps.55.4928
    [11] 张丽娜, 赵苏串, 郑嘹赢, 李国荣, 殷庆瑞. 复合层状Bi7Ti4NbO21铁电陶瓷的结构与介电和压电性能研究. 物理学报, 2005, 54(5): 2346-2351. doi: 10.7498/aps.54.2346
    [12] 曹晓燕, 叶 辉, 邓年辉, 郭 冰, 顾培夫. 高择优取向硅基含钾铌酸锶钡(K:SBN)薄膜的制备与性能. 物理学报, 2004, 53(7): 2363-2367. doi: 10.7498/aps.53.2363
    [13] 于天燕, 余兵鲲, 王奇, 万尤宝, 潘守夔. 铌酸钾锂晶体及其宽带二次谐波产生. 物理学报, 2000, 49(3): 463-467. doi: 10.7498/aps.49.463
    [14] 边少平, 张景文, 许克彬, 姜全忠, 陈焕矗, 孙大亮. 掺杂钾钠铌酸锶钡光折变晶体的各向异性衍射. 物理学报, 1993, 42(4): 681-689. doi: 10.7498/aps.42.681
    [15] 佘卫龙, 李庆行, 余振新, 高兆兰, 张庆伦, 陈焕矗. 掺锰的钾钠铌酸锶钡晶体中双光束诱导光学二极管效应. 物理学报, 1992, 41(2): 342-346. doi: 10.7498/aps.41.342
    [16] 朱德瑞, 王韧, 谭健华, 莫党. 掺杂的铌酸钾钠锶钡晶体的二波耦合增益系数的研究. 物理学报, 1992, 41(9): 1440-1447. doi: 10.7498/aps.41.1440
    [17] 徐秀英, 张杏奎, 许自然. 铌酸钡钠晶体中铁弹相变的实时观察. 物理学报, 1990, 39(10): 1614-1618. doi: 10.7498/aps.39.1614
    [18] 冯锡淇, 应继锋, 王锦昌, 刘建成. OH-吸收带作为铌酸锂晶体缺陷结构的探针. 物理学报, 1988, 37(12): 2062-2067. doi: 10.7498/aps.37.2062
    [19] 胡梅生, 冯端. 铌酸钡钠和钽酸锂铁电相变的实地观察. 物理学报, 1982, 31(6): 815-819. doi: 10.7498/aps.31.815
    [20] 晶体学室铌酸盐晶体研究组. 铌酸锶钠锂单晶的生长. 物理学报, 1979, 28(2): 229-233. doi: 10.7498/aps.28.229
计量
  • 文章访问数:  13158
  • PDF下载量:  682
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-03-09
  • 刊出日期:  2020-06-20

/

返回文章
返回