搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同类型气泡组成的混合泡群声空化特性

清河美 那仁满都拉

引用本文:
Citation:

不同类型气泡组成的混合泡群声空化特性

清河美, 那仁满都拉

Acoustic cavitation characteristics of mixed bubble groups composed of different types of bubbles

Qinghim,
PDF
HTML
导出引用
  • 声空化实验中经常观察到由许多空化气泡组成的各种泡群结构. 本文利用气泡群及群内任一气泡的 Rayleigh-Plesset 方程并结合van der Waals型过程方程, 研究了不同类型气泡组成的混合泡群中的气泡半径、泡内温度和群内压力脉冲变化规律, 得到以下结果: 相同尺寸相同气体气泡和相同尺寸不同气体气泡组成的两种泡群中气泡所含的不同气体对泡内温度有较明显的影响, 但对气泡半径变化和群内压力脉冲峰值的影响较小; 不同尺寸相同气体气泡和不同尺寸不同气体气泡组成的两种混合泡群中, 随着大气泡数的增多, 大小气泡内温度开始快速下降, 之后大泡内温度逐渐趋近于纯大气泡组成泡群的泡内温度, 小泡内温度逐渐趋近于许多大泡辐射作用下的单一小气泡泡内温度; 气泡崩溃时产生的压力脉冲峰值, 先急剧减小到拐点, 之后平稳增加并逐渐趋近于纯氩气大气泡和纯氦气大气泡组成泡群内的压力脉冲峰值; 群内大气泡数占比对泡群空化特性有重要影响, 只有大气泡数占比达到一定值后泡群中才能出现不同尺寸气泡同时崩溃的现象.
    In this paper, we observe and record the phenomenon of multi-bubble sonoluminescence in phosphoric acid solution which helium is injected into. It is found that a large number of cavitation bubbles are produced in the solution, which can form bubble groups with different shapes and structures, among them the spherical bubble group is a typical one. By the Rayleigh-Plesset equation of bubble group and any bubble in the group with the combination of van der Waals process equation, we study the variations of the bubble radius, temperature of the bubble, pressure pulse in the groups which are composed, respectively, of the bubbles with the same size and the same gas, the bubbles with the same size and different gases, the bubbles with different sizes and the same gas and the bubbles with different sizes and different gases. The results show that for the bubble group composed of the bubbles with the same size and the same gas and the bubble group composed of the bubbles with the same size and different gases, the gas contained in the bubble has a significant effect on the temperature inside the bubble, but has little effect on the bubble radius and the pressure pulse peak within the cluster. Bubble collapse depth of gas with low molecular weight is deeper than that of gas with high molecular weight, but the radius change of rebound stage is smaller than that of the latter. For the bubble group composed of the bubbles with different sizes and the same gas and the bubble group composed of the bubbles with different sizes and different gases, when the total number of bubbles in a bubble group is constant, for the case where there is only one large bubble in the group, the temperature in the large bubble is the highest, which can be higher than the temperature in a single bubble with the same size and the same gas; with the increase of the number of large bubbles in the group, the temperatures in the large and small bubbles both decrease rapidly: the temperature in the large bubbles approaches to the temperature in the bubbles of the bubble group composed of large bubbles with the same gas and the same size, and the temperature in the small bubble gradually approaches to the temperature in small bubble with the same gas under the radiation of many large bubbles. With the increase of the number of large bubbles, the peak value of the pressure pulse in the bubble group first decreases sharply to the inflection point, and then increases steadily to the peak value of the pressure pulse in the bubble group composed of large bubbles with the same gas and the same size. The proportion of large bubbles number in the bubble group has an important influence on the cavitation characteristics of the bubble group, only when the proportion of large bubbles reaches a certain value, can the bubbles of different sizes in the bubble group collapse at the same time, and this conclusion improve and perfect the previous conclusion. The results of this paper will provide some theoretical guidance and help to further explore the cavitation effect and luminescent mechanism of the bubble group.
      通信作者: 那仁满都拉, nrmdlbf@126.com
    • 基金项目: 国家自然科学基金(批准号: 11462019) 和内蒙古自治区研究生科研创新项目(批准号: S2018112002Z)资助的课题
      Corresponding author: , nrmdlbf@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11462019) and the Inner Mongolia Graduate Research Innovation Fund, China (Grant No. S2018112002Z)
    [1]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [2]

    Doinikov A A, Zavtrak S T 1998 J. Acoust. Soc. Am. 99 3849

    [3]

    Mettin R, Luther S, Ohl C D 1999 Ultrason. Sonochem. 6 25Google Scholar

    [4]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [5]

    Nasibullaeva E S, Akhatov I S 2005 Acoust. Phys. 51 705Google Scholar

    [6]

    沈壮志, 吴胜举 2012 物理学报 61 244301Google Scholar

    Shen Z Z, Wu S J 2012 Acta Phys. Sin. 61 244301Google Scholar

    [7]

    王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301Google Scholar

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301Google Scholar

    [8]

    张鹏利, 林书玉, 朱华泽, 张涛 2019 物理学报 68 134301Google Scholar

    Zhang P L, Lin S Y, Zhu H Z, Zhang T 2019 Acta Phys. Sin. 68 134301Google Scholar

    [9]

    苗博雅, 安宇 2015 物理学报 64 204301Google Scholar

    Miao B Y, An Y 2015 Acta Phys. Sin. 64 204301Google Scholar

    [10]

    Zhang Y Y, Chen W Z, Zhang L L, Wang X, Chen Z 2019 Chin. Phys. Lett. 36 034301Google Scholar

    [11]

    清河美, 那仁满都拉 2019 物理学报 68 234302Google Scholar

    Qinghim, Naranmandula 2019 Acta Phys. Sin. 68 234302Google Scholar

    [12]

    Shen Z Z 2020 Chin. Phys. B 29 014304Google Scholar

    [13]

    Sugita N, Ando K, Sugiura T 2017 Ultrason. 77 160Google Scholar

    [14]

    Zhang L L, Chen W Z, Zhang Y Y, Wu Y R, Wang X, Zhao G Y 2020 Chin. Phys. B 29 034303Google Scholar

    [15]

    Liang J F, An Y, Chen W Z 2019 Chin. Phys. Lett. 36 107801Google Scholar

    [16]

    Nasibullaeva E S, Akhatov I S 2013 J. Acoust. Soc. Am. 133 3727Google Scholar

    [17]

    Yasui K 2001 Phys. Rev. E 63 035301Google Scholar

    [18]

    Storey B D, Szeri A J 2002 Phys. Rev. Lett. 88 074301Google Scholar

    [19]

    Lohse D, Breener M P, Dupont T F, Hilgenfeldt S, Johnston B 1997 Phys. Rev. Lett. 78 1359Google Scholar

    [20]

    陈伟中 2014 声空化物理 (北京: 科学出版社) 第297—298 页

    Chen W Z 2014 Sound Cavitation Physics (Beijing: Science Press) pp297–298 (in Chinese)

    [21]

    Hilgenfeldt S, Grossmann S, Lohse D 1999 Phys. Fluids 11 1318Google Scholar

    [22]

    Moshaii A, Faraji M, Tajik-Nezhad S 2010 Ultrason. Sonochem. 18 1148Google Scholar

    [23]

    Faraji M, Moshaii A 2012 Phys. Lett. A 376 2703Google Scholar

    [24]

    Didenko Y T, McNamara III W B, Suslick K S 2000 Phys. Rev. Lett. 84 777Google Scholar

    [25]

    Xu H, Suslick K S 2010 Phys. Rev. Lett. 104 244301Google Scholar

    [26]

    Cairós C, Mettin R 2017 Phys. Rev. Lett. 118 064301Google Scholar

    [27]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309Google Scholar

  • 图 1  实验观察到的注入氦气磷酸溶液中的泡群结构

    Fig. 1.  Experimental observation of bubble structure in injected helium phosphoric acid solution.

    图 2  相同尺寸相同气体气泡组成的四种泡群的声空化特性 (a) 气泡半径变化; (b) 气泡径向速度变化; (c) 气泡崩溃及回弹阶段的半径放大图; (d) 泡群半径变化; (e) 泡群径向速度变化; (f) 气泡内温度变化; (g) 泡群内压力变化

    Fig. 2.  Acoustic cavitation characteristics of four kinds of bubble groups composed of same size and same gas bubbles: (a) Change of bubbles radius; (b) change of bubbles radial velocity; (c) magnified figure of bubbles radius at the stage of collapse and rebound; (d) change of bubble group radius; (e) change of bubble groups radial velocity; (f) change of temperature in bubbles; (g) change of pressure in bubble groups.

    图 3  相同尺寸不同气体气泡组成的两种混合泡群的声空化特性 (a) 气泡半径变化; (b) 气泡径向速度变化; (c) 气泡崩溃及回弹阶段的半径放大图; (d) 泡群半径变化; (e) 泡群径向速度变化; (f) 气泡内温度变化; (g) 泡群内压力变化

    Fig. 3.  Acoustic cavitation characteristics of two kinds of mixed bubble groups composed of same size and different gas bubbles: (a) Change of bubbles radius; (b) change of bubbles radial velocity; (c) magnified figure of bubbles radius at the stage of collapse and rebound; (d) change of bubble group radius; (e) change of bubble groups radial velocity; (f) change of temperature in bubbles; (g) change of pressure in bubble groups.

    图 4  不同尺寸相同气体气泡组成的两种混合泡群的声空化特性 (a) 大泡内最高温度随大气泡数的变化; (b) 小泡内最高温度随大气泡数的变化; (c) 泡群内压力脉冲峰值随大气泡数的变化

    Fig. 4.  Acoustic cavitation characteristics of two kinds of mixed bubble groups composed of different size and same gas bubbles: (a) The change of the maximum temperature in the large bubble with the number of large bubbles; (b) the change of the maximum temperature in the small bubble with the number of large bubbles; (c) the change of the peak of pressure pulse with the number of large bubbles in a bubble groups.

    图 5  氦气泡群中, 大(红实线)、小(黑虚线)气泡的半径变化及对应的群内压力脉冲变化 (a1), (a2) $ N_{1} = 1 $; (b1), (b2) $ N_{1} = 24 $; (c1), (c2) $ N_{1} = 100 $; (d1), (d2) $ N_{1} = 400 $; (e1), (e2) $ N_{1} = 800 $

    Fig. 5.  Radius change of large (red solid line) and small (black dotted line) bubbles in helium bubble group and corresponding pressure pulse change in the group: (a1), (a2) $ N_{1} = 1 $; (b1), (b2) $ N_{1} = 24 $; (c1), (c2) $ N_{1} = 100 $; (d1), (d2) $ N_{1} = 400 $; (e1), (e2) $ N_{1} = 800 $

    图 6  不同尺寸不同气体气泡组成的两种混合泡群的声空化特性 (a) 大泡内最高温度随大气泡数的变化; (b) 小泡内最高温度随大气泡数的变化; (c) 泡群内压力脉冲峰值随大气泡数的变化

    Fig. 6.  Acoustic cavitation characteristics of two kinds of mixed bubble groups composed of different size and different gas bubbles: (a) The change of the maximum temperature in the large bubble with the number of large bubbles; (b) the change of the maximum temperature in the small bubble with the number of large bubbles; (c) the change of the peak of pressure pulse with the number of large bubbles in a bubble groups.

    表 1  75%磷酸溶液的相关物理参数[22]

    Table 1.  Physical parameters of 75% phosphoric acid[22].

    相关参数
    液体密度 $\rho$/kg·m–31575
    表面张力 $\sigma$/N·m–10.07987
    黏滞系数 $\eta$/Pa·s0.05111
    环境压强 $P_{0}$/atm1
    声速 $c$/m·s–11671
    环境温度 $T_{0}$/K273.15
    蒸气压 $P_{\rm v}$/Pa763
    下载: 导出CSV
  • [1]

    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A 2008 Phys. Rev. E 77 016609Google Scholar

    [2]

    Doinikov A A, Zavtrak S T 1998 J. Acoust. Soc. Am. 99 3849

    [3]

    Mettin R, Luther S, Ohl C D 1999 Ultrason. Sonochem. 6 25Google Scholar

    [4]

    An Y 2011 Phys. Rev. E 83 066313Google Scholar

    [5]

    Nasibullaeva E S, Akhatov I S 2005 Acoust. Phys. 51 705Google Scholar

    [6]

    沈壮志, 吴胜举 2012 物理学报 61 244301Google Scholar

    Shen Z Z, Wu S J 2012 Acta Phys. Sin. 61 244301Google Scholar

    [7]

    王成会, 莫润阳, 胡静, 陈时 2015 物理学报 64 234301Google Scholar

    Wang C H, Mo R Y, Hu J, Chen S 2015 Acta Phys. Sin. 64 234301Google Scholar

    [8]

    张鹏利, 林书玉, 朱华泽, 张涛 2019 物理学报 68 134301Google Scholar

    Zhang P L, Lin S Y, Zhu H Z, Zhang T 2019 Acta Phys. Sin. 68 134301Google Scholar

    [9]

    苗博雅, 安宇 2015 物理学报 64 204301Google Scholar

    Miao B Y, An Y 2015 Acta Phys. Sin. 64 204301Google Scholar

    [10]

    Zhang Y Y, Chen W Z, Zhang L L, Wang X, Chen Z 2019 Chin. Phys. Lett. 36 034301Google Scholar

    [11]

    清河美, 那仁满都拉 2019 物理学报 68 234302Google Scholar

    Qinghim, Naranmandula 2019 Acta Phys. Sin. 68 234302Google Scholar

    [12]

    Shen Z Z 2020 Chin. Phys. B 29 014304Google Scholar

    [13]

    Sugita N, Ando K, Sugiura T 2017 Ultrason. 77 160Google Scholar

    [14]

    Zhang L L, Chen W Z, Zhang Y Y, Wu Y R, Wang X, Zhao G Y 2020 Chin. Phys. B 29 034303Google Scholar

    [15]

    Liang J F, An Y, Chen W Z 2019 Chin. Phys. Lett. 36 107801Google Scholar

    [16]

    Nasibullaeva E S, Akhatov I S 2013 J. Acoust. Soc. Am. 133 3727Google Scholar

    [17]

    Yasui K 2001 Phys. Rev. E 63 035301Google Scholar

    [18]

    Storey B D, Szeri A J 2002 Phys. Rev. Lett. 88 074301Google Scholar

    [19]

    Lohse D, Breener M P, Dupont T F, Hilgenfeldt S, Johnston B 1997 Phys. Rev. Lett. 78 1359Google Scholar

    [20]

    陈伟中 2014 声空化物理 (北京: 科学出版社) 第297—298 页

    Chen W Z 2014 Sound Cavitation Physics (Beijing: Science Press) pp297–298 (in Chinese)

    [21]

    Hilgenfeldt S, Grossmann S, Lohse D 1999 Phys. Fluids 11 1318Google Scholar

    [22]

    Moshaii A, Faraji M, Tajik-Nezhad S 2010 Ultrason. Sonochem. 18 1148Google Scholar

    [23]

    Faraji M, Moshaii A 2012 Phys. Lett. A 376 2703Google Scholar

    [24]

    Didenko Y T, McNamara III W B, Suslick K S 2000 Phys. Rev. Lett. 84 777Google Scholar

    [25]

    Xu H, Suslick K S 2010 Phys. Rev. Lett. 104 244301Google Scholar

    [26]

    Cairós C, Mettin R 2017 Phys. Rev. Lett. 118 064301Google Scholar

    [27]

    Ida M, Naoe T, Futakawa M 2007 Phys. Rev. E 76 046309Google Scholar

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析. 物理学报, 2024, 73(8): 084303. doi: 10.7498/aps.73.20232008
    [2] 左馨怡, 雷照康, 武耀蓉, 王成会. 黏弹性介质包裹的液体腔内球状泡群耦合振动模型. 物理学报, 2024, 73(15): 154301. doi: 10.7498/aps.73.20240606
    [3] 侯森, 胡长青, 赵梅. 利用声衰减反演气泡群分布的方法研究. 物理学报, 2021, 70(4): 044301. doi: 10.7498/aps.70.20201385
    [4] 李翔, 尹益辉, 张元章. α-Fe中氦泡极限压强的分子动力学模拟. 物理学报, 2021, 70(7): 076101. doi: 10.7498/aps.70.20201409
    [5] 徐珂, 许龙, 周光平. 考虑水蒸气蒸发和冷凝的球状泡群中泡的动力学特性. 物理学报, 2021, 70(19): 194301. doi: 10.7498/aps.70.20210045
    [6] 李媛, 彭平. 非晶Ag晶化过程中不同类型晶核结构的识别与跟踪. 物理学报, 2019, 68(7): 076401. doi: 10.7498/aps.68.20182188
    [7] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, 2019, 68(23): 234302. doi: 10.7498/aps.68.20191198
    [8] 吕子瑶, 潘雨佳, 王长顺. 不同类型偶氮材料光致双折射的温度特性研究. 物理学报, 2017, 66(24): 244203. doi: 10.7498/aps.66.244203
    [9] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应. 物理学报, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [10] 易忠, 王松, 唐小金, 武占成, 张超. 不同温度下复杂介质结构内带电规律仿真分析. 物理学报, 2015, 64(12): 125201. doi: 10.7498/aps.64.125201
    [11] 王成会, 莫润阳, 胡静, 陈时. 球状泡群内气泡的耦合振动. 物理学报, 2015, 64(23): 234301. doi: 10.7498/aps.64.234301
    [12] 艾星星, 孙克辉, 贺少波. 不同类型混沌吸引子的复合. 物理学报, 2014, 63(4): 040503. doi: 10.7498/aps.63.040503
    [13] 王成会, 程建春. 弹性管中泡群内气泡的非线性声响应. 物理学报, 2014, 63(13): 134301. doi: 10.7498/aps.63.134301
    [14] 胡静, 林书玉, 王成会, 李锦. 超声波作用下泡群的共振声响应. 物理学报, 2013, 62(13): 134303. doi: 10.7498/aps.62.134303
    [15] 沈壮志, 吴胜举. 声场中气泡群的动力学特性. 物理学报, 2012, 61(24): 244301. doi: 10.7498/aps.61.244301
    [16] 张阿漫, 姚熊亮, 李 佳. 气泡群的动态物理特性研究. 物理学报, 2008, 57(3): 1672-1682. doi: 10.7498/aps.57.1672
    [17] 霍素国, 聂向富, 韩宝善. 温度对普通硬磁泡的影响. 物理学报, 1988, 37(10): 1703-1706. doi: 10.7498/aps.37.1703
    [18] 韩宝善, 徐家法, 聂向富, 孙慧玲, 欧阳芳丽, 唐贵德. 脉冲偏磁场作用下硬磁泡形成与温度的关系. 物理学报, 1988, 37(9): 1527-1533. doi: 10.7498/aps.37.1527
    [19] 韩宝善, 凌吉武, 李伯臧, 聂向富, 唐贵德. 面内磁场对硬磁泡形成的影响. 物理学报, 1986, 35(1): 130-135. doi: 10.7498/aps.35.130
    [20] 韩宝善, 李伯臧, 聂向富, 唐贵德. 立方磁晶各向异性对面内磁场中条畴和磁泡稳定性的影响. 物理学报, 1985, 34(2): 155-163. doi: 10.7498/aps.34.155
计量
  • 文章访问数:  6436
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-14
  • 修回日期:  2020-05-21
  • 上网日期:  2020-06-12
  • 刊出日期:  2020-09-20

/

返回文章
返回