-
利用动能一定(1360 keV)的高电荷态129Xeq+ (q = 21, 23, 25, 27)离子束和动能为4 MeV的129Xe20+离子束分别入射洁净的Cu靶表面, 流强为nA量级, 离子在飞秒时间尺度内俘获靶电子完成中性化, 能量沉积在靶表面使靶原子离化和激发, 发生复杂组态之间的跃迁. 测量到了炮弹离子中性化后的Xe原子退激跃迁辐射的近红外光谱线和相互作用过程中激发和离化的靶原子退激辐射的近红外光谱线, 其中包括偶极禁戒跃迁(磁偶极和电四极跃迁)和Cu22+的磁偶极退激辐射跃迁的近红外光谱线. 4 MeV的129Xe20+离子入射Cu靶表面, 测量到Cu22+的软X射线、Cu原子的L1 edge和Lβ3跃迁辐射的X射线以及高电荷态129Xe20+中性化后Xe原子退激辐射的Lη和Lβ3 X射线. 结果表明, 低速高电荷态129Xeq+离子入射金属表面中性化过程中, 离子中性化退激和激发离化靶原子辐射红外光谱线, 近红外谱线的单离子荧光产额增加的趋势与入射离子的势能增加趋势相同. Xe原子的特征L X射线是炮弹离子进入表面下形成的第二代空心原子发射的.During the interaction of highly charged ions with solid target in the energy region near the Bohr velocity, the potential energy of the projectiles will be deposited on a nanometer-scale target surface within the time on the order of femtoseconds. That will lead the target atoms to be ionized into ions and the ions to be excited, resulting in the multiple ionization states and the complex configuration of energy levels. The de-excitation radiations of these levels cover the radiations from near-infrared spectral line to X-ray. Investigation of these spectral lines is significant for investigating the mechanism of such an interaction, diagnosing plasma and studying astrophysics. The experimental results show that the near-infrared spectral lines and X-ray spectra are produced by the 129Xeq+ (q = 21, 23, 25, 27) with kinetic energy of 1360 keV and 129Xe20+ with kinetic energy of 4 MeV impacting on the Cu surface, separately. The experiment is carried out in the National Laboratory of Heavy Ion Research Facility in Lanzhou, HIRFL. The beam intensity is on the order of nA. The highly charged ions capture the electrons of the Cu target and thus being neutralized in a femtosecond time. The energy of the highly charged ions is deposited on the target surface, and the target atoms are excited or ionized, resulting in the transition between complex configurations, such as the dipole forbidden transition (magnetic dipole and quadrupole transition) and magnetic dipole transition of the Cu22+. The infrared spectral lines of the atoms and ions from deexcitation radiation are measured. With the 4 MeV 129Xe20+ ions impacting on solid Cu surfsce, the X-rays are measured, such as, the magnetic dipole deexcitation radiation transition of Cu22+, the X-rays of the L1 edge transition and Lβ3 of the Cu I, Lη and Lβ3 X-rays of the Xe ions. The results show that during the neutrilization of highly charged Xe ions with lower energy above the Cu surface, the infrared lines are mainly from the deexcitation of the incident ions and the ionized or excited target atoms. The increasing trend of the the single ion fluorescence yield of the infrared spectral line is the same as that of the potential energy of the projectile. The characteristic L X-rays of the Xe atom are emitted by the second generation of hollow atoms formed below the surface.
[1] Lemell C, Stöck J, Burgdörfer J, Betz G, Winter H P, Aumayr F 1998 Phys. Rev. Lett. 81 1965Google Scholar
[2] Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosse C, R. Stamm, Talin B, Asfaw A, Klein L S, Lee R W 1998 Phys. Rev. E 57 4650Google Scholar
[3] Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photonics 2 605Google Scholar
[4] Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301Google Scholar
[5] Lake R E, Pomeroy J M, Grube H, Sosolik C E 2011 Phys. Rev. Lett. 107 063202Google Scholar
[6] 段斌, 吴泽清, 王建国 2009 中国科学 G 39 43Google Scholar
Duan B, Wu Z Q, Wang J G 2009 Sci. China G 39 43Google Scholar
[7] 段斌, 吴泽清, 王建国 2009 中国科学 G 39 241Google Scholar
Duan B, Wu Z Q, Wang J G 2009 Sci. China G 39 241Google Scholar
[8] Gruber E, Wilhelm R A, Pétuya R, Smejkal V, Kozubek R, Hierzenberger A, Bayer B C, Aldazabal I, Kazansky A K, Libisch F, Krasheninnikov A V, Schleberger M, Facsko S, Borisov A G, Arnau A, Aumayr F 2016 Nat. Commun. 7 13948Google Scholar
[9] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[10] Hagstrum H D 1954 Phys. Rev. 96 336Google Scholar
[11] Datz S 1983 Phys. Scr. T 3 79Google Scholar
[12] Briand J P, de Billy L, Charles P, Essabaa S, Briand P, Desclaux J P, Geller R, Bliman S, Ristori C 1990 Phys. Rev. Lett. 65 1259Google Scholar
[13] Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar
[14] Köhrbrück R, Sommer K, Biersack J P, Neuhaus B J, Schippers S, Roncin P, Lecler D, Fremont F, Stolterfoht N 1992 Phys. Rev. A 45 4653Google Scholar
[15] Beiersdorfer P, Olson R E, Brown G V, Chen H, Harris C L, Neill P A, Schweikhard L, Utter S B, Widmann K 2000 Phys. Rev. Lett. 85 5090Google Scholar
[16] Morishita Y, Hutton R, Torii H A, Komaki K, Brage T, Ando K, Ishii K, Kanai Y, Masuda H, Sekiguchi M, Rosmej F B, Yamazaki Y 2004 Phys. Rev. A 70 012902Google Scholar
[17] 赵永涛, 张小安, 李福利, 肖国青, 詹文龙, 杨治虎 2003 物理学报 52 2768Google Scholar
Zhao Y T, Zhang X A, Li F L, Xiao G Q, Zhan WL, Yang Z H 2003 Acta Phys. Sin. 52 2768Google Scholar
[18] Sporn M, Libiseller G, Neidhart T, Schmid M, Aumayr F, Winter H P, Varga P, 1997 Phys. Rev. Lett. 79 945Google Scholar
[19] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青 2009 物理学报 58 6920Google Scholar
Zhang X A, Yang Z H, Wang D C, Mei C X, Niu C Y, Wang W, Dai B, Xiao G Q 2009 Acta Phys. Sin. 58 6920Google Scholar
[20] Wilhelm R A, Gruber E, Schwestka J, Kozubek Roland, Madeira T I, Marques J P, Kobus J, Krasheninnikov AV, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401Google Scholar
[21] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma 1T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar
[22] Hollmann E M, Parks P B, Shiraki D, Alexander N, Eidietis N W, Lasnier C J, Moyer R A 2019 Phys. Rev. Lett. 122 065001Google Scholar
[23] Dasgupta A, Clark R W, Ouart N D, Giuliani J L 2014 Phys. Scr. 89 14008Google Scholar
[24] Träbert E, Grieser M, Hoffmann J, Krantz C, Repnow R, Wolf A 2012 Phys. Rev. A 85 042508Google Scholar
[25] Dasgupta A, Clark R W, Ouart N D, Giuliani J L, Thornhill W, Davis J, Jones B, Ampleford D J, Hansen S B, Coverdale CA 2012 High Energy Density Phys. 8 284Google Scholar
[26] Kawaguchi K, Sanechika N, Nishimura Y, Fujimori R, Oka T N, Hirahara Y, Jaman A I, Civiš S 2008 Chem. Phys. Lett. 463 38Google Scholar
[27] Hinnov E, Suckewer S, Cohen S, Sato K 1982 Phys. Rev. A 25 2293Google Scholar
[28] 李家明, 赵中新 1981 物理学报 30 105Google Scholar
Li J M, Zhao Z X 1981 Acta Phys. Sin. 30 105Google Scholar
[29] Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514Google Scholar
[30] Wu Z W, Dong C Z, Jiang J 2012 Phys. Rev. A 86 022712Google Scholar
[31] 腾华国, 王永昌 1988 西北师范大学学报 4 45Google Scholar
Teng H G, Wang Y C 1988 J. Northwest Nor. Univ. 4 45Google Scholar
[32] Wang K, Guo X L, Liu H T, Li D F, Long F Y, Han X Y, Duan B, Li J G, Huang M, Wang Y S 2015 Astrophys. J. Suppl. 218 16Google Scholar
[33] Wang W J 1993 Nucl. Instrum. Methods B 73 159Google Scholar
[34] Bastiaansen J, Philipsen V, Vervaecke F, Vandeweert E, Lievens P, Silverans R E 2003 Phys. Rev. B 68 073409Google Scholar
[35] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team https://www.nist.gov/pml/atomic-spectra-database [2019-02-19]
[36] Atomic and Molecular Datebase http://www.camdb.ac.cn/ nsdc/ [2019-03-19]
[37] Deslattes R D, Kessler Jr E G, Indelicato P, de Billy L, Lindroth E, Anton J 2003 Rev. Mod. Phys. 75 35Google Scholar
[38] 徐克尊 2000 高等原子分子物理 (北京: 科学出版社) 第117−119页
Xu K Z 2000 Advanced Atomic Molecular Physics (Beijing: Science Press) pp117−119 (in Chinese)
[39] 曾谨言 2000 量子力学(卷Ⅱ)第三版 (北京: 科学出版社) 第660−661页
Zeng J Y 2000 Quantum Mechanics (Vol.Ⅱ 3th Ed) (Beijing: Science Press) pp660−661 (in Chinese)
[40] Nordlander P, Tully J C 1990 Phys. Rev. B 42 5564Google Scholar
[41] Briand J P, Giardino G, Borsoni G, Froment M, Eddrief M, Sébenne C, Bardin S, Schneider D, Jin J, Khemliche H, Xie Z, Prior M 1996 Phys. Rev. A 54 4136Google Scholar
[42] Clark M W, Schneider D, Dewitt D, McDonald J W, Bruch R, Safronova U I, Tolstikhina I Y, Schuch R 1993 Phys. Rev. A 47 3983Google Scholar
[43] Zhou X M, Zhao Y T, Xiao G Q, Cheng R, Wang Y Y, Wang X, Sun Y B 2013 Nucl. Instrum. Methods B 299 61Google Scholar
[44] Ren J R, Zhao Y T, Zhou X M, Wang X, Lei Y, Xu G, Cheng R, Wang Y Y, Liu S D, Sun Y B, Xiao G Q 2015 Phys. Rev. A 92 062710Google Scholar
-
图 2 Si漂移探测器探测效率随X射线能量变化的关系图(在能量0.6−1.8 keV之间用5次多项式拟合, 能量1.8−4.0 keV用4次多项式拟合, 4.0−10 keV用3次多项式拟合)
Fig. 2. Efficiency values of the Silicon Drift Detector. The curve is a fifth polynomial in the 0.6−1.8 keV energy interval, a fourth polynomial in the 1.8−4.0 keV energy interval and a third polynomial in the 4.0–10 keV energy interval.
图 5 (a) 129Xeq+离子携带势能随电荷态q增加的趋势; (b)近红外光谱线的单粒子产额随电荷态q增加的趋势
Fig. 5. (a) Potential energy of the 129Xeq+ ion vs. the charge q; (b) single ion fluorescence yield of the near-infrared spectral lines as a function of the projectile charge q where the near-infrared spectral lines are induced by 1360 keV 129Xeq+ (q = 21—27) ion impacting on a Cu surface.
表 1 129Xeq+入射Cu靶激发的红外光谱线
Table 1. Measured near-infrared spectral lines induced by 129Xeq+ ions on Cu surface
Ion Observed
wavelength/nmReference
wavelength/nmUpper level Lower level Transition
typeConfiguration Term J Configuration Term J Xe I 949.99 ± 0.05 949.71[35] $5{\rm{p}}^5(2{\rm{P}}^\circ_{3/2})4{\rm{f}}$ 2[3/2] 2 $5{\rm{p} }^5(2{\rm{P} }^\circ_{3/2})5{\rm{d} }$ 2[3/2]° 2 E1 Xe I 1240.91 ± 0.01 1240.91[35] $5{\rm{p}}^5(2{\rm{P}}^\circ_{1/2})6{\rm{p}}$ 2[3/2] 1 $5{\rm{p} }^5(2{\rm{P} }^\circ_{3/2})5{\rm{d} }$ 2[3/2]° 2 E1 Xe I 1435.46 ± 0.01 1435.46[35] $5{\rm{p}}^5(2{\rm{P}}^\circ_{3/2})8{\rm{p}}$ 2[1/2] 1 $5{\rm{p} }^5(2{\rm{P} }^\circ_{3/2})7{\rm{s} } $ 2[3/2]° 2 E1 Cu I 1665.00 ± 0.02 1664.99[35] 3d105d 2D 3/2 3d105p 2P° 1/2 E1 Cu II 829.78 ± 0.03 829.85[35] 3d9(2D5/2)7d 2[2/5] 2 3d8(3F)4s4p(1P°) 3Fo 2 E1 Cu II 900.14 ± 0.02 900.14[35] 3d9(2D3/2)8s 2[3/2] 2 3d9(2D3/2)6p 2[3/2]° 1 E1 Cu II 1079.74 ± 0.05 1079.79[35] 3d9(2D5/2)5f 2[7/2]° 4 3d9(2D5/2)5d 2[9/2] 4 E1 Cu XXIII 1140.06 ± 0.01 1140.0[36] 2s22p2(3P)4p 2Po 3/2 2s22p2(3P)4p 4So 3/2 M1, E2 Cu XXIII 1216.44 ± 0.04 1216.5[36] 2p4(3P)3d 4D 5/2 2p4(1D)3p 2Fo 5/2 E1 Cu XXIII 1345.36 ± 0.06 1345.5[36] 2s22p2(3P)4f 2Fo 5/2 2s22p2(1D)4p 2Fo 5/2 M1, E2 Cu XXIII 1374.79 ± 0.07 1374.0[36] 2s2p3(1P)3d 2Do 5/2 2p4(3P)3s 4P 5/2 E1 Cu XXIII 1420.31 ± 0.06 1420.1[36] 2s22p2(3P)4f 4Do 1/2 2s22p2(1D)4p 2Do 1/2 M1, E2 -
[1] Lemell C, Stöck J, Burgdörfer J, Betz G, Winter H P, Aumayr F 1998 Phys. Rev. Lett. 81 1965Google Scholar
[2] Woolsey N C, Hammel B A, Keane C J, Back C A, Moreno J C, Nash J K, Calisti A, Mosse C, R. Stamm, Talin B, Asfaw A, Klein L S, Lee R W 1998 Phys. Rev. E 57 4650Google Scholar
[3] Kim K Y, Taylor A J, Glownia J H, Rodriguez G 2008 Nat. Photonics 2 605Google Scholar
[4] Krasheninnikov A V, Nordlund K 2010 J. Appl. Phys. 107 071301Google Scholar
[5] Lake R E, Pomeroy J M, Grube H, Sosolik C E 2011 Phys. Rev. Lett. 107 063202Google Scholar
[6] 段斌, 吴泽清, 王建国 2009 中国科学 G 39 43Google Scholar
Duan B, Wu Z Q, Wang J G 2009 Sci. China G 39 43Google Scholar
[7] 段斌, 吴泽清, 王建国 2009 中国科学 G 39 241Google Scholar
Duan B, Wu Z Q, Wang J G 2009 Sci. China G 39 241Google Scholar
[8] Gruber E, Wilhelm R A, Pétuya R, Smejkal V, Kozubek R, Hierzenberger A, Bayer B C, Aldazabal I, Kazansky A K, Libisch F, Krasheninnikov A V, Schleberger M, Facsko S, Borisov A G, Arnau A, Aumayr F 2016 Nat. Commun. 7 13948Google Scholar
[9] Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar
[10] Hagstrum H D 1954 Phys. Rev. 96 336Google Scholar
[11] Datz S 1983 Phys. Scr. T 3 79Google Scholar
[12] Briand J P, de Billy L, Charles P, Essabaa S, Briand P, Desclaux J P, Geller R, Bliman S, Ristori C 1990 Phys. Rev. Lett. 65 1259Google Scholar
[13] Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar
[14] Köhrbrück R, Sommer K, Biersack J P, Neuhaus B J, Schippers S, Roncin P, Lecler D, Fremont F, Stolterfoht N 1992 Phys. Rev. A 45 4653Google Scholar
[15] Beiersdorfer P, Olson R E, Brown G V, Chen H, Harris C L, Neill P A, Schweikhard L, Utter S B, Widmann K 2000 Phys. Rev. Lett. 85 5090Google Scholar
[16] Morishita Y, Hutton R, Torii H A, Komaki K, Brage T, Ando K, Ishii K, Kanai Y, Masuda H, Sekiguchi M, Rosmej F B, Yamazaki Y 2004 Phys. Rev. A 70 012902Google Scholar
[17] 赵永涛, 张小安, 李福利, 肖国青, 詹文龙, 杨治虎 2003 物理学报 52 2768Google Scholar
Zhao Y T, Zhang X A, Li F L, Xiao G Q, Zhan WL, Yang Z H 2003 Acta Phys. Sin. 52 2768Google Scholar
[18] Sporn M, Libiseller G, Neidhart T, Schmid M, Aumayr F, Winter H P, Varga P, 1997 Phys. Rev. Lett. 79 945Google Scholar
[19] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青 2009 物理学报 58 6920Google Scholar
Zhang X A, Yang Z H, Wang D C, Mei C X, Niu C Y, Wang W, Dai B, Xiao G Q 2009 Acta Phys. Sin. 58 6920Google Scholar
[20] Wilhelm R A, Gruber E, Schwestka J, Kozubek Roland, Madeira T I, Marques J P, Kobus J, Krasheninnikov AV, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401Google Scholar
[21] Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Döppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma 1T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343Google Scholar
[22] Hollmann E M, Parks P B, Shiraki D, Alexander N, Eidietis N W, Lasnier C J, Moyer R A 2019 Phys. Rev. Lett. 122 065001Google Scholar
[23] Dasgupta A, Clark R W, Ouart N D, Giuliani J L 2014 Phys. Scr. 89 14008Google Scholar
[24] Träbert E, Grieser M, Hoffmann J, Krantz C, Repnow R, Wolf A 2012 Phys. Rev. A 85 042508Google Scholar
[25] Dasgupta A, Clark R W, Ouart N D, Giuliani J L, Thornhill W, Davis J, Jones B, Ampleford D J, Hansen S B, Coverdale CA 2012 High Energy Density Phys. 8 284Google Scholar
[26] Kawaguchi K, Sanechika N, Nishimura Y, Fujimori R, Oka T N, Hirahara Y, Jaman A I, Civiš S 2008 Chem. Phys. Lett. 463 38Google Scholar
[27] Hinnov E, Suckewer S, Cohen S, Sato K 1982 Phys. Rev. A 25 2293Google Scholar
[28] 李家明, 赵中新 1981 物理学报 30 105Google Scholar
Li J M, Zhao Z X 1981 Acta Phys. Sin. 30 105Google Scholar
[29] Han X Y, Gao X, Zeng D L, Jin R, Yan J, Li J M 2014 Phys. Rev. A 89 042514Google Scholar
[30] Wu Z W, Dong C Z, Jiang J 2012 Phys. Rev. A 86 022712Google Scholar
[31] 腾华国, 王永昌 1988 西北师范大学学报 4 45Google Scholar
Teng H G, Wang Y C 1988 J. Northwest Nor. Univ. 4 45Google Scholar
[32] Wang K, Guo X L, Liu H T, Li D F, Long F Y, Han X Y, Duan B, Li J G, Huang M, Wang Y S 2015 Astrophys. J. Suppl. 218 16Google Scholar
[33] Wang W J 1993 Nucl. Instrum. Methods B 73 159Google Scholar
[34] Bastiaansen J, Philipsen V, Vervaecke F, Vandeweert E, Lievens P, Silverans R E 2003 Phys. Rev. B 68 073409Google Scholar
[35] Kramida A, Ralchenko Yu, Reader J, NIST ASD Team https://www.nist.gov/pml/atomic-spectra-database [2019-02-19]
[36] Atomic and Molecular Datebase http://www.camdb.ac.cn/ nsdc/ [2019-03-19]
[37] Deslattes R D, Kessler Jr E G, Indelicato P, de Billy L, Lindroth E, Anton J 2003 Rev. Mod. Phys. 75 35Google Scholar
[38] 徐克尊 2000 高等原子分子物理 (北京: 科学出版社) 第117−119页
Xu K Z 2000 Advanced Atomic Molecular Physics (Beijing: Science Press) pp117−119 (in Chinese)
[39] 曾谨言 2000 量子力学(卷Ⅱ)第三版 (北京: 科学出版社) 第660−661页
Zeng J Y 2000 Quantum Mechanics (Vol.Ⅱ 3th Ed) (Beijing: Science Press) pp660−661 (in Chinese)
[40] Nordlander P, Tully J C 1990 Phys. Rev. B 42 5564Google Scholar
[41] Briand J P, Giardino G, Borsoni G, Froment M, Eddrief M, Sébenne C, Bardin S, Schneider D, Jin J, Khemliche H, Xie Z, Prior M 1996 Phys. Rev. A 54 4136Google Scholar
[42] Clark M W, Schneider D, Dewitt D, McDonald J W, Bruch R, Safronova U I, Tolstikhina I Y, Schuch R 1993 Phys. Rev. A 47 3983Google Scholar
[43] Zhou X M, Zhao Y T, Xiao G Q, Cheng R, Wang Y Y, Wang X, Sun Y B 2013 Nucl. Instrum. Methods B 299 61Google Scholar
[44] Ren J R, Zhao Y T, Zhou X M, Wang X, Lei Y, Xu G, Cheng R, Wang Y Y, Liu S D, Sun Y B, Xiao G Q 2015 Phys. Rev. A 92 062710Google Scholar
计量
- 文章访问数: 10101
- PDF下载量: 70
- 被引次数: 0