搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用多晶硅场板降低单光子雪崩二极管探测器暗计数

韩冬 孙飞阳 鲁继远 宋福明 徐跃

引用本文:
Citation:

采用多晶硅场板降低单光子雪崩二极管探测器暗计数

韩冬, 孙飞阳, 鲁继远, 宋福明, 徐跃

Reducing dark count of single-photon avalanche diode detector with polysilicon field plate

Han Dong, Sun Fei-Yang, Lu Ji-Yuan, Song Fu-Ming, Xu Yue
PDF
HTML
导出引用
  • 针对削弱暗计数噪声对单光子雪崩二极管(single-photon avalanche diode, SPAD)探测器的影响, 本文研究了采用多晶硅场板降低SPAD器件暗计数率(dark count rate, DCR)的机理和方法. 基于0.18-μm 标准CMOS工艺, 在一种可缩小的P+/P阱/深N阱器件结构的P+有源区和浅沟道隔离区(shallow trench isolation, STI)之间淀积了一层多晶硅场板来减小器件暗计数噪声. 测试结果表明, 多晶硅场板的淀积使SPAD器件的DCR降低了一个数量级, 其在高温下的暗计数性能甚至优于室温下的未淀积多晶硅场板的器件. 通过TCAD仿真进一步发现, SPAD器件保护环区域的峰值电场被多晶硅场板引入到STI内部, 保护环区域的整体电场降低了25%; 最后通过对DCR的建模计算得出, 多晶硅场板削弱了具有高缺陷密度的保护环区域的电场, 使缺陷相关DCR显著降低, 从而有效改善了SPAD的暗计数性能.
    To suppress the effect of dark count noise on single photon avalanche diode (SPAD) detector, the mechanism and method of reducing the dark count rate (DCR) of SPAD device by using a polysilicon field plate is studied in this paper. Based on the 0.18-μm standard CMOS process, a polysilicon field plate located between the P+ active region and shallow trench isolation (STI) is deposited to reduce the dark count noise for a scaleable P+/P-well/deep N-well SPAD structure. Test results show that the DCR of SPAD device decreases by an order of magnitude after the deposition of polysilicon field plates, and its dark count performance at high temperature is even better than that of device without polysilicon field plate at room temperature. The TCAD simulation further indicates that the peak electric field in the guard ring region of the SPAD device is introduced into the STI by the field plate, and the overall electric field in the guard ring region is reduced by 25%. Finally, through modeling and calculating the DCR, the polysilicon field plate weakens the electric field of the guard ring region with high trap density, hence the trap-related DCR is significantly reduced. Therefore, the dark count performance of SPAD detector is effectively improved.
      通信作者: 徐跃, yuex@njupt.edu.cn
    • 基金项目: 国家级-国家自然科学基金面上项目(61571235,61871231)
      Corresponding author: Xu Yue, yuex@njupt.edu.cn
    [1]

    Villa F, Lussana R, Bronzi D, Tisa S, Tosi A, Zappa F, Mora A D, Contini D, Durini D, Weyers S, Brockherde W 2014 IEEE J. Sel. Top. Quantum Electron. 20 364Google Scholar

    [2]

    白鹏, 张月蘅, 沈文忠 2018 物理学报 67 221401Google Scholar

    Bai P, Zhang Y H, Shen W Z 2018 Acta Phys. Sin. 67 221401Google Scholar

    [3]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [4]

    Perenzoni M, Massari N, Perenzoni D, Gasparini L, Stoppa D 2016 IEEE J. Solid-State Circuits 51 155Google Scholar

    [5]

    Pancheri L, Stoppa D, Dalla Betta G F 2014 IEEE J. Sel. Top. Quantum Electron. 20 328Google Scholar

    [6]

    Bronzi D, Villa F, Bellisai S, Tisa S, Paschen U 2013 Proc. SPIE-Int. Soc. Opt. Eng. 8631 241Google Scholar

    [7]

    Xu Y, Xiang P, Xie X P 2017 Solid-State Electron. 129 168Google Scholar

    [8]

    Xu Y, Xiang P, Xie X P, Huang Y 2016 Semicond. Sci. Technol. 31 065024Google Scholar

    [9]

    Moreno-García M, Xu H S, Gasparini L, Perenzoni M 2018 2018 48th European Solid-State Device Research Conference (ESSDERC) Dresden, Germany, Sept. 3–6, 2018 p94

    [10]

    Webster E A G, Richardson J A, Grant L A, Renshaw D, Henderson R K 2012 IEEE Electron Device Lett. 33 694Google Scholar

    [11]

    Bose S, Ouh H, Sengupta S, Johnston M L 2018 IEEE Sens. J. 18 5291Google Scholar

    [12]

    金湘亮, 曾朵朵, 彭亚男, 杨红姣, 蒲华燕, 彭艳, 罗均 2019 红外与毫米波学报 38 403Google Scholar

    Jing X L, Zeng D D, Peng Y N, Yang H J, Pu H Y, Peng Y, Luo J 2019 J. Infrared Millim. W. 38 403Google Scholar

    [13]

    Shin D, Park B, Chae Y, Yun L 2019 IEEE Trans. Electron Devices 66 2986Google Scholar

    [14]

    Accarino C, Al-Rawhani M, Shah Y D, Maneuski D, Mitra S, Buttar C, Cumming D R S 2018 2018 IEEE International Symposium on Circuits and Systems (ISCAS) Florence, Italy, May 27–30, 2018 p1

    [15]

    Liu Y, Forrest S R, Hladky J, Lange M J, Olsen G H, Ackley D E 1992 J. Lightwave Technol. 10 182Google Scholar

    [16]

    Li Q, Wang F, Wang P, Zhang L L, He J L, Chen L, Martyniuk P, Rogalski A, Chen X S, Lu W, Hu W D 2020 IEEE Trans. Electron Devices 67 542Google Scholar

    [17]

    Richardson J A, Webster E A G, Grant L A, Henderson R K 2011 IEEE Trans. Electron Devices 58 2028Google Scholar

    [18]

    Wang C, Wang J Y, Xu Z Y, Wang R, Li J H, Zhao J Y, Wei Y M, Lin Y 2019 Optik 185 1134Google Scholar

    [19]

    Cheng Z, Zheng X Q, Palubiak D, Deen M J, Peng H 2016 IEEE Trans. Electron Devices 63 1940Google Scholar

    [20]

    Xu Y, Zhao T C, Li D 2018 Superlattices Microstruct. 113 635Google Scholar

    [21]

    Hurkx G A M, Klaassen D B M, Knuvers M P G 1992 IEEE Trans. Electron Devices 39 331Google Scholar

    [22]

    毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊 2011 物理学报 60 017205Google Scholar

    Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Ma X H, Wang C, Zhang J F, Yang L A, Xu S R, Bi Z W, Zhou Z, Yang L, Wang H 2011 Acta Phys. Sin. 60 017205Google Scholar

    [23]

    刘建华, 郭宇锋, 黄晓明, 黄智, 姚小江 2020 南京邮电大学学报(自然科学版) 40 9Google Scholar

    Liu J H, Guo Y F, Huang X M, Huang Z, Yao X J 2020 J. Nanjing Univ. Post. Telecom. (Nat.Sci.Ed.) 40 9Google Scholar

  • 图 1  淀积了多晶硅场板的P+/P阱/深N阱SPAD器件结构示意图

    Fig. 1.  Structure of the P+/P-well/deep N-well SPAD device with polysilicon field plate.

    图 2  主要前端工艺步骤

    Fig. 2.  Main front-end process steps.

    图 3  器件显微照片

    Fig. 3.  Micrograph of the devices.

    图 4  器件I-V特性曲线图

    Fig. 4.  I-V characteristic curve of the devices.

    图 5  雪崩脉冲电压信号

    Fig. 5.  Avalanche pulse voltage signal.

    图 6  室温下SPAD暗计数率与过偏压关系

    Fig. 6.  DCR as a function of excess bias voltage at room temperature.

    图 7  SPAD_2的DCR变化曲线图 (a) 不同过偏压下的温度特性; (b) 不同温度下的过偏压特性

    Fig. 7.  DCR of SPAD_2 as a function of (a) temperature at different excess bias voltage, and (b) excess bias voltage at different temperature.

    图 8  TCAD二维电场仿真图 (a) SPAD_1; (b) SPAD_2

    Fig. 8.  TCAD simulation of 2D electric field: (a) SPAD_1; (b) SPAD_2.

    图 9  模型算得室温下SPAD暗计数率与过偏压关系图

    Fig. 9.  Calculated DCR as a function of excess bias voltage at room temperature.

    图 10  室温下0—10 V过偏压范围内的DCR变化情况

    Fig. 10.  Variety of DCR under 0–10 V excess bias voltage at room temperature.

    表 1  关键模型参数取值 (温度T = 300 K, 过偏压VEX = 0.4 V)

    Table 1.  Summary of the key parameters for model-ing (T = 300 K, VEX = 0.4 V).

    参数描述
    Aa/μm2雪崩区面积63.6
    Ar/μm2保护环区域面积49.4
    Wa/μm雪崩区厚度0.8
    Wr/μm保护环区域厚度0.8
    Pa雪崩区平均雪崩触发概率0.09
    $ m_{\rm n}^*/m_0 $电子有效质量0.43
    $ m_t^*/m_0 $电子隧穿有效质量0.25
    m0/10–31 kg电子静止质量9.108
    ni/1010 cm–3本征载流子浓度1.5
    k/10–23 J·K-1玻尔兹曼常数1.38
    $\hbar $/10–34 J·s狄拉克常数1.054
    q/10–19 C电子电荷量1.602
    下载: 导出CSV
  • [1]

    Villa F, Lussana R, Bronzi D, Tisa S, Tosi A, Zappa F, Mora A D, Contini D, Durini D, Weyers S, Brockherde W 2014 IEEE J. Sel. Top. Quantum Electron. 20 364Google Scholar

    [2]

    白鹏, 张月蘅, 沈文忠 2018 物理学报 67 221401Google Scholar

    Bai P, Zhang Y H, Shen W Z 2018 Acta Phys. Sin. 67 221401Google Scholar

    [3]

    胡伟达, 李庆, 陈效双, 陆卫 2019 物理学报 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [4]

    Perenzoni M, Massari N, Perenzoni D, Gasparini L, Stoppa D 2016 IEEE J. Solid-State Circuits 51 155Google Scholar

    [5]

    Pancheri L, Stoppa D, Dalla Betta G F 2014 IEEE J. Sel. Top. Quantum Electron. 20 328Google Scholar

    [6]

    Bronzi D, Villa F, Bellisai S, Tisa S, Paschen U 2013 Proc. SPIE-Int. Soc. Opt. Eng. 8631 241Google Scholar

    [7]

    Xu Y, Xiang P, Xie X P 2017 Solid-State Electron. 129 168Google Scholar

    [8]

    Xu Y, Xiang P, Xie X P, Huang Y 2016 Semicond. Sci. Technol. 31 065024Google Scholar

    [9]

    Moreno-García M, Xu H S, Gasparini L, Perenzoni M 2018 2018 48th European Solid-State Device Research Conference (ESSDERC) Dresden, Germany, Sept. 3–6, 2018 p94

    [10]

    Webster E A G, Richardson J A, Grant L A, Renshaw D, Henderson R K 2012 IEEE Electron Device Lett. 33 694Google Scholar

    [11]

    Bose S, Ouh H, Sengupta S, Johnston M L 2018 IEEE Sens. J. 18 5291Google Scholar

    [12]

    金湘亮, 曾朵朵, 彭亚男, 杨红姣, 蒲华燕, 彭艳, 罗均 2019 红外与毫米波学报 38 403Google Scholar

    Jing X L, Zeng D D, Peng Y N, Yang H J, Pu H Y, Peng Y, Luo J 2019 J. Infrared Millim. W. 38 403Google Scholar

    [13]

    Shin D, Park B, Chae Y, Yun L 2019 IEEE Trans. Electron Devices 66 2986Google Scholar

    [14]

    Accarino C, Al-Rawhani M, Shah Y D, Maneuski D, Mitra S, Buttar C, Cumming D R S 2018 2018 IEEE International Symposium on Circuits and Systems (ISCAS) Florence, Italy, May 27–30, 2018 p1

    [15]

    Liu Y, Forrest S R, Hladky J, Lange M J, Olsen G H, Ackley D E 1992 J. Lightwave Technol. 10 182Google Scholar

    [16]

    Li Q, Wang F, Wang P, Zhang L L, He J L, Chen L, Martyniuk P, Rogalski A, Chen X S, Lu W, Hu W D 2020 IEEE Trans. Electron Devices 67 542Google Scholar

    [17]

    Richardson J A, Webster E A G, Grant L A, Henderson R K 2011 IEEE Trans. Electron Devices 58 2028Google Scholar

    [18]

    Wang C, Wang J Y, Xu Z Y, Wang R, Li J H, Zhao J Y, Wei Y M, Lin Y 2019 Optik 185 1134Google Scholar

    [19]

    Cheng Z, Zheng X Q, Palubiak D, Deen M J, Peng H 2016 IEEE Trans. Electron Devices 63 1940Google Scholar

    [20]

    Xu Y, Zhao T C, Li D 2018 Superlattices Microstruct. 113 635Google Scholar

    [21]

    Hurkx G A M, Klaassen D B M, Knuvers M P G 1992 IEEE Trans. Electron Devices 39 331Google Scholar

    [22]

    毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊 2011 物理学报 60 017205Google Scholar

    Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Ma X H, Wang C, Zhang J F, Yang L A, Xu S R, Bi Z W, Zhou Z, Yang L, Wang H 2011 Acta Phys. Sin. 60 017205Google Scholar

    [23]

    刘建华, 郭宇锋, 黄晓明, 黄智, 姚小江 2020 南京邮电大学学报(自然科学版) 40 9Google Scholar

    Liu J H, Guo Y F, Huang X M, Huang Z, Yao X J 2020 J. Nanjing Univ. Post. Telecom. (Nat.Sci.Ed.) 40 9Google Scholar

  • [1] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计. 物理学报, 2022, 71(5): 057301. doi: 10.7498/aps.71.20211917
    [2] 刘成, 李明, 文章, 顾钊源, 杨明超, 刘卫华, 韩传余, 张勇, 耿莉, 郝跃. 复合漏电模型建立及阶梯场板GaN肖特基势垒二极管设计研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211917
    [3] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器. 物理学报, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [4] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [5] 翟东媛, 赵毅, 蔡银飞, 施毅, 郑有炓. 沟槽形状对硅基沟槽式肖特基二极管电学特性的影响. 物理学报, 2014, 63(12): 127201. doi: 10.7498/aps.63.127201
    [6] 郑丽霞, 吴金, 张秀川, 涂君虹, 孙伟锋, 高新江. InGaAs单光子探测器传感检测与淬灭方式. 物理学报, 2014, 63(10): 104216. doi: 10.7498/aps.63.104216
    [7] 张学智, 冯鸣, 张心正. 基于自相位调制效应的硅基中红外全光二极管. 物理学报, 2013, 62(2): 024201. doi: 10.7498/aps.62.024201
    [8] 李春雷, 徐燕, 张燕翔, 叶宝生. 双量子阱中光子辅助电子自旋隧穿. 物理学报, 2013, 62(10): 107301. doi: 10.7498/aps.62.107301
    [9] 陈浩然, 杨林安, 朱樟明, 林志宇, 张进成. 基于AlGaN/GaN共振隧穿二极管的退化现象的研究. 物理学报, 2013, 62(21): 217301. doi: 10.7498/aps.62.217301
    [10] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究. 物理学报, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [11] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积. 物理学报, 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [12] 岳庆炀, 孔凡敏, 李康, 赵佳. 基于缺陷光子晶体结构的GaN基发光二极管光提取效率的有关研究. 物理学报, 2012, 61(20): 208502. doi: 10.7498/aps.61.208502
    [13] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型. 物理学报, 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [14] 熊玲玲, 李建龙, 吕百达. 一种模拟二极管激光源场的新方法. 物理学报, 2009, 58(2): 975-979. doi: 10.7498/aps.58.975
    [15] 汤乃云. GaMnN铁磁共振隧穿二极管自旋电流输运以及极化效应的影响. 物理学报, 2009, 58(5): 3397-3401. doi: 10.7498/aps.58.3397
    [16] 王金东, 吴祖恒, 张 兵, 魏正军, 廖常俊, 刘颂豪. 用于红外单光子探测的雪崩光电二极管传输线抑制电路模型的理论分析. 物理学报, 2008, 57(9): 5620-5626. doi: 10.7498/aps.57.5620
    [17] 李 园, 李 刚, 张玉驰, 王晓勇, 王军民, 张天才. 计数率和分辨时间对光场统计性质测量的影响——单探测器直接测量的实验分析. 物理学报, 2006, 55(11): 5779-5783. doi: 10.7498/aps.55.5779
    [18] 刘 明, 刘 宏, 何宇亮. 纳米硅/单晶硅异质结二极管的I-V特性. 物理学报, 2003, 52(11): 2875-2878. doi: 10.7498/aps.52.2875
    [19] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究. 物理学报, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [20] 林鸿溢. 利用肖特基势垒特性研究4mm波段硅雪崩二极管的杂质分布. 物理学报, 1978, 27(3): 291-302. doi: 10.7498/aps.27.291
计量
  • 文章访问数:  9742
  • PDF下载量:  169
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-09
  • 修回日期:  2020-04-29
  • 上网日期:  2020-05-12
  • 刊出日期:  2020-07-20

/

返回文章
返回