-
本文研究了多轴差分吸收光谱技术(MAX-DOAS)在可见蓝光波段(434.0—451.5 nm)对大气水汽垂直柱浓度和垂直廓线的反演方法. 首先, 针对水汽吸收峰较窄且较密的问题, 采用和仪器狭缝函数卷积的方法获取适用于MAX-DOAS的水汽吸收参考截面, 并采用修正系数法校正了水汽饱和吸收效应在此波段对反演的影响. 其次, 研究了非线性最优估算法痕量气体廓线反演算法(PriAM算法)中气溶胶状态和先验廓线的线型对水汽反演结果的影响. 结果表明, 气溶胶线型变化对水汽廓线反演结果的影响可忽略, 而高气溶胶状态会使反演结果差异变大, 但均在廓线反演总误差范围内, 这表明, PriAM算法对水汽廓线反演仍具有适用性. 采用该方法在青岛市鳌山区域站开展连续观测实验, 并将观测的水汽垂直柱浓度结果和欧洲中期天气预报中心日均值数据对比, R2 = 0.93; 将反演的水汽廓线近地面浓度与欧洲中期天气预报中心和怀俄明大学探空数据对比, R2分别大于0.70和0.66, 结果表明了PriAM算法对大气水汽廓线反演的准确性较高. 最后, 分析了青岛市水汽垂直分布特征: 青岛市水汽主要分布在1.5 km以下.
-
关键词:
- 多轴差分吸收光谱技术 /
- 大气水汽 /
- 垂直柱浓度 /
- 垂直廓线
The method of retrieving the vertical column density (VCD) and the atmospheric vertical profile of water vapor in visible blue band (434.0–451.5 nm) were studied by using the multi-axis differential optical absorption spectroscopy (MAX-DOAS). First, the method of retrieving the VCD of water vapor was studied. Owing the the fact that the water vapor absorption cross section is of high resolution and it cannot be effectively measured by MAX-DOAS, a convolved cross section with the instrument slit function was used. In addition, the correction factor for water vapor saturation absorption was also used to obtain the true VCD. Second, the water vapor profile retrieved by applying the nonlinear optimal estimation of the trace gas retrieval method (PriAM) was studied, including the effects of aerosol state and the priori profile on the water vapor retrieval. Influence on the water vapor retrieval from the aerosol prior profile linear changes was unapparent. High aerosol state has a significant influence on the water vapor profile retrieval and it was still within the total error tolerance. This indicates that the PriAM is applicable in the water vapor profile retrieval. Using this method, a continuous observation experiment was carried out at the MAX-DOAS Aoshan regional station in Qingdao. The retrieved water vapor VCD results were compared with the daily average data of the European Centre for Medium-Range Weather Forecasts (ECMWF), and the R2 is 0.93. The comparison of the near-surface water vapor concentration of MAX-DOAS retrieval with the ECMWF and sounding data of the University of Wyoming shows that R2 is larger than 0.70 and 0.66, respectively. The two comparison results demonstrate that PriAM can retrieve the atmospheric water vapor VCD and profile accurately. The vertical distribution characteristics of water vapor in Qingdao was analyzed, and the profile results show that the concentration of water vapor in Qingdao was distributed mainly under 1.5 km in height.-
Keywords:
- multi-axis differential optical absorption spectroscopy (MAX-DOAS) /
- atmospheric water vapor /
- vertical column density /
- vertical profile
[1] Wagner T, Andreae M O, Beirle S, Doerner S, Mies K, Shaiganfar R 2013 Atmos. Meas. Tech. 6 131Google Scholar
[2] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 刘文清 2013 光学学报 33 0801002Google Scholar
Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Liu W Q 2013 Acta Opt. Sin. 33 0801002Google Scholar
[3] Kiemle C, Brewer W A, Ehret G, Hardesty R M, Fix A, Senff C, Wirth M, Poberaj G, LeMone M A 2007 J. Atmos. Oceanic. Technol. 24 627Google Scholar
[4] Noel S, Mieruch S, Bovensmann H, Burrows J P 2008 Atmos. Chem. Phys. 8 1519Google Scholar
[5] Noel S, Buchwitz M, Bovensmann H, Burrows J P 2005 Atmos. Chem. Phys. 5 1835
[6] Chan K L, Valks P, Slijkhuis S, Köhler C, Loyola D 2020 Atmos. Meas. Tech. 13 4169Google Scholar
[7] Vey S, Dietrich R, Johnsen K P, Miao J, Heygster G 2004 J. Meteorol. Soc. Jpn. 82 259Google Scholar
[8] Borger C, Beirle S, Dörner S, Sihler H, Wagner T 2020 Atmos. Meas. Tech. 13 2751Google Scholar
[9] Filges A, Gerbig C, Chen H L, Franke H, Klaus C, Jordan A 2015 Tellus B 67 27989Google Scholar
[10] Platt U, Stutz J 2008 Differential Optical Absorption Spectroscopy (Berlin: Springer-Verlag Heidelberg) pp449–453
[11] 王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清 2013 物理学报 62 200705Google Scholar
Wang Y, Li A, Xie P H, Chen H, Mou F S, Xu J, Wu F C, Zeng Y, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 200705Google Scholar
[12] 王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清 2013 物理学报 62 180705Google Scholar
Wang Y, Li A, Xie P H, Chen H, Xu J, Wu F C, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 180705Google Scholar
[13] 田鑫, 徐晋, 谢品华, 李昂, 胡肇焜, 李晓梅, 任博, 吴子扬 2019 光谱学与光谱分析 39 2325Google Scholar
Tian X, Xu J, Xie P H, Li A, Hu Z H, Li X M, Ren B, Wu Z Y 2019 Spectrosc. Spect. Anal. 39 2325Google Scholar
[14] Wang Y, Dorner S, Donner S, Bohnke S, De Smedt I, Dickerson R R, Dong Z P, He H, Li Z Q, Li Z Q, Li D H, Liu D, Ren X R, Theys N, Wang Y Y, Wang Y, Wang Z Z, Xu H, Xu J W, Wagner T 2019 Atmos. Chem. Phys. 19 5417Google Scholar
[15] Irie H, Takashima H, Kanaya Y, Boersma K F, Gast L, Wittrock F, Brunner D, Zhou Y, Van Roozendael M 2011 Atmos. Meas. Tech. 4 1027Google Scholar
[16] Lampel J, Pohler D, Tschritter J, Friess U, Platt U 2015 Atmos. Meas. Tech. 8 4329Google Scholar
[17] Lampel J, Pohler D, Polyansky O L, Kyuberis A A, Zobov N F, Tennyson J, Lodi L, Friess U, Wang Y, Beirle S, Platt U, Wagner T 2017 Atmos. Chem. Phys. 17 1271Google Scholar
[18] 周海金, 刘文清, 司福祺, 窦科 2013 物理学报 62 044216Google Scholar
Zhou H J, Liu W Q, Si F Q, Dou K 2013 Acta Phys. Sin. 62 044216Google Scholar
[19] 杨雷, 李昂, 谢品华, 胡肇焜, 梁帅西, 张英华, 黄业园 2019 光谱学与光谱分析 5 1398Google Scholar
Yang L, Li A, Xie P H, Hu Z K, Liang S X, Zhan Y H, Huang Y Y 2019 Spectrosc. Spect. Anal. 5 1398Google Scholar
[20] Li A, Xie P H, Liu C, Liu J G, Liu W Q 2007 Chin. Phys. Lett. 24 2859Google Scholar
[21] Wang Y, Beirle S, Lampel J, Koukouli M, De Smedt I, Theys N, Li A, Wu D X, Xie P H, Liu C, Van Roozendael M, Stavrakou T, Muller J F, Wagner T 2017 Atmos. Chem. Phys. 17 5007Google Scholar
[22] Tian X, Xie P H, Xu J, Wang Y, Li A, Wu F C, Hu Z K, Liu C, Zhang Q 2018 Atmos. Chem. Phys. 19 3375Google Scholar
[23] 王杨, Wagner T, 李昂, 谢品华, 伍德侠, 陈浩, 牟福生, 张杰, 徐晋, 吴丰成, 刘建国, 刘文清, 曾议 2014 物理学报 63 110708Google Scholar
Wang Y, Wagner T, Li A, Xie P H, Wu D X, Chen H, Mou F S, Zhan J, Xu J, Wu F C, Liu J G, Liu W Q, Zeng Y 2014 Acta Phys. Sin. 63 110708Google Scholar
[24] Rothman L S, Gordon I E, Barbe A, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 533Google Scholar
[25] Rothman L S, Gordon I E, Babikov Y, et al. 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4Google Scholar
[26] Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139Google Scholar
[27] Polyansky O L, Kyuberis A A, Lodi L, Tennyson J, Ovsyannikov R I, Zobov N 2016 Mon. Not. R. Astron. Soc. 466 1363Google Scholar
[28] Wagner T, Heland J, Zoger M, Platt U 2003 Atmos. Chem. Phys. 3 651Google Scholar
[29] Wenig M, Jahne B, Platt U 2005 Appl. Opt. 44 3246Google Scholar
[30] Wagner T, Beirle S, Deutschmann T 2009 Atmos. Meas. Tech. 2 113Google Scholar
[31] Vandaele A C, Hermans C, Simon P C, Carleer M, Colin R, Fally S, Mérienne M F, Jenouvrier A, Coquart B 1998 J. Quant. Spectrosc. Ra. 59 171Google Scholar
[32] Serdyuchenko A, Gorshelev V, Weber M, Chehade W, Burrows J P 2014 Atmos. Meas. Tech. 7 625Google Scholar
[33] Thalman R M, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar
[34] Kraus S 2006 Ph. D. Dissertation (Mannheim: University of Mannheim)
[35] 张佳华 2017 硕士学位论文 (武汉: 武汉大学)
Zhang J H 2017 M. S. Thesis (Wuhan: Wuhan University) (in Chinese)
-
图 5 水汽有效吸收参考截面获取过程 (a) HITEMP 2010水汽高分辨率吸收光谱; (b) 狭缝函数; (c) 水汽有效吸收参考截面
Fig. 5. Obtaining process of reference cross section for effective absorption of water vapor: (a) HITEMP 2010 high-resolution water vapor absorption spectrum; (b) slit function; (c) reference cross section for effective absorption of water vapor.
图 6 不同数据库下水汽有效吸收截面对比 (a) 4种数据库下水汽有效吸收参考截面; (b) 20°仰角下DOAS拟合残差对比
Fig. 6. Comparison of effective water vapor absorption cross sections under different databases: (a) Reference cross sections of effective water vapor absorption under four databases; (b) comparison of DOAS fitted residuals at 20° elevation.
图 11 气溶胶状态及线型对水汽廓线反演结果的影响 (a) 5种气溶胶先验廓线; (b) 3月6日5种气溶胶先验廓线下反演水汽结果及误差; (c) 3月22日5种气溶胶先验廓线下反演水汽结果及误差; (d) 指数型水汽先验廓线; (e) 3月6日平均核的包络线; (f) 3月22日平均核的包络线
Fig. 11. Effects of aerosol state and line type on the retrieval results of water vapor profile: (a) Five aerosol prior profiles; (b) the results and errors of water vapor retrieval under the five aerosol prior profiles on March 6; (c) the results and errors of water vapor retrieval under the five aerosol prior profiles on March 22; (d) the exponential water vapor prior profile; (e) the envelope of the average kernel on March 6; (f) the envelope of the average kernel on March 22.
表 1 MAX-DOAS参数设置
Table 1. Parameter settings of MAX-DOAS.
Spectrometer name Avantes Longitude 120.67° E Spectral range/nm 285–453 Latitude 36.35° N FWHM/nm 0.6 Measuring time 4∶00–22∶00 LT Temperature control/℃ 25 Azimuth 0° City Qingdao Elevation 1°, 2°, 3°, 4°, 5°, 6°, 8°, 10°, 20°, 30°, 90° 表 2 DOAS拟合参数设置
Table 2. Parameter settings of DOAS fitting.
-
[1] Wagner T, Andreae M O, Beirle S, Doerner S, Mies K, Shaiganfar R 2013 Atmos. Meas. Tech. 6 131Google Scholar
[2] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 刘文清 2013 光学学报 33 0801002Google Scholar
Liu J, Si F Q, Zhou H J, Zhao M J, Dou K, Liu W Q 2013 Acta Opt. Sin. 33 0801002Google Scholar
[3] Kiemle C, Brewer W A, Ehret G, Hardesty R M, Fix A, Senff C, Wirth M, Poberaj G, LeMone M A 2007 J. Atmos. Oceanic. Technol. 24 627Google Scholar
[4] Noel S, Mieruch S, Bovensmann H, Burrows J P 2008 Atmos. Chem. Phys. 8 1519Google Scholar
[5] Noel S, Buchwitz M, Bovensmann H, Burrows J P 2005 Atmos. Chem. Phys. 5 1835
[6] Chan K L, Valks P, Slijkhuis S, Köhler C, Loyola D 2020 Atmos. Meas. Tech. 13 4169Google Scholar
[7] Vey S, Dietrich R, Johnsen K P, Miao J, Heygster G 2004 J. Meteorol. Soc. Jpn. 82 259Google Scholar
[8] Borger C, Beirle S, Dörner S, Sihler H, Wagner T 2020 Atmos. Meas. Tech. 13 2751Google Scholar
[9] Filges A, Gerbig C, Chen H L, Franke H, Klaus C, Jordan A 2015 Tellus B 67 27989Google Scholar
[10] Platt U, Stutz J 2008 Differential Optical Absorption Spectroscopy (Berlin: Springer-Verlag Heidelberg) pp449–453
[11] 王杨, 李昂, 谢品华, 陈浩, 牟福生, 徐晋, 吴丰成, 曾议, 刘建国, 刘文清 2013 物理学报 62 200705Google Scholar
Wang Y, Li A, Xie P H, Chen H, Mou F S, Xu J, Wu F C, Zeng Y, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 200705Google Scholar
[12] 王杨, 李昂, 谢品华, 陈浩, 徐晋, 吴丰成, 刘建国, 刘文清 2013 物理学报 62 180705Google Scholar
Wang Y, Li A, Xie P H, Chen H, Xu J, Wu F C, Liu J G, Liu W Q 2013 Acta Phys. Sin. 62 180705Google Scholar
[13] 田鑫, 徐晋, 谢品华, 李昂, 胡肇焜, 李晓梅, 任博, 吴子扬 2019 光谱学与光谱分析 39 2325Google Scholar
Tian X, Xu J, Xie P H, Li A, Hu Z H, Li X M, Ren B, Wu Z Y 2019 Spectrosc. Spect. Anal. 39 2325Google Scholar
[14] Wang Y, Dorner S, Donner S, Bohnke S, De Smedt I, Dickerson R R, Dong Z P, He H, Li Z Q, Li Z Q, Li D H, Liu D, Ren X R, Theys N, Wang Y Y, Wang Y, Wang Z Z, Xu H, Xu J W, Wagner T 2019 Atmos. Chem. Phys. 19 5417Google Scholar
[15] Irie H, Takashima H, Kanaya Y, Boersma K F, Gast L, Wittrock F, Brunner D, Zhou Y, Van Roozendael M 2011 Atmos. Meas. Tech. 4 1027Google Scholar
[16] Lampel J, Pohler D, Tschritter J, Friess U, Platt U 2015 Atmos. Meas. Tech. 8 4329Google Scholar
[17] Lampel J, Pohler D, Polyansky O L, Kyuberis A A, Zobov N F, Tennyson J, Lodi L, Friess U, Wang Y, Beirle S, Platt U, Wagner T 2017 Atmos. Chem. Phys. 17 1271Google Scholar
[18] 周海金, 刘文清, 司福祺, 窦科 2013 物理学报 62 044216Google Scholar
Zhou H J, Liu W Q, Si F Q, Dou K 2013 Acta Phys. Sin. 62 044216Google Scholar
[19] 杨雷, 李昂, 谢品华, 胡肇焜, 梁帅西, 张英华, 黄业园 2019 光谱学与光谱分析 5 1398Google Scholar
Yang L, Li A, Xie P H, Hu Z K, Liang S X, Zhan Y H, Huang Y Y 2019 Spectrosc. Spect. Anal. 5 1398Google Scholar
[20] Li A, Xie P H, Liu C, Liu J G, Liu W Q 2007 Chin. Phys. Lett. 24 2859Google Scholar
[21] Wang Y, Beirle S, Lampel J, Koukouli M, De Smedt I, Theys N, Li A, Wu D X, Xie P H, Liu C, Van Roozendael M, Stavrakou T, Muller J F, Wagner T 2017 Atmos. Chem. Phys. 17 5007Google Scholar
[22] Tian X, Xie P H, Xu J, Wang Y, Li A, Wu F C, Hu Z K, Liu C, Zhang Q 2018 Atmos. Chem. Phys. 19 3375Google Scholar
[23] 王杨, Wagner T, 李昂, 谢品华, 伍德侠, 陈浩, 牟福生, 张杰, 徐晋, 吴丰成, 刘建国, 刘文清, 曾议 2014 物理学报 63 110708Google Scholar
Wang Y, Wagner T, Li A, Xie P H, Wu D X, Chen H, Mou F S, Zhan J, Xu J, Wu F C, Liu J G, Liu W Q, Zeng Y 2014 Acta Phys. Sin. 63 110708Google Scholar
[24] Rothman L S, Gordon I E, Barbe A, et al. 2009 J. Quant. Spectrosc. Radiat. Transfer 110 533Google Scholar
[25] Rothman L S, Gordon I E, Babikov Y, et al. 2013 J. Quant. Spectrosc. Radiat. Transfer 130 4Google Scholar
[26] Rothman L S, Gordon I E, Barber R J, Dothe H, Gamache R R, Goldman A, Perevalov V I, Tashkun S A, Tennyson J 2010 J. Quant. Spectrosc. Radiat. Transfer 111 2139Google Scholar
[27] Polyansky O L, Kyuberis A A, Lodi L, Tennyson J, Ovsyannikov R I, Zobov N 2016 Mon. Not. R. Astron. Soc. 466 1363Google Scholar
[28] Wagner T, Heland J, Zoger M, Platt U 2003 Atmos. Chem. Phys. 3 651Google Scholar
[29] Wenig M, Jahne B, Platt U 2005 Appl. Opt. 44 3246Google Scholar
[30] Wagner T, Beirle S, Deutschmann T 2009 Atmos. Meas. Tech. 2 113Google Scholar
[31] Vandaele A C, Hermans C, Simon P C, Carleer M, Colin R, Fally S, Mérienne M F, Jenouvrier A, Coquart B 1998 J. Quant. Spectrosc. Ra. 59 171Google Scholar
[32] Serdyuchenko A, Gorshelev V, Weber M, Chehade W, Burrows J P 2014 Atmos. Meas. Tech. 7 625Google Scholar
[33] Thalman R M, Volkamer R 2013 Phys. Chem. Chem. Phys. 15 15371Google Scholar
[34] Kraus S 2006 Ph. D. Dissertation (Mannheim: University of Mannheim)
[35] 张佳华 2017 硕士学位论文 (武汉: 武汉大学)
Zhang J H 2017 M. S. Thesis (Wuhan: Wuhan University) (in Chinese)
计量
- 文章访问数: 7971
- PDF下载量: 88
- 被引次数: 0