搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离极化激元的散射及波前调控

管福鑫 董少华 何琼 肖诗逸 孙树林 周磊

引用本文:
Citation:

表面等离极化激元的散射及波前调控

管福鑫, 董少华, 何琼, 肖诗逸, 孙树林, 周磊

Scatterings and wavefront manipulations of surface plasmon polaritons

Guan Fu-Xin, Dong Shao-Hua, He Qiong, Xiao Shi-Yi, Sun Shu-Lin, Zhou Lei
PDF
HTML
导出引用
  • 表面等离极化激元在片上信号传输、增强非线性/拉曼效应、生物/化学传感、超分辨成像等方面具有重要应用. 在这些应用中, 表面等离极化激元的近场传输及远场散射起着重要作用. 然而, 长期以来人们对相关物理效应缺乏简单有效的理论理解, 这也限制了人们对表面等离极化激元的自由调控. 本文首先简单回顾了表面等离极化激元的发展历史及现状, 接着着重介绍了表面等离极化激元的近场传输效应和远场散射效应, 包括其理论进展及其相关应用; 最后还介绍了表面等离极化激元的近场波前调控的相关方法. 基于这些进展, 人们对表面等离极化激元的散射特性有了更为深刻的理解和更加强大的调控能力, 这将对未来表面等离极化激元相关研究和应用带来启发.
    Surface plasmon polaritons (SPPs) have found many important applications in on-chip signal transportation, enhanced nonlinear/Raman effect, biological/chemical sensing, super resolution imaging, etc. In these applications, the near-field propagation and far-field scattering of SPPs play a vital role. However, there has been strong desire to understand these physical effects. In this paper, we first briefly review the history and progress of SPPs. Next, we mainly focus on the near-field propagation and far-field scattering of SPPs, including their fundamental theories and practical applications. Finally, we review several different approaches to manipulating the near-field wavefronts of SPPs. These researches offer us a more in-depth understanding and the ability to more strongly control the scattering characteristics of SPPs, which may promote the scientific researches and practical applications of SPPs in the future.
      通信作者: 孙树林, sls@fudan.edu.cn ; 周磊, phzhou@fudan.edu.cn
      Corresponding author: Sun Shu-Lin, sls@fudan.edu.cn ; Zhou Lei, phzhou@fudan.edu.cn
    [1]

    Raether H 1988 Springer 111 1Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [5]

    Huang K C Y, Seo M K, Sarmiento T, Huo Y, Harris J S, Brongersma M L 2014 Nat. Photonics 8 244Google Scholar

    [6]

    Choo H, Kim M K, Staffaroni M, Seok T J, Bokor J, Cabrini S, Schuck P J, Wu M C, Yablonovitch E 2012 Nat. Photonics 6 838Google Scholar

    [7]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [8]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [9]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [10]

    Mühlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607Google Scholar

    [11]

    Beeck O, Ritchie AW 1950 Discuss. Faraday Soc. 8 159Google Scholar

    [12]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [13]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670Google Scholar

    [14]

    Maier S A, Andrews S R, Martín-Moreno L, García-Vidal F J 2006 Phys. Rev. Lett. 97 176805Google Scholar

    [15]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [16]

    Elser J, Podolskiy V A 2008 Phys. Rev. Lett. 100 066402Google Scholar

    [17]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [18]

    Chang C M, Tseng M L, Cheng B H, Chu C H, Ho Y Z, Huang H W, Lan Y C, Huang D W, Liu A Q, Tsai D P 2013 Adv. Mater. 25 1118Google Scholar

    [19]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331Google Scholar

    [20]

    Brongersma M L, Hartman J W, Atwater H A 2000 Phys. Rev. B 62 16356Google Scholar

    [21]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G, Atwater H A 2001 Adv. Mater. 13 1501Google Scholar

    [22]

    Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P 2004 Science 305 1269Google Scholar

    [23]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403Google Scholar

    [24]

    Yin L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E, Kimball C W 2005 Nano. Lett. 5 1399Google Scholar

    [25]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387Google Scholar

    [26]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20Google Scholar

    [27]

    Ekmel Ozbay 2006 Science 311 189Google Scholar

    [28]

    Lal S, Link S, Halas N J 2007 Nat. Photonics 1 641Google Scholar

    [29]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44Google Scholar

    [30]

    Volkov V S, Bozhevolnyi S I, Rodrigo S G, Martín-Moreno L, García-Vidal F J, Devaux E, Ebbesen T W 2009 Nano Lett. 9 1278Google Scholar

    [31]

    Verhagen E, Spasenović M, Polman A, Kuipers L 2009 Phys. Rev. Lett. 102 203904Google Scholar

    [32]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [33]

    Stegeman G I, Maradudin A A, Rahman T S 1981 Phys. Rev. B 23 2576Google Scholar

    [34]

    Stegeman G I, Glass N E, Maradudin A A, Shen T P, Wallis R F 1983 Opt. Lett. 8 626Google Scholar

    [35]

    Kocabaş Ş E, Veronis G, Miller D A B, Fan S 2008 IEEE 14 1462Google Scholar

    [36]

    Oulton R F, Pile D F P, Liu Y, Zhang X 2007 Phys. Rev. B 76 035408Google Scholar

    [37]

    Chaves A J, Amorim B, Bludov Y V., Gonçalves P A D, Peres N M R 2018 Phys. Rev. B 97 035434Google Scholar

    [38]

    Guan F, Sun S, Ma S, Fang Z, Zhu B. Li X, He Q, Xiao S, Zhou L 2018 J. Phys. Condens. Matter 30 114002Google Scholar

    [39]

    Hao J, Zhou L 2008 Phys. Rev. B 77 094201Google Scholar

    [40]

    Tang S, Zhu B, Jia M, He Q, Sun S, Mei Y, Zhou L 2015 Phys. Rev. B 91 174201Google Scholar

    [41]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901Google Scholar

    [42]

    Hessel A, Oliner A A 1965 Appl. Opt. 4 1275Google Scholar

    [43]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [44]

    Stockman M I 2006 Nano Lett. 6 2604Google Scholar

    [45]

    Liu Y, Zentgraf T, Bartal G, Zhang X 2010 Nano Lett. 10 1991Google Scholar

    [46]

    Miyu O, Kato J, Kawata S 2011 Science 332 218Google Scholar

    [47]

    Yu L, Lin D, Chen Y, Chang Y, Huang K, Liaw J, Yeh J, Liu J, Yeh C, Lee C 2005 Phys. Rev. B 71 041405(R)Google Scholar

    [48]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 013103Google Scholar

    [49]

    Kumar M S, Piao X, Koo S, Yu S, Park N 2010 Opt. Express 18 8800Google Scholar

    [50]

    Zhang S, Gu C, Xu H 2014 Small 10 4264Google Scholar

    [51]

    Jiang Q, Bao Y, Lin F, Zhu X, Zhang S, Fang Z 2018 Adv. Funct. Mater. 28 1705503Google Scholar

    [52]

    Maradudin A A, Visscher W M 1985 Z. Phys. B: Condens. Matter 60 215Google Scholar

    [53]

    Shchegrov A, Novikov I, Maradudin A 1997 Phys. Rev. Lett. 78 4269Google Scholar

    [54]

    Sanchez-Gil J A, Maradudin A A 1999 Phys. Rev. B 60 8359Google Scholar

    [55]

    Evlyukhin A B, Bozhevolnyi S I 2015 Phys. Rev. B 92 245419Google Scholar

    [56]

    Nikitin A Y, López-Tejeira F, Martín-Moreno L 2007 Phys. Rev. B 75 035129Google Scholar

    [57]

    Brucoli G, Martín-Moreno L. 2011 Phys. Rev. B 83 045422Google Scholar

    [58]

    Al-Bader S, Jamid H 2007 Phys. Rev. B 76 235410Google Scholar

    [59]

    Guan F, Sun S, Xiao S, He Q, Zhou L 2019 Sci. Bull. 64 802Google Scholar

    [60]

    Grüner G 1988 Rev. Mod. Phys. 60 1129Google Scholar

    [61]

    Zhou L, Huang X, Chan C T 2005 Photonics Nanostruct. 3 100Google Scholar

    [62]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [63]

    Ju L, Geng B, Horng J, et al. 2011 Nat. Nanotechnol. 6 630Google Scholar

    [64]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

    [65]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [66]

    Hohenau A, Krenn J R, Stepanov A L, Drezet A, Ditlbacher H, Steinberger B, Leitner A, Aussenegg F R 2005 Opt. Lett. 30 893Google Scholar

    [67]

    Devaux E, Laluet J Y, Stein B, Genet C, Ebbesen T, Weeber J C, Dereux A 2010 Opt. Express 18 20610Google Scholar

    [68]

    Radko I P, Eylyukhin A B, Boltasseva A, Bozhevolnyi S I 2008 Opt. Express 16 3924Google Scholar

    [69]

    Ditlbacher H, Krenn J R, Schider G, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 81 1762Google Scholar

    [70]

    Drezet A, Stepanov A L, Ditlbacher H, Hohenau A, Steinberger B, Aussenegg F R, Leitner A, Krenn J R 2005 Appl. Phys. Lett. 86 074104Google Scholar

    [71]

    Randhawa S, González M U, Renger J, Enoch S, Quidant R 2010 Opt. Express 18 14496Google Scholar

    [72]

    Chen Y G, Chen Y H, Li Z Y 2014 Opt. Lett. 39 339Google Scholar

    [73]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804Google Scholar

    [74]

    Li L, Li T, Wang S M, Zhu S N 2013 Phys. Rev. Lett. 110 046807Google Scholar

    [75]

    Yu N, Genevet P, Kats M, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [76]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [77]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 6 1800415Google Scholar

    [78]

    Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [79]

    Miao Z, Wu Q, Li X, He Q, Ding K, An Z, Zhang Y, Zhou L 2015 Phys. Rev. X 5 041027Google Scholar

    [80]

    Sun S, Yang K, Wang C, et al. 2012 Nano Lett. 12 6223Google Scholar

    [81]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [82]

    Li X, Xiao S, Cai B, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940Google Scholar

    [83]

    Sun W, He Q, Sun S, Zhou L 2016 Light Sci. Appl. 5 e16003Google Scholar

    [84]

    Duan J, Guo H, Dong S, Cai T, Luo W, Liang Z, He Q, Zhou L, Sun S 2017 Sci. Rep. 7 1354Google Scholar

    [85]

    Luo W, Xiao S, He Q, Sun S, Zhou L 2015 Adv. Opt. Mater. 3 1102Google Scholar

    [86]

    Chen W, Yang K, Wang C, Huang Y, Sun G, Chiang I, Liao C, Hsu W, Lin H, Sun S, Zhou L, Liu A, Tsai D 2014 Nano Lett. 14 225Google Scholar

    [87]

    Wang Z, Dong S, Luo W, Jia M, Liang Z, He Q, Sun S, Zhou L 2018 Appl. Phys. Lett. 112 191901Google Scholar

    [88]

    Jia M, Wang Z, Li H, Wang X, Luo W, Sun S, Zhang Y, He Q, Zhou L 2019 Light Sci. Appl. 8 16Google Scholar

    [89]

    Dong S, Zhang Y, Guo H, Duan J, Guan F, He Q, Zhao H, Zhou L, Sun S 2018 Phys. Rev. Appl. 9 014032Google Scholar

    [90]

    Dong S, Wang Z, Guo H, Guan F, Li X, He Q, Zhao H, Zhou L, Sun S 2018 Eurphys. Lett. 122 67002Google Scholar

    [91]

    Garcia-Vidal F J, Martín-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 S97Google Scholar

    [92]

    Zhou L, Chan C T 2004 Appl. Phys. Lett. 84 1444Google Scholar

    [93]

    Jiang S C, Xiong X, Hu Y S, Jiang S W, Hu Y H, Xu D H, Peng R, Wang M 2015 Phys. Rev. B 91 125421Google Scholar

    [94]

    Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y 2015 Adv. Opt. Mater. 3 813Google Scholar

    [95]

    Bruggeman D A G 1935 Ann. Phys. 24 636Google Scholar

    [96]

    Rytov S 1956 Sov. Phys. JETP-USSR 2 466

    [97]

    Sun S, Huang X, Zhou L 2007 Phys. Rev. E 75 066602Google Scholar

  • 图 1  (a) SPPs的复杂散射效应; (b) SPPs遇到金属表面缺陷时的散射效应; (c) SPPs的反射和折射效应[16]; (d) 亚波长等离激元纳米激光器[17]; (e) SPPs的三维远场聚焦效应[18]

    Fig. 1.  (a) Complex scattering effects of SPPs; (b) scattering effect of SPPs striking a defect on the plasmonic metal; (c) reflection and refraction effects of SPPs[16]; (d) subwavelength plasmonic nano-laser[17]; (e) three-dimensional far-field focusing effect of SPPs[18].

    图 2  (a) SPPs在介质波导中的传输及辐射[22]; (b) SPPs聚焦装置[24]

    Fig. 2.  (a) Propagation and radiation of SPPs inside a dielectric waveguide[22]; (b) anano-device for SPPs focusing[24].

    图 3  (a), (b)等离激元金属/真空对接系统(上下为完美电导体边界)中的表面等离极化激元反射谱[33]; (c), (d) 等离激元波导对接系统中的SPPs反射系数[35]; (e), (f) 金属/介质开放体系中的SPPs的散射系数(R, T, S)[36]

    Fig. 3.  (a), (b) SPPs reflectance spectrum of a plasmonic metal/vacuum junction system surrounded by perfect electric conductors[33]; (c), (d) SPPs reflection coefficients of a plasmonic waveguide junction[35]; (e), (f) scattering coefficients $ (R, T, S) $ of SPPs inside a jointed metal/dielectric open system[36].

    图 4  (a) 周期性等离激元体对接结构; 特定等离激元周期结构中的(b) SPPs和散射模式以及(c)倏逝波模式的色散关系[38]

    Fig. 4.  (a) Periodic plasmonic junction system; dispersion relations of (b) SPPs and scattering modes, and (c) evanescent modes inside a typical plasmonic superlattice[38].

    图 5  (a) 等离激元波导对接体系; (b), (c) 不同金属和不同介质对接的波导体系中SPPs的反射率谱线; (d) 开放式等离激元对接体系; (e) 反射率的变化谱线; (f) 体系中存在一阶波导模式时的场分布[38]

    Fig. 5.  (a) Plasmonic waveguide junction system; (b), (c) SPPs reflectance spectra in a waveguide junction system with different metals or dielectrics; (d) an open plasmonic junction system; (e) SPPs reflection amplitude as function of periodicity P in such system; (f) field distributions inside such plasmonic system with the first-order scattering modes appearing[38].

    图 6  (a) 等离激元体Y型分流器和Mach-Zehnder干涉仪[43]; (b) 基于纳米薄膜的SPPs全反射[44]; (c) SPPs的180°转向效应[45]

    Fig. 6.  (a) Plasmonic Y-splitter and Mach-Zehnder interferometer[43]; (b) total reflection of SPPs based on a nano-layer system[44]; (c) 180° bending effect of SPPs[45].

    图 7  (a) SPPs彩色全息术; (b) 重建的三色苹果全息图像[46]; (c), (d) SPPs远场聚焦[49]

    Fig. 7.  (a) Colorful holography of SPPs; (b) reconstructed image of 3D colorful apple[46]; (c), (d) far-field focusing of SPPs[49].

    图 8  (a) 半无限大等离激元体金属对接系统; (b) 远场散射强度随着散射角度$\varphi $$\sqrt {\left| {{\varepsilon _2}} \right|} $的变化; (c) 特定等离激元对接体系中的远场散射角分布[59]

    Fig. 8.  (a) Semi-infinite plasmonic metal junction system; (b) scattering far-field intensity as function of $\varphi $ and $\sqrt {\left| {{\varepsilon _2}} \right|} $; (c) scattering far-field angular distribution of SPPs in a typical plasmonic junction system[59].

    图 9  (a) 理想的半无限大二维等离激元体系统; (d) 半无限大人工金属网栅结构; (b), (e)相应体系中的SPPs的色散关系; (c), (f) 相应体系中的SPPs散射远场角谱分布[59]

    Fig. 9.  (a) An ideal semi-infinite 2D plasmonic system; (d) a semi-infinite artificial metallic mesh structure; (b), (e) dispersion relations and (c), (f) scattering far-field angular distributions of SPPs in two plasmonic systems[59].

    图 10  (a), (b) 利用不同形状的介质光学器件来调控SPPs的波前[66,67]; (c) 利用纳米颗粒阵列实现SPPs折射[68]

    Fig. 10.  (a), (b) SPPs wavefront manipulations with dielectric optical elements of different shapes[66,67]; (c) refraction of SPPs with nanoparticle array[68].

    图 11  基于(a)纳米颗粒阵列[69]和(b)介质光栅[71]的SPPs布拉格反射; (c) SPPs全息[72]; (d) SPPs的艾里光束激发[73]

    Fig. 11.  Bragg reflections based on (a) nanoparticle array[69] and (b) dielectric grating[71]; (c) SPP holography[72]; (d) SPPs Airy beam generation[73].

    图 12  (a) 真实的超构表面结构及(b)其对SPPs的反射系数[89]

    Fig. 12.  (a) Practical metasurface and (b) corresponding SPPs reflection coefficients[89].

    图 13  (a) 超构表面样品; (b), (c) 模拟和(d) 实验验证SPPs异常反射[89]

    Fig. 13.  (a) Metasurface sample and (b), (c) numerical / (d) experimental verifications of SPPs anomalous reflection[89].

    图 14  超构表面实现(a) SPPs贝塞尔光束激发和(b)SPPs聚焦效应[89]

    Fig. 14.  Metasurfaces for (a) SPPs Bessel beam generation and (b) SPPs focusing[89].

  • [1]

    Raether H 1988 Springer 111 1Google Scholar

    [2]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [3]

    Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667Google Scholar

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar

    [5]

    Huang K C Y, Seo M K, Sarmiento T, Huo Y, Harris J S, Brongersma M L 2014 Nat. Photonics 8 244Google Scholar

    [6]

    Choo H, Kim M K, Staffaroni M, Seok T J, Bokor J, Cabrini S, Schuck P J, Wu M C, Yablonovitch E 2012 Nat. Photonics 6 838Google Scholar

    [7]

    Atwater H A, Polman A 2010 Nat. Mater. 9 205Google Scholar

    [8]

    Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P 2008 Nat. Mater. 7 442Google Scholar

    [9]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [10]

    Mühlschlegel P, Eisler H J, Martin O J F, Hecht B, Pohl D W 2005 Science 308 1607Google Scholar

    [11]

    Beeck O, Ritchie AW 1950 Discuss. Faraday Soc. 8 159Google Scholar

    [12]

    Pendry J B, Martin-Moreno L, Garcia-Vidal F J 2004 Science 305 847Google Scholar

    [13]

    Hibbins A P, Evans B R, Sambles J R 2005 Science 308 670Google Scholar

    [14]

    Maier S A, Andrews S R, Martín-Moreno L, García-Vidal F J 2006 Phys. Rev. Lett. 97 176805Google Scholar

    [15]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426Google Scholar

    [16]

    Elser J, Podolskiy V A 2008 Phys. Rev. Lett. 100 066402Google Scholar

    [17]

    Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629Google Scholar

    [18]

    Chang C M, Tseng M L, Cheng B H, Chu C H, Ho Y Z, Huang H W, Lan Y C, Huang D W, Liu A Q, Tsai D P 2013 Adv. Mater. 25 1118Google Scholar

    [19]

    Quinten M, Leitner A, Krenn J R, Aussenegg F R 1998 Opt. Lett. 23 1331Google Scholar

    [20]

    Brongersma M L, Hartman J W, Atwater H A 2000 Phys. Rev. B 62 16356Google Scholar

    [21]

    Maier S A, Brongersma M L, Kik P G, Meltzer S, Requicha A A G, Atwater H A 2001 Adv. Mater. 13 1501Google Scholar

    [22]

    Law M, Sirbuly D J, Johnson J C, Goldberger J, Saykally R J, Yang P 2004 Science 305 1269Google Scholar

    [23]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403Google Scholar

    [24]

    Yin L, Vlasko-Vlasov V K, Pearson J, Hiller J M, Hua J, Welp U, Brown D E, Kimball C W 2005 Nano. Lett. 5 1399Google Scholar

    [25]

    Wei H, Wang Z, Tian X, Käll M, Xu H 2011 Nat. Commun. 2 387Google Scholar

    [26]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20Google Scholar

    [27]

    Ekmel Ozbay 2006 Science 311 189Google Scholar

    [28]

    Lal S, Link S, Halas N J 2007 Nat. Photonics 1 641Google Scholar

    [29]

    Ebbesen T W, Genet C, Bozhevolnyi S I 2008 Phys. Today 61 44Google Scholar

    [30]

    Volkov V S, Bozhevolnyi S I, Rodrigo S G, Martín-Moreno L, García-Vidal F J, Devaux E, Ebbesen T W 2009 Nano Lett. 9 1278Google Scholar

    [31]

    Verhagen E, Spasenović M, Polman A, Kuipers L 2009 Phys. Rev. Lett. 102 203904Google Scholar

    [32]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photonics 4 83Google Scholar

    [33]

    Stegeman G I, Maradudin A A, Rahman T S 1981 Phys. Rev. B 23 2576Google Scholar

    [34]

    Stegeman G I, Glass N E, Maradudin A A, Shen T P, Wallis R F 1983 Opt. Lett. 8 626Google Scholar

    [35]

    Kocabaş Ş E, Veronis G, Miller D A B, Fan S 2008 IEEE 14 1462Google Scholar

    [36]

    Oulton R F, Pile D F P, Liu Y, Zhang X 2007 Phys. Rev. B 76 035408Google Scholar

    [37]

    Chaves A J, Amorim B, Bludov Y V., Gonçalves P A D, Peres N M R 2018 Phys. Rev. B 97 035434Google Scholar

    [38]

    Guan F, Sun S, Ma S, Fang Z, Zhu B. Li X, He Q, Xiao S, Zhou L 2018 J. Phys. Condens. Matter 30 114002Google Scholar

    [39]

    Hao J, Zhou L 2008 Phys. Rev. B 77 094201Google Scholar

    [40]

    Tang S, Zhu B, Jia M, He Q, Sun S, Mei Y, Zhou L 2015 Phys. Rev. B 91 174201Google Scholar

    [41]

    Li J, Zhou L, Chan C T, Sheng P 2003 Phys. Rev. Lett. 90 083901Google Scholar

    [42]

    Hessel A, Oliner A A 1965 Appl. Opt. 4 1275Google Scholar

    [43]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508Google Scholar

    [44]

    Stockman M I 2006 Nano Lett. 6 2604Google Scholar

    [45]

    Liu Y, Zentgraf T, Bartal G, Zhang X 2010 Nano Lett. 10 1991Google Scholar

    [46]

    Miyu O, Kato J, Kawata S 2011 Science 332 218Google Scholar

    [47]

    Yu L, Lin D, Chen Y, Chang Y, Huang K, Liaw J, Yeh J, Liu J, Yeh C, Lee C 2005 Phys. Rev. B 71 041405(R)Google Scholar

    [48]

    Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 013103Google Scholar

    [49]

    Kumar M S, Piao X, Koo S, Yu S, Park N 2010 Opt. Express 18 8800Google Scholar

    [50]

    Zhang S, Gu C, Xu H 2014 Small 10 4264Google Scholar

    [51]

    Jiang Q, Bao Y, Lin F, Zhu X, Zhang S, Fang Z 2018 Adv. Funct. Mater. 28 1705503Google Scholar

    [52]

    Maradudin A A, Visscher W M 1985 Z. Phys. B: Condens. Matter 60 215Google Scholar

    [53]

    Shchegrov A, Novikov I, Maradudin A 1997 Phys. Rev. Lett. 78 4269Google Scholar

    [54]

    Sanchez-Gil J A, Maradudin A A 1999 Phys. Rev. B 60 8359Google Scholar

    [55]

    Evlyukhin A B, Bozhevolnyi S I 2015 Phys. Rev. B 92 245419Google Scholar

    [56]

    Nikitin A Y, López-Tejeira F, Martín-Moreno L 2007 Phys. Rev. B 75 035129Google Scholar

    [57]

    Brucoli G, Martín-Moreno L. 2011 Phys. Rev. B 83 045422Google Scholar

    [58]

    Al-Bader S, Jamid H 2007 Phys. Rev. B 76 235410Google Scholar

    [59]

    Guan F, Sun S, Xiao S, He Q, Zhou L 2019 Sci. Bull. 64 802Google Scholar

    [60]

    Grüner G 1988 Rev. Mod. Phys. 60 1129Google Scholar

    [61]

    Zhou L, Huang X, Chan C T 2005 Photonics Nanostruct. 3 100Google Scholar

    [62]

    Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X 2011 Nature 474 64Google Scholar

    [63]

    Ju L, Geng B, Horng J, et al. 2011 Nat. Nanotechnol. 6 630Google Scholar

    [64]

    Vakil A, Engheta N 2011 Science 332 1291Google Scholar

    [65]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [66]

    Hohenau A, Krenn J R, Stepanov A L, Drezet A, Ditlbacher H, Steinberger B, Leitner A, Aussenegg F R 2005 Opt. Lett. 30 893Google Scholar

    [67]

    Devaux E, Laluet J Y, Stein B, Genet C, Ebbesen T, Weeber J C, Dereux A 2010 Opt. Express 18 20610Google Scholar

    [68]

    Radko I P, Eylyukhin A B, Boltasseva A, Bozhevolnyi S I 2008 Opt. Express 16 3924Google Scholar

    [69]

    Ditlbacher H, Krenn J R, Schider G, Leitner A, Aussenegg F R 2002 Appl. Phys. Lett. 81 1762Google Scholar

    [70]

    Drezet A, Stepanov A L, Ditlbacher H, Hohenau A, Steinberger B, Aussenegg F R, Leitner A, Krenn J R 2005 Appl. Phys. Lett. 86 074104Google Scholar

    [71]

    Randhawa S, González M U, Renger J, Enoch S, Quidant R 2010 Opt. Express 18 14496Google Scholar

    [72]

    Chen Y G, Chen Y H, Li Z Y 2014 Opt. Lett. 39 339Google Scholar

    [73]

    Li L, Li T, Wang S M, Zhang C, Zhu S N 2011 Phys. Rev. Lett. 107 126804Google Scholar

    [74]

    Li L, Li T, Wang S M, Zhu S N 2013 Phys. Rev. Lett. 110 046807Google Scholar

    [75]

    Yu N, Genevet P, Kats M, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [76]

    Sun S, He Q, Hao J, Xiao S, Zhou L 2019 Adv. Opt. Photonics 11 380Google Scholar

    [77]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 6 1800415Google Scholar

    [78]

    Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S, Zhou L 2015 Phys. Rev. Lett. 115 235503Google Scholar

    [79]

    Miao Z, Wu Q, Li X, He Q, Ding K, An Z, Zhang Y, Zhou L 2015 Phys. Rev. X 5 041027Google Scholar

    [80]

    Sun S, Yang K, Wang C, et al. 2012 Nano Lett. 12 6223Google Scholar

    [81]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [82]

    Li X, Xiao S, Cai B, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940Google Scholar

    [83]

    Sun W, He Q, Sun S, Zhou L 2016 Light Sci. Appl. 5 e16003Google Scholar

    [84]

    Duan J, Guo H, Dong S, Cai T, Luo W, Liang Z, He Q, Zhou L, Sun S 2017 Sci. Rep. 7 1354Google Scholar

    [85]

    Luo W, Xiao S, He Q, Sun S, Zhou L 2015 Adv. Opt. Mater. 3 1102Google Scholar

    [86]

    Chen W, Yang K, Wang C, Huang Y, Sun G, Chiang I, Liao C, Hsu W, Lin H, Sun S, Zhou L, Liu A, Tsai D 2014 Nano Lett. 14 225Google Scholar

    [87]

    Wang Z, Dong S, Luo W, Jia M, Liang Z, He Q, Sun S, Zhou L 2018 Appl. Phys. Lett. 112 191901Google Scholar

    [88]

    Jia M, Wang Z, Li H, Wang X, Luo W, Sun S, Zhang Y, He Q, Zhou L 2019 Light Sci. Appl. 8 16Google Scholar

    [89]

    Dong S, Zhang Y, Guo H, Duan J, Guan F, He Q, Zhao H, Zhou L, Sun S 2018 Phys. Rev. Appl. 9 014032Google Scholar

    [90]

    Dong S, Wang Z, Guo H, Guan F, Li X, He Q, Zhao H, Zhou L, Sun S 2018 Eurphys. Lett. 122 67002Google Scholar

    [91]

    Garcia-Vidal F J, Martín-Moreno L, Pendry J B 2005 J. Opt. A: Pure Appl. Opt. 7 S97Google Scholar

    [92]

    Zhou L, Chan C T 2004 Appl. Phys. Lett. 84 1444Google Scholar

    [93]

    Jiang S C, Xiong X, Hu Y S, Jiang S W, Hu Y H, Xu D H, Peng R, Wang M 2015 Phys. Rev. B 91 125421Google Scholar

    [94]

    Decker M, Staude I, Falkner M, Dominguez J, Neshev D N, Brener I, Pertsch T, Kivshar Y 2015 Adv. Opt. Mater. 3 813Google Scholar

    [95]

    Bruggeman D A G 1935 Ann. Phys. 24 636Google Scholar

    [96]

    Rytov S 1956 Sov. Phys. JETP-USSR 2 466

    [97]

    Sun S, Huang X, Zhou L 2007 Phys. Rev. E 75 066602Google Scholar

  • [1] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] 农洁, 张伊祎, 韦雪玲, 姜鑫鹏, 李宁, 王冬迎, 肖思洋, 陈泓廷, 张振荣, 杨俊波. 电介质/金属/电介质膜系实现可见光波段高透兼容激光隐身研究. 物理学报, 2023, 72(17): 177802. doi: 10.7498/aps.72.20230855
    [3] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [4] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2022, 71(3): 034208. doi: 10.7498/aps.71.20211596
    [5] 覃赵福, 陈浩, 胡涛政, 陈卓, 王振林. 基于导波驱动相变材料超构表面的基波及二次谐波聚焦. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211596
    [6] 王美欧, 肖倩, 金霞, 曹燕燕, 徐亚东. 基于亚波长金属超构光栅的中红外大角度高效率回射器. 物理学报, 2020, 69(1): 014211. doi: 10.7498/aps.69.20191144
    [7] 王帅, 邓子岚, 王发强, 王晓雷, 李向平. 光子角动量在环形金属纳米孔异常透射过程中的作用. 物理学报, 2019, 68(7): 077801. doi: 10.7498/aps.68.20182017
    [8] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [9] 杨玖龙, 元晴晨, 陈润丰, 方汉林, 肖发俊, 李俊韬, 姜碧强, 赵建林, 甘雪涛. 硅超构表面上强烈增强的三次谐波. 物理学报, 2019, 68(21): 214207. doi: 10.7498/aps.68.20190789
    [10] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器. 物理学报, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [11] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [12] 王维, 高社生, 孟阳. 型谐振腔结构的光学透射特性. 物理学报, 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [13] 蒲明博, 王长涛, 王彦钦, 罗先刚. 衍射极限尺度下的亚波长电磁学. 物理学报, 2017, 66(14): 144101. doi: 10.7498/aps.66.144101
    [14] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [15] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [16] 罗松, 付统, 张中月. 内嵌银纳米棒圆形银缝隙结构中的法诺共振现象. 物理学报, 2013, 62(14): 147303. doi: 10.7498/aps.62.147303
    [17] 秦艳, 曹威, 张中月. 内嵌矩形腔楔形金属狭缝的增强透射. 物理学报, 2013, 62(12): 127302. doi: 10.7498/aps.62.127302
    [18] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究. 物理学报, 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [19] 陈园园, 邹仁华, 宋钢, 张恺, 于丽, 赵玉芳, 肖井华. 纳米银线波导中表面等离极化波激发和辐射的偏振特性研究. 物理学报, 2012, 61(24): 247301. doi: 10.7498/aps.61.247301
    [20] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究. 物理学报, 2004, 53(8): 2728-2733. doi: 10.7498/aps.53.2728
计量
  • 文章访问数:  13735
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-26
  • 修回日期:  2020-05-28
  • 上网日期:  2020-06-15
  • 刊出日期:  2020-08-05

/

返回文章
返回