搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋电子太赫兹源研究进展

许涌 张帆 张晓强 杜寅昌 赵海慧 聂天晓 吴晓君 赵巍胜

引用本文:
Citation:

自旋电子太赫兹源研究进展

许涌, 张帆, 张晓强, 杜寅昌, 赵海慧, 聂天晓, 吴晓君, 赵巍胜

Research advances in spintronic terahertz sources

Xu Yong, Zhang Fan, Zhang Xiao-Qiang, Du Yin-Chang, Zhao Hai-Hui, Nie Tian-Xiao, Wu Xiao-Jun, Zhao Wei-Sheng
PDF
HTML
导出引用
  • 太赫兹频段在电磁波谱上位于红外和微波之间, 兼具宽带性、低能性、高透性、指纹性等诸多优势特性, 在航空航天、无线通信、国防安全、材料科学、生物医疗等领域具有重要的应用前景. 太赫兹科学与技术的发展和应用在很大程度上受限于源的水平, 新型太赫兹辐射源的机理研究和器件研制至关重要. 自旋太赫兹发射不仅从物理上提供了操控飞秒自旋流的可能, 而且有望成为下一代超宽带、低成本、高效率新型太赫兹源的优选. 本文系统地综述了自旋电子太赫兹源的发展历程、实验装置、发射机理、材料选择, 以及前景展望, 重点介绍了飞秒激光诱导的超快自旋流、铁磁和非磁界面的自旋电荷转换以及太赫兹发射等物理机制方面的研究进展. 本文还分别介绍了基于重金属、拓扑绝缘体、Rashba界面和半导体等体系的自旋电子太赫兹源.
    The terahertz frequency band is located between infrared and microwave in the electromagnetic spectrum. The interesting properties such as broadband, low energy, high permeability, fingerprint, etc. make terahertz wave important for applications in the fields of aerospace, wireless communications, security, materials science, biomedicine, etc. The development and application of terahertz science and technology are largely limited by the terahertz sources, therefore it is crucial to develop new terahertz radiation sources. Recently, it was shown that terahertz spintronic not only provides the possibility of physically controlling the femtosecond spin current, but also expects to be the next-generation ultra-wideband, low-cost, high-efficiency terahertz sources. In this paper we systematically review the historical development, experimental devices, emission mechanisms, material selections, and future prospects of the spintronic terahertz sources. We present the research advances in the physical mechanisms of ultrafast spin current induced by femtosecond laser, the spin charge conversion at ferromagnetic and non-magnetic interfaces, and the terahertz emission triggered by ultrafast pulses. This review also introduces spintronic terahertz sources based on heavy metals, topological insulators, Rashba interfaces, and semiconductor systems.
      通信作者: 吴晓君, xiaojunwu@buaa.edu.cn ; 赵巍胜, weisheng.zhao@buaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11904016, 61905007, 61627813)、北航合肥创新研究院项目(批准号: BHKX-19-01, BHKX-19-02)和北京市自然科学基金(批准号: 4194083)资助的课题
      Corresponding author: Wu Xiao-Jun, xiaojunwu@buaa.edu.cn ; Zhao Wei-Sheng, weisheng.zhao@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904016, 61905007, 61627813), the Beihang Hefei Innovation Research Institute Project, China (Grant Nos. BHKX-19-01, BHKX-19-02), and the Beijing Natural Science Foundation, China (Grant No. 4194083)
    [1]

    Beaurepaire E, Merle J C, Daunois A, Bigot J 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [2]

    Carva K, Battiato M, Oppeneer P M 2011 Nat. Phys. 7 665Google Scholar

    [3]

    Koopmans B, van Kampen M, Kohlhepp J T, de Jonge W J M 2000 Phys. Rev. Lett. 85 844Google Scholar

    [4]

    Zhang G P, Hübner W, Lefkidis G, Bai Y, George T F 2009 Nat. Phys. 5 499Google Scholar

    [5]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [6]

    Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906Google Scholar

    [7]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31Google Scholar

    [8]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [9]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [10]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [11]

    Yang K H, Richards P L, Shen Y R 1971 Appl. Phys. Lett. 19 320Google Scholar

    [12]

    Mourou G, Stancampiano C V, Blumenthal D 1981 Appl. Phys. Lett. 38 470Google Scholar

    [13]

    Auston D H, Cheung K P, Valdmanis J A, Kleinman D A 1984 Phys. Rev. Lett. 53 1555Google Scholar

    [14]

    Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523Google Scholar

    [15]

    Fattinger Ch, Grischkowsky D 1988 Appl. Phys. Lett. 53 1480Google Scholar

    [16]

    Shalaby M, Hauri C P 2015 Nat. Commun. 6 5976Google Scholar

    [17]

    Tomasino A, Parisi A, Stivala S, Livreri P, Cino A C, Busacca A C, Peccianti M, Morandotti R 2013 Sci. Rep. 3 1Google Scholar

    [18]

    Zhang X C, Ma X F, Jin Y, Lu T M, Boden E P, Phelps P D, Stewart K R, Yakymyshyn C P 1992 Appl. Phys. Lett. 61 3080Google Scholar

    [19]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [20]

    Ignatyeva D O, Davies C S, Sylgacheva D A, Tsukamoto A, Yoshikawa H, Kapralov P O, Kirilyuk A, Belotelov V I, Kimel A V 2019 Nat. Commun. 10 4786Google Scholar

    [21]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [22]

    Wang B, Shan S, Wu X, Wang C, Pandey C, Nie T, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [23]

    Koopmans B, Malinowski G, Longa F D, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259Google Scholar

    [24]

    Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855Google Scholar

    [25]

    Choi G M, Min B C, Lee K J, Cahill D G 2014 Nat. Commun. 5 4334Google Scholar

    [26]

    Bergeard N, Hehn M, Mangin S, Lengaigne G, Montaigne F, Lalieu M L M, Koopmans B, Malinowski G 2016 Phys. Rev. Lett. 117 147203Google Scholar

    [27]

    Xu Y, Deb M, Malinowski G, Hehn M, Zhao W, Mangin S 2017 Adv. Mater. 29 1703474Google Scholar

    [28]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [29]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [30]

    Nenno D M, Rethfeld B, Schneider H C 2018 Phys. Rev. B 98 224416Google Scholar

    [31]

    Choi G M, Moon C H, Min B C, Lee K J, Cahill D G 2015 Nat. Phys. 11 576Google Scholar

    [32]

    Seifert T S, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar

    [33]

    Beigang R, Papaioannou E T, Scheuer L, Keller S, Torosyan G, Rahm M, Sokoluk D, Talara M, Oda Y, Kitahara H, Afalla J, Mag-usara V K, Tani M 2019 Terahertz RF Millim. Submillimeter-Wave Technol. Appl. XⅡ San Francisco, California, United States, February 2–7, 2019 p109170O

    [34]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [35]

    Papaioannou E Th, Torosyan G, Keller S, Scheuer L, Battiato M, Mag-Usara V K, L’huillier J, Tani M, Beigang R 2018 IEEE Trans. Magn. 54 1Google Scholar

    [36]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [37]

    Mangin S, Gottwald M, Lambert C H, Steil D, Uhlí? V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M, Fullerton E E 2014 Nat. Mater. 13 286Google Scholar

    [38]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing Th 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [39]

    Němec P, Rozkotová E, Tesařová N, Trojánek F, De Ranieri E, Olejník K, Zemen J, Novák V, Cukr M, Malý P, Jungwirth T 2012 Nat. Phys. 8 411Google Scholar

    [40]

    Ramsay A J, Roy P E, Haigh J A, Otxoa R M, Irvine A C, Janda T, Campion R P, Gallagher B L, Wunderlich J 2015 Phys. Rev. Lett. 114 067202Google Scholar

    [41]

    Freimuth F, Blügel S, Mokrousov Y 2016 Phys. Rev. B 94 144432Google Scholar

    [42]

    Choi G M, Schleife A, Cahill D G 2017 Nat. Commun. 8 15085Google Scholar

    [43]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [44]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing Th, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [45]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [46]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [47]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172Google Scholar

    [48]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [49]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [50]

    Wunderlich J, Kaestner B, Sinova J, Jungwirth T 2005 Phys. Rev. Lett. 94 047204Google Scholar

    [51]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [52]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [53]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [54]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [55]

    Shen K, Vignale G, Raimondi R 2014 Phys. Rev. Lett. 112 096601Google Scholar

    [56]

    Deorani P, Son J, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2014 Phys. Rev. B 90 094403Google Scholar

    [57]

    Rojas-Sánchez J C, Oyarzún S, Fu Y, Marty A, Vergnaud C, Gambarelli S, Vila L, Jamet M, Ohtsubo Y, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Reyren N, George J M, Fert A 2016 Phys. Rev. Lett. 116 096602Google Scholar

    [58]

    Shiomi Y, Nomura K, Kajiwara Y, Eto K, Novak M, Segawa K, Ando Y, Saitoh E 2014 Phys. Rev. Lett. 113 196601Google Scholar

    [59]

    Sun R, Yang S, Yang X, Vetter E, Sun D, Li N, Su L, Li Y, Li Y, Gong Z, Xie Z, Hou K, Gul Q, He W, Zhang X, Cheng Z 2019 Nano Lett. 19 4420Google Scholar

    [60]

    Gambardella P, Miron I M 2011 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369 3175Google Scholar

    [61]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [62]

    Rojas-Sánchez J C, Vila L, Desfonds G, Gambarelli S, Attané J P, de Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [63]

    Huang L, Kim J W, Lee S H, Kim S D, Tien V M, Shinde K P, Shim J H, Shin Y, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, Kim D H 2019 Appl. Phys. Lett. 115 142404Google Scholar

    [64]

    Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing Th, Kimel A V 2015 Phys. Rev. B 92 104419Google Scholar

    [65]

    Huisman T J, Rasing T 2016 J. Phys. Soc. Jpn. 86 011009Google Scholar

    [66]

    Nenno D M, Binder R, Schneider H C 2019 Phys. Rev. Appl. 11 054083Google Scholar

    [67]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2017 J. Phys. Appl. Phys. 51 034001Google Scholar

    [68]

    Chen M, Mishra R, Wu Y, Lee K, Yang H 2018 Adv. Opt. Mater. 6 1800430Google Scholar

    [69]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944Google Scholar

    [70]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar

    [71]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [72]

    Nenno D M, Scheuer L, Sokoluk D, Keller S, Torosyan G, Brodyanski A, Lösch J, Battiato M, Rahm M, Binder R H, Schneider H C, Beigang R, Papaioannou E T 2019 Sci. Rep. 9 1Google Scholar

    [73]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [74]

    Huisman T J, Ciccarelli C, Tsukamoto A, Mikhaylovskiy R V, Rasing Th, Kimel A V 2017 Appl. Phys. Lett. 110 072402Google Scholar

    [75]

    Seifert T, Martens U, Günther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadón A, Körner H S, Walowski J, Back C, Ibarra M R, Morellón L, Saitoh E, Wolf M, Song C, Uchida K, Münzenberg M, Radu I, Kampfrath T 2017 SPIN 07 1740010Google Scholar

    [76]

    Schneider R, Fix M, Heming R, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar

    [77]

    Schneider R, Fix M, Bensmann J, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2019 Appl. Phys. Lett. 115 152401Google Scholar

    [78]

    Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Kläui M 2018 Nano Lett. 18 1064Google Scholar

    [79]

    Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808Google Scholar

    [80]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [81]

    McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P, Gedik N 2012 Nat. Nanotechnol. 7 96Google Scholar

    [82]

    Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Münzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar

    [83]

    Seifert P, Vaklinova K, Kern K, Burghard M, Holleitner A 2017 Nano Lett. 17 973Google Scholar

    [84]

    Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102Google Scholar

    [85]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [86]

    Zhang Q, Hong D, Liu C, Schaller R, Fong D, Bhattacharya A, Wen H 2019 Conf. Lasers Electro-Opt. San Jose, California, May 5–10, 2019 pFM4D.7

    [87]

    Husain S, Kumar A, Kumar P, Kumar A, Barwal V, Behera N, Choudhary S, Svedlindh P, Chaudhary S 2018 Phys. Rev. B 98 180404Google Scholar

    [88]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [89]

    Battiato M, Held K 2016 Phys. Rev. Lett. 116 196601Google Scholar

    [90]

    Hibberd M T, Lake D S, Johansson N A B, Thomson T, Jamison S P, Graham D M 2019 Appl. Phys. Lett. 114 031101Google Scholar

    [91]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [92]

    Chen X, Wu X, Shan S, Guo F, Kong D, Wang C, Nie T, Pandey C, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [93]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar

    [94]

    Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2019 Adv. Opt. Mater. 7 1801608Google Scholar

    [95]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar

    [96]

    Zhang S, Li Q, Dai Y, Lin X, Ma G, Jin Z, Zhu W, Zhang Z, Yao J 2018 2018 43rd Int. Conf. Infrared Millim. Terahertz Waves IRMMW-THz Nagoya, Japan, September 9–14, 2018 p1

    [97]

    Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing Th, Kimel A V 2014 Phys. Rev. B 90 184405Google Scholar

    [98]

    Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing T, Kimel A V 2015 Nat. Commun. 6 8190Google Scholar

  • 图 1  透射式太赫兹发射谱仪的光路示意图

    Fig. 1.  Schematic diagram of experimental setup of spintronic terahertz emission spectroscopy in transmission geometry.

    图 2  铁磁/非磁异质结太赫兹发射 (a)时域波形; (b)频谱

    Fig. 2.  The time-domain waveform and frequency-domain spectrum of the terahertz wave emitted by FM/NM heterostructures: (a) The time-domain waveform; (b) frequency-domain spectrum.

    图 3  面内磁化的铁磁薄膜FM被飞秒激光激发, 自旋极化的非平衡热电子注入非磁层. 根据逆自旋霍尔效应, 多数电子和少数电子在不同方向偏转, 从而将纵向自旋流转换为横向的电荷流, 产生了太赫兹发射

    Fig. 3.  The in-plane magnetized ferromagnetic layer is excited by the femtosecond laser, which induces the injection of non-equilibrium spin-polarized hot electrons into the non-magnetic layer. The spin-majority electrons and the spin-minority electrons are deflected into opposite directions due to inverse spin Hall effect. The longitudinal spin current is converted into a transverse electric current and leads to the terahertz emission.

    图 4  (a)拓扑绝缘体表面的能量色散关系图; (b) Rashba界面的能量色散关系图, Rashba界面态和拓扑绝缘体表面态中形成了强烈的自旋-动量锁定; (c)拓扑绝缘体表面的逆Edelstein效应; (d) Rashba界面的逆Edelstein效应, 注入y极化的自旋流密度诱导出x方向的电荷流[57]

    Fig. 4.  (a) Energy dispersion of the Rashba interface; (b) energy dispersion of the topological insulator. Strong spin-momentum locking can be observed in interface states of the Rashba interface and surface states of the topological insulator; (c) the inverse Edelstein effect of Rashba interfaces; (d) the inverse Edelstein effect of topological insulator surface states. The y-polarized spin current induces a charge current in the x direction[57].

  • [1]

    Beaurepaire E, Merle J C, Daunois A, Bigot J 1996 Phys. Rev. Lett. 76 4250Google Scholar

    [2]

    Carva K, Battiato M, Oppeneer P M 2011 Nat. Phys. 7 665Google Scholar

    [3]

    Koopmans B, van Kampen M, Kohlhepp J T, de Jonge W J M 2000 Phys. Rev. Lett. 85 844Google Scholar

    [4]

    Zhang G P, Hübner W, Lefkidis G, Bai Y, George T F 2009 Nat. Phys. 5 499Google Scholar

    [5]

    Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J, Schmuttenmaer C A 2004 Appl. Phys. Lett. 84 3465Google Scholar

    [6]

    Nishitani J, Kozuki K, Nagashima T, Hangyo M 2010 Appl. Phys. Lett. 96 221906Google Scholar

    [7]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31Google Scholar

    [8]

    Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer P M, Münzenberg M 2013 Nat. Nanotechnol. 8 256Google Scholar

    [9]

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T 2016 Nat. Photonics 10 483Google Scholar

    [10]

    Wu Y, Elyasi M, Qiu X, Chen M, Liu Y, Ke L, Yang H 2017 Adv. Mater. 29 1603031Google Scholar

    [11]

    Yang K H, Richards P L, Shen Y R 1971 Appl. Phys. Lett. 19 320Google Scholar

    [12]

    Mourou G, Stancampiano C V, Blumenthal D 1981 Appl. Phys. Lett. 38 470Google Scholar

    [13]

    Auston D H, Cheung K P, Valdmanis J A, Kleinman D A 1984 Phys. Rev. Lett. 53 1555Google Scholar

    [14]

    Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523Google Scholar

    [15]

    Fattinger Ch, Grischkowsky D 1988 Appl. Phys. Lett. 53 1480Google Scholar

    [16]

    Shalaby M, Hauri C P 2015 Nat. Commun. 6 5976Google Scholar

    [17]

    Tomasino A, Parisi A, Stivala S, Livreri P, Cino A C, Busacca A C, Peccianti M, Morandotti R 2013 Sci. Rep. 3 1Google Scholar

    [18]

    Zhang X C, Ma X F, Jin Y, Lu T M, Boden E P, Phelps P D, Stewart K R, Yakymyshyn C P 1992 Appl. Phys. Lett. 61 3080Google Scholar

    [19]

    Seifert T, Jaiswal S, Sajadi M, Jakob G, Winnerl S, Wolf M, Kläui M, Kampfrath T 2017 Appl. Phys. Lett. 110 252402Google Scholar

    [20]

    Ignatyeva D O, Davies C S, Sylgacheva D A, Tsukamoto A, Yoshikawa H, Kapralov P O, Kirilyuk A, Belotelov V I, Kimel A V 2019 Nat. Commun. 10 4786Google Scholar

    [21]

    Feng Z, Yu R, Zhou Y, Lu H, Tan W, Deng H, Liu Q, Zhai Z, Zhu L, Cai J, Miao B, Ding H 2018 Adv. Opt. Mater. 6 1800965Google Scholar

    [22]

    Wang B, Shan S, Wu X, Wang C, Pandey C, Nie T, Zhao W, Li Y, Miao J, Wang L 2019 Appl. Phys. Lett. 115 121104Google Scholar

    [23]

    Koopmans B, Malinowski G, Longa F D, Steiauf D, Fähnle M, Roth T, Cinchetti M, Aeschlimann M 2010 Nat. Mater. 9 259Google Scholar

    [24]

    Malinowski G, Dalla Longa F, Rietjens J H H, Paluskar P V, Huijink R, Swagten H J M, Koopmans B 2008 Nat. Phys. 4 855Google Scholar

    [25]

    Choi G M, Min B C, Lee K J, Cahill D G 2014 Nat. Commun. 5 4334Google Scholar

    [26]

    Bergeard N, Hehn M, Mangin S, Lengaigne G, Montaigne F, Lalieu M L M, Koopmans B, Malinowski G 2016 Phys. Rev. Lett. 117 147203Google Scholar

    [27]

    Xu Y, Deb M, Malinowski G, Hehn M, Zhao W, Mangin S 2017 Adv. Mater. 29 1703474Google Scholar

    [28]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [29]

    Battiato M, Carva K, Oppeneer P M 2012 Phys. Rev. B 86 024404Google Scholar

    [30]

    Nenno D M, Rethfeld B, Schneider H C 2018 Phys. Rev. B 98 224416Google Scholar

    [31]

    Choi G M, Moon C H, Min B C, Lee K J, Cahill D G 2015 Nat. Phys. 11 576Google Scholar

    [32]

    Seifert T S, Jaiswal S, Barker J, Weber S T, Razdolski I, Cramer J, Gueckstock O, Maehrlein S F, Nadvornik L, Watanabe S, Ciccarelli C, Melnikov A, Jakob G, Münzenberg M, Goennenwein S T B, Woltersdorf G, Rethfeld B, Brouwer P W, Wolf M, Kläui M, Kampfrath T 2018 Nat. Commun. 9 2899Google Scholar

    [33]

    Beigang R, Papaioannou E T, Scheuer L, Keller S, Torosyan G, Rahm M, Sokoluk D, Talara M, Oda Y, Kitahara H, Afalla J, Mag-usara V K, Tani M 2019 Terahertz RF Millim. Submillimeter-Wave Technol. Appl. XⅡ San Francisco, California, United States, February 2–7, 2019 p109170O

    [34]

    Herapath R I, Hornett S M, Seifert T S, Jakob G, Kläui M, Bertolotti J, Kampfrath T, Hendry E 2019 Appl. Phys. Lett. 114 041107Google Scholar

    [35]

    Papaioannou E Th, Torosyan G, Keller S, Scheuer L, Battiato M, Mag-Usara V K, L’huillier J, Tani M, Beigang R 2018 IEEE Trans. Magn. 54 1Google Scholar

    [36]

    Cheng L, Wang X, Yang W, Chai J, Yang M, Chen M, Wu Y, Chen X, Chi D, Goh K E J, Zhu J X, Sun H, Wang S, Song J C W, Battiato M, Yang H, Chia E E M 2019 Nat. Phys. 15 347Google Scholar

    [37]

    Mangin S, Gottwald M, Lambert C H, Steil D, Uhlí? V, Pang L, Hehn M, Alebrand S, Cinchetti M, Malinowski G, Fainman Y, Aeschlimann M, Fullerton E E 2014 Nat. Mater. 13 286Google Scholar

    [38]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, Rasing Th 2007 Phys. Rev. Lett. 99 047601Google Scholar

    [39]

    Němec P, Rozkotová E, Tesařová N, Trojánek F, De Ranieri E, Olejník K, Zemen J, Novák V, Cukr M, Malý P, Jungwirth T 2012 Nat. Phys. 8 411Google Scholar

    [40]

    Ramsay A J, Roy P E, Haigh J A, Otxoa R M, Irvine A C, Janda T, Campion R P, Gallagher B L, Wunderlich J 2015 Phys. Rev. Lett. 114 067202Google Scholar

    [41]

    Freimuth F, Blügel S, Mokrousov Y 2016 Phys. Rev. B 94 144432Google Scholar

    [42]

    Choi G M, Schleife A, Cahill D G 2017 Nat. Commun. 8 15085Google Scholar

    [43]

    Huisman T J, Mikhaylovskiy R V, Costa J D, Freimuth F, Paz E, Ventura J, Freitas P P, Blügel S, Mokrousov Y, Rasing T, Kimel A V 2016 Nat. Nanotechnol. 11 455Google Scholar

    [44]

    Li G, Medapalli R, Mikhaylovskiy R V, Spada F E, Rasing Th, Fullerton E E, Kimel A V 2019 Phys. Rev. Mater. 3 084415Google Scholar

    [45]

    Jungfleisch M B, Zhang Q, Zhang W, Pearson J E, Schaller R D, Wen H, Hoffmann A 2018 Phys. Rev. Lett. 120 207207Google Scholar

    [46]

    Hirsch J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [47]

    Hoffmann A 2013 IEEE Trans. Magn. 49 5172Google Scholar

    [48]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [49]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [50]

    Wunderlich J, Kaestner B, Sinova J, Jungwirth T 2005 Phys. Rev. Lett. 94 047204Google Scholar

    [51]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [52]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [53]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [54]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778Google Scholar

    [55]

    Shen K, Vignale G, Raimondi R 2014 Phys. Rev. Lett. 112 096601Google Scholar

    [56]

    Deorani P, Son J, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2014 Phys. Rev. B 90 094403Google Scholar

    [57]

    Rojas-Sánchez J C, Oyarzún S, Fu Y, Marty A, Vergnaud C, Gambarelli S, Vila L, Jamet M, Ohtsubo Y, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Reyren N, George J M, Fert A 2016 Phys. Rev. Lett. 116 096602Google Scholar

    [58]

    Shiomi Y, Nomura K, Kajiwara Y, Eto K, Novak M, Segawa K, Ando Y, Saitoh E 2014 Phys. Rev. Lett. 113 196601Google Scholar

    [59]

    Sun R, Yang S, Yang X, Vetter E, Sun D, Li N, Su L, Li Y, Li Y, Gong Z, Xie Z, Hou K, Gul Q, He W, Zhang X, Cheng Z 2019 Nano Lett. 19 4420Google Scholar

    [60]

    Gambardella P, Miron I M 2011 Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 369 3175Google Scholar

    [61]

    Manchon A, Koo H C, Nitta J, Frolov S M, Duine R A 2015 Nat. Mater. 14 871Google Scholar

    [62]

    Rojas-Sánchez J C, Vila L, Desfonds G, Gambarelli S, Attané J P, de Teresa J M, Magén C, Fert A 2013 Nat. Commun. 4 2944Google Scholar

    [63]

    Huang L, Kim J W, Lee S H, Kim S D, Tien V M, Shinde K P, Shim J H, Shin Y, Shin H J, Kim S, Park J, Park S Y, Choi Y S, Kim H J, Hong J I, Kim D E, Kim D H 2019 Appl. Phys. Lett. 115 142404Google Scholar

    [64]

    Huisman T J, Mikhaylovskiy R V, Tsukamoto A, Rasing Th, Kimel A V 2015 Phys. Rev. B 92 104419Google Scholar

    [65]

    Huisman T J, Rasing T 2016 J. Phys. Soc. Jpn. 86 011009Google Scholar

    [66]

    Nenno D M, Binder R, Schneider H C 2019 Phys. Rev. Appl. 11 054083Google Scholar

    [67]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2017 J. Phys. Appl. Phys. 51 034001Google Scholar

    [68]

    Chen M, Mishra R, Wu Y, Lee K, Yang H 2018 Adv. Opt. Mater. 6 1800430Google Scholar

    [69]

    Yang D, Liang J, Zhou C, Sun L, Zheng R, Luo S, Wu Y, Qi J 2016 Adv. Opt. Mater. 4 1944Google Scholar

    [70]

    Qiu H S, Kato K, Hirota K, Sarukura N, Yoshimura M, Nakajima M 2018 Opt. Express 26 15247Google Scholar

    [71]

    Torosyan G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [72]

    Nenno D M, Scheuer L, Sokoluk D, Keller S, Torosyan G, Brodyanski A, Lösch J, Battiato M, Rahm M, Binder R H, Schneider H C, Beigang R, Papaioannou E T 2019 Sci. Rep. 9 1Google Scholar

    [73]

    Sasaki Y, Suzuki K Z, Mizukami S 2017 Appl. Phys. Lett. 111 102401Google Scholar

    [74]

    Huisman T J, Ciccarelli C, Tsukamoto A, Mikhaylovskiy R V, Rasing Th, Kimel A V 2017 Appl. Phys. Lett. 110 072402Google Scholar

    [75]

    Seifert T, Martens U, Günther S, Schoen M A W, Radu F, Chen X Z, Lucas I, Ramos R, Aguirre M H, Algarabel P A, Anadón A, Körner H S, Walowski J, Back C, Ibarra M R, Morellón L, Saitoh E, Wolf M, Song C, Uchida K, Münzenberg M, Radu I, Kampfrath T 2017 SPIN 07 1740010Google Scholar

    [76]

    Schneider R, Fix M, Heming R, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2018 ACS Photonics 5 3936Google Scholar

    [77]

    Schneider R, Fix M, Bensmann J, Michaelis de Vasconcellos S, Albrecht M, Bratschitsch R 2019 Appl. Phys. Lett. 115 152401Google Scholar

    [78]

    Cramer J, Seifert T, Kronenberg A, Fuhrmann F, Jakob G, Jourdan M, Kampfrath T, Kläui M 2018 Nano Lett. 18 1064Google Scholar

    [79]

    Khang N H D, Ueda Y, Hai P N 2018 Nat. Mater. 17 808Google Scholar

    [80]

    Wang X, Cheng L, Zhu D, Wu Y, Chen M, Wang Y, Zhao D, Boothroyd C B, Lam Y M, Zhu J X, Battiato M, Song J C W, Yang H, Chia E E M 2018 Adv. Mater. 30 1802356Google Scholar

    [81]

    McIver J W, Hsieh D, Steinberg H, Jarillo-Herrero P, Gedik N 2012 Nat. Nanotechnol. 7 96Google Scholar

    [82]

    Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Münzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar

    [83]

    Seifert P, Vaklinova K, Kern K, Burghard M, Holleitner A 2017 Nano Lett. 17 973Google Scholar

    [84]

    Fang Z, Wang H, Wu X, Shan S, Wang C, Zhao H, Xia C, Nie T, Miao J, Zhang C, Zhao W, Wang L 2019 Appl. Phys. Lett. 115 191102Google Scholar

    [85]

    Zhou C, Liu Y P, Wang Z, Ma S J, Jia M W, Wu R Q, Zhou L, Zhang W, Liu M K, Wu Y Z, Qi J 2018 Phys. Rev. Lett. 121 086801Google Scholar

    [86]

    Zhang Q, Hong D, Liu C, Schaller R, Fong D, Bhattacharya A, Wen H 2019 Conf. Lasers Electro-Opt. San Jose, California, May 5–10, 2019 pFM4D.7

    [87]

    Husain S, Kumar A, Kumar P, Kumar A, Barwal V, Behera N, Choudhary S, Svedlindh P, Chaudhary S 2018 Phys. Rev. B 98 180404Google Scholar

    [88]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514Google Scholar

    [89]

    Battiato M, Held K 2016 Phys. Rev. Lett. 116 196601Google Scholar

    [90]

    Hibberd M T, Lake D S, Johansson N A B, Thomson T, Jamison S P, Graham D M 2019 Appl. Phys. Lett. 114 031101Google Scholar

    [91]

    Kong D, Wu X, Wang B, Nie T, Xiao M, Pandey C, Gao Y, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Adv. Opt. Mater. 7 1900487Google Scholar

    [92]

    Chen X, Wu X, Shan S, Guo F, Kong D, Wang C, Nie T, Pandey C, Wen L, Zhao W, Ruan C, Miao J, Li Y, Wang L 2019 Appl. Phys. Lett. 115 221104Google Scholar

    [93]

    Qiu H, Wang L, Shen Z, Kato K, Sarukura N, Yoshimura M, Hu W, Lu Y, Nakajima M 2018 Appl. Phys. Express 11 092101Google Scholar

    [94]

    Chen M, Wu Y, Liu Y, Lee K, Qiu X, He P, Yu J, Yang H 2019 Adv. Opt. Mater. 7 1801608Google Scholar

    [95]

    Jin Z, Tkach A, Casper F, Spetter V, Grimm H, Thomas A, Kampfrath T, Bonn M, Kläui M, Turchinovich D 2015 Nat. Phys. 11 761Google Scholar

    [96]

    Zhang S, Li Q, Dai Y, Lin X, Ma G, Jin Z, Zhu W, Zhang Z, Yao J 2018 2018 43rd Int. Conf. Infrared Millim. Terahertz Waves IRMMW-THz Nagoya, Japan, September 9–14, 2018 p1

    [97]

    Mikhaylovskiy R V, Hendry E, Kruglyak V V, Pisarev R V, Rasing Th, Kimel A V 2014 Phys. Rev. B 90 184405Google Scholar

    [98]

    Mikhaylovskiy R V, Hendry E, Secchi A, Mentink J H, Eckstein M, Wu A, Pisarev R V, Kruglyak V V, Katsnelson M I, Rasing T, Kimel A V 2015 Nat. Commun. 6 8190Google Scholar

  • [1] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [2] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211831
    [3] 方雨青, 金钻明, 陈海洋, 阮舜逸, 李炬赓, 曹世勋, 彭滟, 马国宏, 朱亦鸣. 高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱. 物理学报, 2020, 69(20): 209501. doi: 10.7498/aps.69.20200732
    [4] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [5] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [6] 高扬, ChandanPandey, 孔德胤, 王春, 聂天晓, 赵巍胜, 苗俊刚, 汪力, 吴晓君. 退火效应增强铁磁异质结太赫兹发射实验及机理. 物理学报, 2020, 69(20): 200702. doi: 10.7498/aps.69.20200526
    [7] 王航天, 赵海慧, 温良恭, 吴晓君, 聂天晓, 赵巍胜. 高性能太赫兹发射: 从拓扑绝缘体到拓扑自旋电子. 物理学报, 2020, 69(20): 200704. doi: 10.7498/aps.69.20200680
    [8] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源. 物理学报, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [9] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [10] 柴路, 牛跃, 栗岩锋, 胡明列, 王清月. 差频可调谐太赫兹技术的新进展. 物理学报, 2016, 65(7): 070702. doi: 10.7498/aps.65.070702
    [11] 左剑, 张亮亮, 巩辰, 张存林. 太赫兹片上系统和基于微纳结构的太赫兹超宽谱源的研究进展. 物理学报, 2016, 65(1): 010704. doi: 10.7498/aps.65.010704
    [12] 潘群峰, 张泽宇, 王会真, 林贤, 金钻明, 程振祥, 马国宏. C掺杂FePt铁磁薄膜光诱导超快退磁动力学研究. 物理学报, 2016, 65(12): 127802. doi: 10.7498/aps.65.127802
    [13] 赵文娟, 陈再高, 郭伟杰. 慢波结构爆炸发射对高功率太赫兹表面波振荡器的影响. 物理学报, 2015, 64(15): 150702. doi: 10.7498/aps.64.150702
    [14] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [15] 黄敬国, 陆金星, 周炜, 童劲超, 黄志明, 褚君浩. 磷化镓高功率太赫兹共线差频源的研究. 物理学报, 2013, 62(12): 120704. doi: 10.7498/aps.62.120704
    [16] 刘维浩, 张雅鑫, 周俊, 龚森, 刘盛纲. 偏心电子注激励周期加载波导角向非对称模衍射辐射. 物理学报, 2012, 61(23): 234209. doi: 10.7498/aps.61.234209
    [17] 马凤英, 陈明, 刘晓莉, 刘建立, 池泉, 杜艳丽, 郭茂田, 袁斌. 太赫兹波段微腔器件的设计及其特性研究. 物理学报, 2012, 61(11): 114205. doi: 10.7498/aps.61.114205
    [18] 刘维浩, 张雅鑫, 胡旻, 周俊, 刘盛纲. 基于场致发射阴极阵列的太赫兹源的物理机理研究. 物理学报, 2012, 61(12): 127901. doi: 10.7498/aps.61.127901
    [19] 高鹏, Booske John H., 杨中海, 李斌, 徐立, 何俊, 宫玉彬, 田忠. 太赫兹折叠波导行波管再生反馈振荡器非线性理论与模拟. 物理学报, 2010, 59(12): 8484-8489. doi: 10.7498/aps.59.8484
    [20] 杜 坚, 张 鹏, 刘继红, 李金亮, 李玉现. 含δ势垒的铁磁/半导体/铁磁异质结中的自旋输运和渡越时间. 物理学报, 2008, 57(11): 7221-7227. doi: 10.7498/aps.57.7221
计量
  • 文章访问数:  12961
  • PDF下载量:  724
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-27
  • 修回日期:  2020-05-23
  • 上网日期:  2020-06-15
  • 刊出日期:  2020-10-20

/

返回文章
返回