搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳能电池材料缺陷的理论与计算研究

尹媛 李玲 尹万健

引用本文:
Citation:

太阳能电池材料缺陷的理论与计算研究

尹媛, 李玲, 尹万健

Theoretical and computational study on defects of solar cell materials

Yin Yuan, Li Ling, Yin Wan-Jian
PDF
HTML
导出引用
  • 缺陷调控是影响半导体太阳能电池光电转换效率的关键因素. 缺陷与掺杂直接决定半导体中载流子的类型、浓度、传输以及光生载流子的非辐射复合. 真实半导体中存在的缺陷种类繁多, 浓度各异, 使得缺陷, 特别是单个点缺陷性质的实验表征非常困难, 因而理论与计算在缺陷研究中起到了重要的作用. 本文首先介绍了基于第一性原理的缺陷计算方法, 然后以典型太阳能电池材料CdTe, Cu(In, Ga)Se2, Cu2ZnSnS(Se)4和CH3NH3PbI3为例, 详细介绍了如何从理论计算角度认识和调控太阳能电池材料的缺陷性质.
    Defect control of semiconductors is critical to the photoelectric conversion efficiency of solar cells, because the defect and doping directly determine the carrier distribution, concentration, charge transfer and non-radiative recombination of photogenerated carriers. The defect types, structures and properties are complicated in the real semiconductors, which makes experimental characterization difficult, especially for the point defects. In this review, we firstly introduce the approaches of defect calculation based on the first-principles calculations, and take a series of typical solar cell materials for example, including CdTe, Cu(In/Ga)Se2, Cu2ZnSnS(Se)4 and CH3NH3PbI3. The elucidating of computations is also conducible to understanding and controlling the defect properties of solar cell materials in practical ways. The comparative study of these solar cell materials indicates that their efficiency bottlenecks are closely related to their defect properties. Unlike the traditional four-coordination semiconductor, the unique “defect tolerance” characteristic shown in the six-coordination perovskite materials enables the battery to have a high photoelectric conversion efficiency even when it is prepared not under harsh experimental conditions. Based on the first principles, the defect calculation plays an increasingly important role in understanding the material properties of solar cells and the bottleneck of device efficiency. At present, the calculation of defects based on the first principle mainly focuses on the formation energy and transition energy levels of defects. However, there is still a lack of researches on the dynamic behavior of carriers, especially on the non-radiative recombination of carriers, which directly affects the photoelectric conversion efficiency. Recently, with the improvement of computing power and the development of algorithms, it is possible to quantitatively calculate the electron-ion interaction, then quantitatively calculate the carriers captured by defect state. These methods have been used to study the defects of solar cells, especially perovskite solar cells. In this direction, how to combine these theoretical calculation results with experimental results to provide a more in-depth understanding of experimental results and further guide experiments in improving the efficiency of solar cells is worthy of further in-depth research.
      通信作者: 尹万健, wjyin@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674237, 11974257, 51902005)和陕西省青年人才托举计划(批准号: 20180507)资助的课题
      Corresponding author: Yin Wan-Jian, wjyin@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674237, 11974257, 51902005) and Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China (Grant No. 20180507)
    [1]

    Neumark G F 1997 Mater. Sci. Eng. 21 3

    [2]

    Zhang S, Northrup J 1991 Phys. Rev. Lett. 67 2339Google Scholar

    [3]

    Hine N D M, Frensch K, Foulkes W M C, Finnis M W 2009 Phys. Rev. B 79 024112Google Scholar

    [4]

    Wei S H 2004 Comp. Mater. Sci. 30 337Google Scholar

    [5]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 J. Appl. Phys. 57 9642

    [6]

    Wei S H, Zunger A 1998 Appl. Phys. Lett. 72 2011Google Scholar

    [7]

    Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y 2010 Phys. Rev. B 82 045106Google Scholar

    [8]

    Nishijima K, Ohtani B, Yan X, Kamai T A, Chiyoya T, Tsubota T, Murakami N, Ohno T 2007 Chem. Phys. 339 64Google Scholar

    [9]

    Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 107 5483

    [10]

    Yin W J, Ma J, Wei S H, Aljassim M M, Yan Y 2012 Phys. Rev. B 86 045211Google Scholar

    [11]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [12]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [13]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584Google Scholar

    [14]

    Yang D, Ming W, Shi H, Zhang L, Du M H 2016 Chem. Mater. 28 4349Google Scholar

    [15]

    Mosconi E, Amat A, Nazeeruddin M K, Grätzel M, Angelis F D 2013 J. Mater. Chem. C 117 13902

    [16]

    Carvalho A, Tagantsev A K, Öberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215Google Scholar

    [17]

    Lindstr M A, Mirbt S, Sanyal B, Klintenberg M 2016 J. Phys. D Appl. Phys. 49 035101Google Scholar

    [18]

    Berding M A 1999 Phys. Rev. B 60 8943Google Scholar

    [19]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66

    [20]

    Chang Y C, James R B, Davenport J W 2006 Phys. Rev. B 73 035211Google Scholar

    [21]

    Du M H, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122Google Scholar

    [22]

    Du M H, Takenaka H, Singh D J 2008 J. Appl. Phys. 104 093521Google Scholar

    [23]

    Lordi V 2013 J. Cryst. Growth 379 84Google Scholar

    [24]

    Biswas K, Du M H 2012 New J. Phys. 14 063020Google Scholar

    [25]

    Shepidchenko A, Sanyal B, Klintenberg M, Mirbt S 2015 Sci. Rep. 5 14509Google Scholar

    [26]

    Emanuelsson P, Omling P, Meyer B K, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578Google Scholar

    [27]

    Castaldini A, Cavallini A, Fraboni B, Fernandez P, Piqueras J 1998 J. Appl. Phys. 83 2121Google Scholar

    [28]

    Szeles C, Shan Y, Lynn K G, Moodenbaugh A, Eissler E E 1997 Phys. Rev. B 55 6945Google Scholar

    [29]

    Reislöhner U 1998 J. Cryst. Growth 184 1160

    [30]

    Kimel A V, Pavlov V V, Pisarev R V, Gridnev V N, Rasing T 2000 Phys. Rev. B 621 R10610

    [31]

    Yang J H, Yin W J, Park J S, Ma J, Wei S H 2016 Semicond. Sci. Tech. 31 083002Google Scholar

    [32]

    Ma J, Kuciauskas D, Albin D, Bhattacharya R, Reese M, Barnes T, Li J V, Gessert T, Wei S H 2013 Phys. Rev. Lett. 111 067402Google Scholar

    [33]

    Tsuchiya T 2013 Appl. Phys. Express 4 094104

    [34]

    Reshchikov M A, Kvasov A A, Bishop M F, McMullen T, Usikov A, Soukhoveev V, Dmitriev V A 2011 Phys. Rev. B 84 075212Google Scholar

    [35]

    Juršėnas S, Miasojedovas S, Kurilčik G, Žukauskas A, Hageman P R 2003 Appl. Phys. Lett. 83 66Google Scholar

    [36]

    Kuciauskas D, Kanevce A, Dippo P, Seyedmohammadi S, Malik R 2015 IEEE J. Photovolt. 5 366Google Scholar

    [37]

    Shi L, Wang L W 2012 Phys. Rev. Lett. 109 245501Google Scholar

    [38]

    Park J H, Farrell S, Kodama R, Blissett C, Wang X, Colegrove E, Metzger W K, Gessert T A, Sivananthan S 2014 J. Electron. Mater. 43 2998Google Scholar

    [39]

    Fahrenbruch A L 1987 Sol. Energy Mater. Sol. Cells 21 399

    [40]

    Morehead F F, Mandel G 1964 IEEE T. Electron Dev. 5 53

    [41]

    Heller, A 1977 J. Electrochem. Soc. 124 697Google Scholar

    [42]

    Anthony T C, Fahrenbruch A L, Peters M G, Bube R H 1998 J. Appl. Phys. 57 400

    [43]

    Zandian M, Chen A C, Edwall D D, Pasko J G, Arias J M 1997 Appl. Phys. Lett. 71 2815Google Scholar

    [44]

    Hails J E, Irvine S J C, Cole-Hamilton D J, Giess J, Houlton M R, Graham A 2008 J. Electron. Mater. 37 1291Google Scholar

    [45]

    Arias M J 1990 J. Vac. Sci. Technol. A 8 1025Google Scholar

    [46]

    Yang J H, Shi L, Wang L W, Wei S H 2016 Sci. Rep. 6 21712Google Scholar

    [47]

    Kraft C, Metzner H, Hädrich M, Reislöhner U, Schley P, Gobsch G, Goldhahn R 2010 Thin Solid Films 108 777

    [48]

    Park C, Chadi D 1995 Phys. Rev. Lett. 75 1134Google Scholar

    [49]

    Chadi D J 1999 Phys. Rev. B 59 15181Google Scholar

    [50]

    Duenow J N, Burst J M, Albin D S, Kuciauskas D, Johnston S W, Reedy R C, Metzger W K 2014 Appl. Phys. Lett. 105 25

    [51]

    Crowder B L, Hammer W N 1966 Phys. Rev. 150 541Google Scholar

    [52]

    Altosaar M, Kukk P E, Mellikov E 2000 Thin Solid Films 361 443

    [53]

    Mccandless B E, Moulton L V, Birkmire R W 1997 Prog. Photovolt: Res. Appl. 5 249Google Scholar

    [54]

    Moutinho H R, Aljassim M M, Levi D H, Dippo P C, Kazmerski L L 1998 J. Vac. Sci. Technol. 16 1251Google Scholar

    [55]

    Zhang L, Da-Silva J L F, Li J, Yan Y, Gessert T A, Wei S H 2008 Phys. Rev. Lett. 101 155501Google Scholar

    [56]

    Komin V, Tetali B, Viswanathan V, Yu S, Ferekides C S 2003 Thin Solid Films 431 143

    [57]

    Ringel S A, Smith A W, MacDougal M H, Rohatgi A 1991 Jpn. J. Appl. Phys. 70 881Google Scholar

    [58]

    Visoly-Fisher I, Cohen S R, Ruzin A, Cahen D 2004 Adv. Mater. 16 879Google Scholar

    [59]

    Li C, Wu Y, Poplawsky J, Pennycook T J, Paudel N, Yin W, Haigh S J, Oxley M P, Lupini A R, Al-Jassim M 2014 Phys. Rev. Lett. 112 156103Google Scholar

    [60]

    Hofmann D M, Omling P, Grimmeiss H G, Meyer B K, Sinerius D 1992 Phys. Rev. B 45 6247Google Scholar

    [61]

    Kranz L, Gretener C, Perrenoud J, Schmitt R, Pianezzi F, Mattina F L, Blosch P, Cheah E, Chirila A, Fella C M 2013 Nat. Commun. 4 2306Google Scholar

    [62]

    Perrenoud J, Kranz L, Gretener C, Pianezzi F, Nishiwaki S, Buecheler S, Tiwari A N 2013 J. Appl. Phys. 114 174505Google Scholar

    [63]

    Yan Y, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912Google Scholar

    [64]

    Park J S, Kang J, Yang J H, Metzger W, Wei S H 2015 New J. Phys. 17 013027Google Scholar

    [65]

    Yan Y, Al-Jassim M M, Jones K M, Wei S H, Zhang S B 2000 Appl. Phys. Lett. 77 1461Google Scholar

    [66]

    Yan Y, Al-Jassim M M, Jones K M 2003 J. Appl. Phys. 94 2976Google Scholar

    [67]

    Sun C, Ning L, Wang J, Lee J, Kim M J 2013 Appl. Phys. Lett. 103 252104Google Scholar

    [68]

    Ma J, Yang J, Wei S H, Da-Silva J L F 2014 Phys. Rev. B 90 155208Google Scholar

    [69]

    Wei S H 2013 Phys. Rev. Lett. 110 235901Google Scholar

    [70]

    Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822Google Scholar

    [71]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 30 741Google Scholar

    [72]

    Martins J L, Zunger A 2004 Phys. Rev. Lett. 56 1400

    [73]

    Zunger A 1987 Appl. Phys. Lett. 50 164Google Scholar

    [74]

    Wei S H, Ferreira L G, Zunger A 1992 Phys. Rev. B 45 2533Google Scholar

    [75]

    Osório R, Froyen S, Zunger A 1991 Phys. Rev. B 43 14055Google Scholar

    [76]

    Parkes J, Tomlinson R D, Hampshire M J 1973 Solid State Electron 16 773Google Scholar

    [77]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642Google Scholar

    [78]

    Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus K O, Schock H W 1993 Appl. Phys. Lett. 62 597Google Scholar

    [79]

    Gabor A M, Tuttle J R, Albin D S, Contreras M A, Noufi R, Hermann A M 1998 Appl. Phys. Lett. 65 198

    [80]

    Contreras M A, Mansfield L M, Egaas B, Li J, Romero M, Noufi R, Rudigervoigt E, Mannstadt W 2012 37th IEEE Photovoltaic Specialists Conference, Seattle, June 19–24, 2011 p843

    [81]

    Se to, John Y W 1975 J. Appl. Phys. 46 5247Google Scholar

    [82]

    Gloeckler M, Sites J R, Metzger W K 2005 J. Appl. Phys. 9 8

    [83]

    Metzger W K, Gloeckler M 2005 J. Appl. Phys. 98 063701Google Scholar

    [84]

    Taretto K, Rau U 2008 J. Appl. Phys. 103 225

    [85]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt. 19 894Google Scholar

    [86]

    Sadewasser S, Abou-Ras D, Azulay D, Baier R, Balberg I, Cahen D, Cohen S, Gartsman K, Ganesan K, Kavalakkatt J 2011 Thin Solid Films 519 7341Google Scholar

    [87]

    Schuler S, Nishiwaki S, Beckmann J, Rega N, Lux-Steiner M C 2003 Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, May 19–24, 2002 p504

    [88]

    Hetzer M J, Strzhemechny Y M, Gao M, Contreras M A, Brillson L J 2005 Appl. Phys. Lett. 86 162105Google Scholar

    [89]

    Lei C, Li C M, Rockett A, Robertson I M 2007 J. Appl. Phys. 101 499

    [90]

    Abou-Ras D, Schaffer B, Schaffer M, Schmidt S S, Unold T 2012 Phys. Rev. Lett. 108 075502Google Scholar

    [91]

    Yin W J, Wu Y, Noufi R, Al-Jassim M, Yan Y 2013 Appl. Phys. Lett. 102 193905Google Scholar

    [92]

    Kaufmann C A, Caballero R, Unold T, Hesse R, Klenk R, Schorr S, Nichterwitz M, Schock H W 2009 Sol. Energy Mater. Sol. Cells 93 859Google Scholar

    [93]

    Grimmer H, Bollmann W, Warrington D H 1974 Acta Crystallogr. 30 197Google Scholar

    [94]

    Abou-Ras D, Schmidt S S, Caballero R, Unold T, Schock H W, Koch C T, Schaffer B, Schaffer M, Choi P P, Cojocaru-Mirédin O 2012 Adv. Energy Mater. 2 992Google Scholar

    [95]

    Ahn S J, Jung S, Gwak J, Cho A, Shin K, Yoon K, Park D, Cheong H, Yun J H 2010 Appl. Phys. Lett. 97 021905Google Scholar

    [96]

    Grossberg M, Krustok J, Timmo K, Altosaar M 2009 Thin Solid Films 517 2489Google Scholar

    [97]

    Choi S G, Zhao H Y, Persson C, Perkins C L, Donohue A L, To B, Norman A G, Li J, Repins I L 2012 J. Appl. Phys 111 033506Google Scholar

    [98]

    Katagiri H, Jimbo K, Maw W S, Oishi K, Takeuchi A 2009 Thin Solid Films 517 2455Google Scholar

    [99]

    Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 phys. stat. sol. 245 1772Google Scholar

    [100]

    Scragg J J, Dale P J, Peter L M 2009 Thin Solid Films 517 2481Google Scholar

    [101]

    Wei S H, Zhang S B 2005 J. Phys. Chem. Solids 66 1994Google Scholar

    [102]

    Wei S H, Zhang S B, Zunger A 1998 Appl. Phys. Lett. 72 1Google Scholar

    [103]

    Kumar Y B K, Bhaskar P U, Babu G S, Raja V S 2009 Phys. Stat. Sol. 207 149

    [104]

    Wibowo R A, Kim W S, Lee E S, Munir B, Kim K H 2007 J. Phys. Chem. Solids 68 1908Google Scholar

    [105]

    Miyamoto Y, Tanaka K, Oonuki M, Moritake N, Uchiki H 2008 Sol. Energy Mater. Sol. Cells 47 596

    [106]

    Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J, Mellikov E 2008 Phys. Stat. Sol. 205 167Google Scholar

    [107]

    Oishi K, Saito G, Ebina K, Nagahashi M, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Araki H, Takeuchi A 2008 Thin Solid Films 517 1449Google Scholar

    [108]

    Zhang X, Shi X, Ye W, Ma C, Wang C 2009 Appl. Phys. A-Mater. Sci. 94 381Google Scholar

    [109]

    Hones K, Zscherpel E, Scragg J, Siebentritt S 2009 Phys. Rev. B 404 4949

    [110]

    Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar

    [111]

    Chen S, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204Google Scholar

    [112]

    Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902Google Scholar

    [113]

    Nagoya A, Asahi R, Wahl R, Kresse G 2010 Phys. Rev. B 81 113202Google Scholar

    [114]

    Persson C, Zhao Y J, Lany S, Zunger A 2005 Phys. Rev. B 72 035211Google Scholar

    [115]

    Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S 2001 Sol. Energy Mater. Sol. Cells 65 141Google Scholar

    [116]

    Tanaka T, Nagatomo T, Kawasaki D, Nishio M, Guo Q, Wakahara A, Yoshida A, Ogawa H 2005 J. Phys. Chem. Solids 66 1978Google Scholar

    [117]

    Kumar Y B K, Babu G S, Bhaskar P U, Raja V S 2009 Sol. Energy Mater. Sol. Cells 93 1230Google Scholar

    [118]

    Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H 2012 Mater. Res. Bull. 47 302Google Scholar

    [119]

    Tanaka K, Moritake N, Oonuki M, Uchiki H 2008 Jpn. J. Appl. Phys. 47 598Google Scholar

    [120]

    Prabhakar T, Jampana N 2011 Sol. Energy Mater. Sol. Cells 95 1001Google Scholar

    [121]

    Schmidt S S, Abouras D, Sadewasser S, Yin W, Feng C, Yan Y 2012 Phys. Rev. Lett. 109 6709

    [122]

    Azulay D, Balberg I, Millo O 2012 Phys. Rev. Lett. 108 076603Google Scholar

    [123]

    Schmid D, Ruckh M, Schock H W 1996 Appl. Surf. Sci. 103 409Google Scholar

    [124]

    Yan Y, Jones K M, Abushama J, Young M, Asher S, Al-Jassim M M, Noufi R 2002 Appl. Phys. Lett. 81 1008Google Scholar

    [125]

    Yan Y, Noufi R, Al-Jassim M M 2006 Phys. Rev. Lett. 96 205501Google Scholar

    [126]

    Yin W J, Wu Y, Wei S H, Noufi R, Yan Y 2014 Adv. Energy Mater. 4 1

    [127]

    Yin W J, Yang J H, Kang J, Yan Y, Wei S H 2015 J. Mater. Chem. A 3 8926Google Scholar

    [128]

    Best Research-Cell Efficiency Chart, Korea Research Institute of Chemical Technology and MIT https://www. nrel.gov/pv/cell-efficiency.html/[2019-11-20]

    [129]

    Walsh A, Watson G W 2005 J. Solid State Chem. 178 1422Google Scholar

    [130]

    Walsh A, Payne D J, Egdell R G, Watson G W 2011 Chemi. Soc. Rev. 40 4455Google Scholar

    [131]

    Wei S H, Zunger A 1997 Phys. Rev. B 55 16

    [132]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [133]

    Yu L, Kokenyesi R S, Keszler D A, Zunger A 2013 Adv. Energy Mater. 3 43Google Scholar

    [134]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [135]

    Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508Google Scholar

    [136]

    Yin W J, Wei S H, Al-Jassim M M, Yan Y 2011 Appl. Phys. Lett. 99 142109Google Scholar

    [137]

    Brandt R E, Stevanovic V, Ginley D S, Buonassisi T 2015 Mrs Commun. 5 265Google Scholar

    [138]

    Walsh A, Zunger A 2017 Nat. Mater. 16 964Google Scholar

    [139]

    Seok S I, Gratzel M, Park N G 2018 Small 14 1704177Google Scholar

    [140]

    Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509Google Scholar

    [141]

    Gao F, Zhao Y, Zhang X W, You J B 2019 Adv. Energy Mater. 1902650

    [142]

    Ni Z Y, Bao C X, Y. L, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar

    [143]

    Li J L, Yang J, Wu T, Wei S H 2019 J. Mater. Chem. C 7 4230

    [144]

    Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570Google Scholar

    [145]

    Li W, SunY Y, Li I Q, Zhou Z H, Tang J F, Prezhdo O V 2018 J. Am. Chem. Soc. 140 15753Google Scholar

    [146]

    Wang J, Li W, Yin W J 2020 Adv. Mater. 32 1906115Google Scholar

  • 图 1  中性氧空位的(a)浅能级和(b)深能级缺陷态示意图, 图中虚线表示超胞计算中所采用的特殊k[10]

    Fig. 1.  Schematic diagram of shallow (a) and deep (b) level defect states of neutral oxygen vacancy. The dotted lines in the figure represent the special k points used in supercell computation[10]

    图 2  采用HSE06计算VCd在不同价态下的形成能随费米能级的变化趋势及结构对称性[31]

    Fig. 2.  Formation energy of VCd, calculated with HSE06, at different valence states with the variation of Fermi energy levels and the structural symmetry[31].

    图 3  HSE06计算CdTe本征缺陷的形成能和电荷转变能级[32]

    Fig. 3.  Formation energy and charge transition levels of CdTe eigendefects calculated with HSE06[32]

    图 4  CdTe的费米能级、载流子密度以及缺陷浓度随温度和化学势的变化[37]

    Fig. 4.  Variations of the Fermi level, carrier density, and defect concentration of CdTe with temperature and chemical potential[37].

    图 5  PTe和AsTe分别在富Cd (a)和富Te (b)条件下的形成能随费米能级变化趋势; (c)形成AX中心时晶格的扭转情况[31]

    Fig. 5.  The formation energies of PTe and AsTe under rich Cd (a) and rich Te (b) conditions with the Fermi energy levels; (c) the lattice torsion when AX center is formed[31].

    图 6  Na掺入CdTe中形成的相关缺陷的形成能在富Cd和富Te条件下随费米能级的变化趋势[31]

    Fig. 6.  The formation of related defects formed by Na incorporation into CdTe vs. the Fermi energy level under the conditions of rich Cd and rich Te[31].

    图 7  CdTe中常见的两种晶界 (a) $ \sum 3\left(111\right) $; (b) Te为中心的$ \sum 3\left(112\right) $[64]

    Fig. 7.  Two common grain boundaries in CdTe: (a) $ \sum 3\left(111\right) $; (b) $ \sum 3\left(112\right) $ centered on Te[64]

    图 8  CuInSe2的本征缺陷形成能随费米能级的变化趋势[77]

    Fig. 8.  The intrinsic defect formation energy of CuInSe2 with the Fermi energy level[77].

    图 9  CuInSe2本征缺陷的转变能级[77]

    Fig. 9.  The transition level of the intrinsic defect of CuInSe2[77].

    图 10  CuInSe2和CuGaSe2中本征缺陷的形成能随费米能级的变化

    Fig. 10.  The formation energy of intrinsic defects in CuInSe2 and CuGaSe2 vs. the Fermi energy level.

    图 11  CuIn1–xGaxSe2的光电转换效率和开路电压随带隙值变化趋势

    Fig. 11.  The photoelectric conversion efficiency and open circuit voltage of CuIn1–xGaxSe2 vs. the bandgap value[80].

    图 12  CuInSe2$ \sum 3\left(114\right) $晶界 (a)超胞结构; (b)晶界处的局域原子结构; (c)晶界处的态密度、能带结构和差分电荷密度; (d)晶界处错键形成缺陷带的过程[91]

    Fig. 12.  $ \sum 3\left(114\right) $ of CuInSe2 grain boundary: (a) Supercell structure; (b) local atomic structures at grain boundaries; (c) state density, energy band structure and differential charge density at the grain boundary; (d) the process of forming a defect band by a wrong bond at the grain boundary[91].

    图 13  CZTS在$ {\mu }_{\rm{Cu}}=0 $$ {\mu }_{\rm{Cu}}=\rm{-0.55}\;\rm{eV} $平面内的化学势范围[111]

    Fig. 13.  The chemical potential range of CZTS in the plane $ {\mu }_{\rm{Cu}}=0 $ and ${\mu }_{\rm{Cu}}=\rm{-0.55}\;\rm{eV}$[111].

    图 14  CZTS本征缺陷在化学势不同点A, B, C, D, E, FG点的形成能[111]

    Fig. 14.  The formation energy of CZTS intrinsic defect at chemical potential points A, B, C, D, E, F and G[111].

    图 15  CZTS和CZTSe本征缺陷的形成能在A点化学势条件下随费米能级的变化[110]

    Fig. 15.  The formation energy of CZTS and CZTSe intrinsic defects vs. the Fermi energy level at A[110].

    图 16  CZTS和CZTSe本征缺陷的转变能级[110]

    Fig. 16.  The transition energy levels of CZTS and CZTSe intrinsic defects[110].

    图 17  CZTS和CZTSe中复合缺陷对其带边的影响[110]

    Fig. 17.  The effect of composite defects in CZTS and CZTSe on the band edge[110]

    图 18  CZTSe晶界处的错键和对应缺陷态[126]

    Fig. 18.  Wrong bond and the corresponding defect state at CZTSe grain boundary[126].

    图 19  CH3NH3PbI3的CBM和VBM差分电荷密度、能带结构和态密度[11]

    Fig. 19.  The CBM and VBM differential charge density, band structure and state density of CH3NH3PbI3[11].

    图 20  各类太阳能电池材料的跃迁机理[127]

    Fig. 20.  Transition mechanism of various solar cell mate-rials[127].

    图 21  (a) CH3NH3PbI3平衡生长时的化学势; (b)—(d) CH3NH3PbI3的本征点缺陷形成能随化学势的变化[11]

    Fig. 21.  (a) The chemical potential of CH3NH3PbI3 at equilibrium growth; (b)—(d) the defect formation energy at the intrinsic point of CH3NH3PbI3 vs. the chemical potential[11].

    图 22  CH3NH3PbI3本征点缺陷的转变能级[11]

    Fig. 22.  The transition energy level of the eigenpoint defect of CH3NH3PbI3[11].

    图 23  (a) 本征缺陷VI中的Pb二聚体; (b) 本征缺陷IMA0中的I三聚体[144]

    Fig. 23.  (a) Pb dimer in intrinsic defect VI; (b) I trimer in IMA0 of the intrinsic defect[144].

    图 24  (a) 非二聚体的局部结构示意图; (b) VI的二聚体结构示意图; (c) CH3NH3PbI3中DX中心缺陷能级的形成机制

    Fig. 24.  The partial structure diagrams of non-dimer (a) and the dimer structure diagrams of VI (b); (c) formation mecha-nism of DX central defect energy level in CH3NH3PbI3.

  • [1]

    Neumark G F 1997 Mater. Sci. Eng. 21 3

    [2]

    Zhang S, Northrup J 1991 Phys. Rev. Lett. 67 2339Google Scholar

    [3]

    Hine N D M, Frensch K, Foulkes W M C, Finnis M W 2009 Phys. Rev. B 79 024112Google Scholar

    [4]

    Wei S H 2004 Comp. Mater. Sci. 30 337Google Scholar

    [5]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 J. Appl. Phys. 57 9642

    [6]

    Wei S H, Zunger A 1998 Appl. Phys. Lett. 72 2011Google Scholar

    [7]

    Yin W J, Tang H, Wei S H, Al-Jassim M M, Turner J, Yan Y 2010 Phys. Rev. B 82 045106Google Scholar

    [8]

    Nishijima K, Ohtani B, Yan X, Kamai T A, Chiyoya T, Tsubota T, Murakami N, Ohno T 2007 Chem. Phys. 339 64Google Scholar

    [9]

    Irie H, Watanabe Y, Hashimoto K 2003 Chem. Lett. 107 5483

    [10]

    Yin W J, Ma J, Wei S H, Aljassim M M, Yan Y 2012 Phys. Rev. B 86 045211Google Scholar

    [11]

    Yin W J, Shi T, Yan Y 2014 Appl. Phys. Lett. 104 063903Google Scholar

    [12]

    Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653Google Scholar

    [13]

    Frost J M, Butler K T, Brivio F, Hendon C H, Schilfgaarde M V, Walsh A 2014 Nano Lett. 14 2584Google Scholar

    [14]

    Yang D, Ming W, Shi H, Zhang L, Du M H 2016 Chem. Mater. 28 4349Google Scholar

    [15]

    Mosconi E, Amat A, Nazeeruddin M K, Grätzel M, Angelis F D 2013 J. Mater. Chem. C 117 13902

    [16]

    Carvalho A, Tagantsev A K, Öberg S, Briddon P R, Setter N 2010 Phys. Rev. B 81 075215Google Scholar

    [17]

    Lindstr M A, Mirbt S, Sanyal B, Klintenberg M 2016 J. Phys. D Appl. Phys. 49 035101Google Scholar

    [18]

    Berding M A 1999 Phys. Rev. B 60 8943Google Scholar

    [19]

    Wei S H, Zhang S B 2002 Phys. Rev. B 66

    [20]

    Chang Y C, James R B, Davenport J W 2006 Phys. Rev. B 73 035211Google Scholar

    [21]

    Du M H, Takenaka H, Singh D J 2008 Phys. Rev. B 77 094122Google Scholar

    [22]

    Du M H, Takenaka H, Singh D J 2008 J. Appl. Phys. 104 093521Google Scholar

    [23]

    Lordi V 2013 J. Cryst. Growth 379 84Google Scholar

    [24]

    Biswas K, Du M H 2012 New J. Phys. 14 063020Google Scholar

    [25]

    Shepidchenko A, Sanyal B, Klintenberg M, Mirbt S 2015 Sci. Rep. 5 14509Google Scholar

    [26]

    Emanuelsson P, Omling P, Meyer B K, Wienecke M, Schenk M 1993 Phys. Rev. B 47 15578Google Scholar

    [27]

    Castaldini A, Cavallini A, Fraboni B, Fernandez P, Piqueras J 1998 J. Appl. Phys. 83 2121Google Scholar

    [28]

    Szeles C, Shan Y, Lynn K G, Moodenbaugh A, Eissler E E 1997 Phys. Rev. B 55 6945Google Scholar

    [29]

    Reislöhner U 1998 J. Cryst. Growth 184 1160

    [30]

    Kimel A V, Pavlov V V, Pisarev R V, Gridnev V N, Rasing T 2000 Phys. Rev. B 621 R10610

    [31]

    Yang J H, Yin W J, Park J S, Ma J, Wei S H 2016 Semicond. Sci. Tech. 31 083002Google Scholar

    [32]

    Ma J, Kuciauskas D, Albin D, Bhattacharya R, Reese M, Barnes T, Li J V, Gessert T, Wei S H 2013 Phys. Rev. Lett. 111 067402Google Scholar

    [33]

    Tsuchiya T 2013 Appl. Phys. Express 4 094104

    [34]

    Reshchikov M A, Kvasov A A, Bishop M F, McMullen T, Usikov A, Soukhoveev V, Dmitriev V A 2011 Phys. Rev. B 84 075212Google Scholar

    [35]

    Juršėnas S, Miasojedovas S, Kurilčik G, Žukauskas A, Hageman P R 2003 Appl. Phys. Lett. 83 66Google Scholar

    [36]

    Kuciauskas D, Kanevce A, Dippo P, Seyedmohammadi S, Malik R 2015 IEEE J. Photovolt. 5 366Google Scholar

    [37]

    Shi L, Wang L W 2012 Phys. Rev. Lett. 109 245501Google Scholar

    [38]

    Park J H, Farrell S, Kodama R, Blissett C, Wang X, Colegrove E, Metzger W K, Gessert T A, Sivananthan S 2014 J. Electron. Mater. 43 2998Google Scholar

    [39]

    Fahrenbruch A L 1987 Sol. Energy Mater. Sol. Cells 21 399

    [40]

    Morehead F F, Mandel G 1964 IEEE T. Electron Dev. 5 53

    [41]

    Heller, A 1977 J. Electrochem. Soc. 124 697Google Scholar

    [42]

    Anthony T C, Fahrenbruch A L, Peters M G, Bube R H 1998 J. Appl. Phys. 57 400

    [43]

    Zandian M, Chen A C, Edwall D D, Pasko J G, Arias J M 1997 Appl. Phys. Lett. 71 2815Google Scholar

    [44]

    Hails J E, Irvine S J C, Cole-Hamilton D J, Giess J, Houlton M R, Graham A 2008 J. Electron. Mater. 37 1291Google Scholar

    [45]

    Arias M J 1990 J. Vac. Sci. Technol. A 8 1025Google Scholar

    [46]

    Yang J H, Shi L, Wang L W, Wei S H 2016 Sci. Rep. 6 21712Google Scholar

    [47]

    Kraft C, Metzner H, Hädrich M, Reislöhner U, Schley P, Gobsch G, Goldhahn R 2010 Thin Solid Films 108 777

    [48]

    Park C, Chadi D 1995 Phys. Rev. Lett. 75 1134Google Scholar

    [49]

    Chadi D J 1999 Phys. Rev. B 59 15181Google Scholar

    [50]

    Duenow J N, Burst J M, Albin D S, Kuciauskas D, Johnston S W, Reedy R C, Metzger W K 2014 Appl. Phys. Lett. 105 25

    [51]

    Crowder B L, Hammer W N 1966 Phys. Rev. 150 541Google Scholar

    [52]

    Altosaar M, Kukk P E, Mellikov E 2000 Thin Solid Films 361 443

    [53]

    Mccandless B E, Moulton L V, Birkmire R W 1997 Prog. Photovolt: Res. Appl. 5 249Google Scholar

    [54]

    Moutinho H R, Aljassim M M, Levi D H, Dippo P C, Kazmerski L L 1998 J. Vac. Sci. Technol. 16 1251Google Scholar

    [55]

    Zhang L, Da-Silva J L F, Li J, Yan Y, Gessert T A, Wei S H 2008 Phys. Rev. Lett. 101 155501Google Scholar

    [56]

    Komin V, Tetali B, Viswanathan V, Yu S, Ferekides C S 2003 Thin Solid Films 431 143

    [57]

    Ringel S A, Smith A W, MacDougal M H, Rohatgi A 1991 Jpn. J. Appl. Phys. 70 881Google Scholar

    [58]

    Visoly-Fisher I, Cohen S R, Ruzin A, Cahen D 2004 Adv. Mater. 16 879Google Scholar

    [59]

    Li C, Wu Y, Poplawsky J, Pennycook T J, Paudel N, Yin W, Haigh S J, Oxley M P, Lupini A R, Al-Jassim M 2014 Phys. Rev. Lett. 112 156103Google Scholar

    [60]

    Hofmann D M, Omling P, Grimmeiss H G, Meyer B K, Sinerius D 1992 Phys. Rev. B 45 6247Google Scholar

    [61]

    Kranz L, Gretener C, Perrenoud J, Schmitt R, Pianezzi F, Mattina F L, Blosch P, Cheah E, Chirila A, Fella C M 2013 Nat. Commun. 4 2306Google Scholar

    [62]

    Perrenoud J, Kranz L, Gretener C, Pianezzi F, Nishiwaki S, Buecheler S, Tiwari A N 2013 J. Appl. Phys. 114 174505Google Scholar

    [63]

    Yan Y, Al-Jassim M M, Wei S H 2006 Appl. Phys. Lett. 89 181912Google Scholar

    [64]

    Park J S, Kang J, Yang J H, Metzger W, Wei S H 2015 New J. Phys. 17 013027Google Scholar

    [65]

    Yan Y, Al-Jassim M M, Jones K M, Wei S H, Zhang S B 2000 Appl. Phys. Lett. 77 1461Google Scholar

    [66]

    Yan Y, Al-Jassim M M, Jones K M 2003 J. Appl. Phys. 94 2976Google Scholar

    [67]

    Sun C, Ning L, Wang J, Lee J, Kim M J 2013 Appl. Phys. Lett. 103 252104Google Scholar

    [68]

    Ma J, Yang J, Wei S H, Da-Silva J L F 2014 Phys. Rev. B 90 155208Google Scholar

    [69]

    Wei S H 2013 Phys. Rev. Lett. 110 235901Google Scholar

    [70]

    Jaffe J E, Zunger A 1983 Phys. Rev. B 28 5822Google Scholar

    [71]

    Jaffe J E, Zunger A 1984 Phys. Rev. B 30 741Google Scholar

    [72]

    Martins J L, Zunger A 2004 Phys. Rev. Lett. 56 1400

    [73]

    Zunger A 1987 Appl. Phys. Lett. 50 164Google Scholar

    [74]

    Wei S H, Ferreira L G, Zunger A 1992 Phys. Rev. B 45 2533Google Scholar

    [75]

    Osório R, Froyen S, Zunger A 1991 Phys. Rev. B 43 14055Google Scholar

    [76]

    Parkes J, Tomlinson R D, Hampshire M J 1973 Solid State Electron 16 773Google Scholar

    [77]

    Zhang S B, Wei S H, Zunger A, Katayama-Yoshida H 1998 Phys. Rev. B 57 9642Google Scholar

    [78]

    Stolt L, Hedstrom J, Kessler J, Ruckh M, Velthaus K O, Schock H W 1993 Appl. Phys. Lett. 62 597Google Scholar

    [79]

    Gabor A M, Tuttle J R, Albin D S, Contreras M A, Noufi R, Hermann A M 1998 Appl. Phys. Lett. 65 198

    [80]

    Contreras M A, Mansfield L M, Egaas B, Li J, Romero M, Noufi R, Rudigervoigt E, Mannstadt W 2012 37th IEEE Photovoltaic Specialists Conference, Seattle, June 19–24, 2011 p843

    [81]

    Se to, John Y W 1975 J. Appl. Phys. 46 5247Google Scholar

    [82]

    Gloeckler M, Sites J R, Metzger W K 2005 J. Appl. Phys. 9 8

    [83]

    Metzger W K, Gloeckler M 2005 J. Appl. Phys. 98 063701Google Scholar

    [84]

    Taretto K, Rau U 2008 J. Appl. Phys. 103 225

    [85]

    Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M 2011 Prog. Photovolt. 19 894Google Scholar

    [86]

    Sadewasser S, Abou-Ras D, Azulay D, Baier R, Balberg I, Cahen D, Cohen S, Gartsman K, Ganesan K, Kavalakkatt J 2011 Thin Solid Films 519 7341Google Scholar

    [87]

    Schuler S, Nishiwaki S, Beckmann J, Rega N, Lux-Steiner M C 2003 Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, New Orleans, May 19–24, 2002 p504

    [88]

    Hetzer M J, Strzhemechny Y M, Gao M, Contreras M A, Brillson L J 2005 Appl. Phys. Lett. 86 162105Google Scholar

    [89]

    Lei C, Li C M, Rockett A, Robertson I M 2007 J. Appl. Phys. 101 499

    [90]

    Abou-Ras D, Schaffer B, Schaffer M, Schmidt S S, Unold T 2012 Phys. Rev. Lett. 108 075502Google Scholar

    [91]

    Yin W J, Wu Y, Noufi R, Al-Jassim M, Yan Y 2013 Appl. Phys. Lett. 102 193905Google Scholar

    [92]

    Kaufmann C A, Caballero R, Unold T, Hesse R, Klenk R, Schorr S, Nichterwitz M, Schock H W 2009 Sol. Energy Mater. Sol. Cells 93 859Google Scholar

    [93]

    Grimmer H, Bollmann W, Warrington D H 1974 Acta Crystallogr. 30 197Google Scholar

    [94]

    Abou-Ras D, Schmidt S S, Caballero R, Unold T, Schock H W, Koch C T, Schaffer B, Schaffer M, Choi P P, Cojocaru-Mirédin O 2012 Adv. Energy Mater. 2 992Google Scholar

    [95]

    Ahn S J, Jung S, Gwak J, Cho A, Shin K, Yoon K, Park D, Cheong H, Yun J H 2010 Appl. Phys. Lett. 97 021905Google Scholar

    [96]

    Grossberg M, Krustok J, Timmo K, Altosaar M 2009 Thin Solid Films 517 2489Google Scholar

    [97]

    Choi S G, Zhao H Y, Persson C, Perkins C L, Donohue A L, To B, Norman A G, Li J, Repins I L 2012 J. Appl. Phys 111 033506Google Scholar

    [98]

    Katagiri H, Jimbo K, Maw W S, Oishi K, Takeuchi A 2009 Thin Solid Films 517 2455Google Scholar

    [99]

    Scragg J J, Dale P J, Peter L M, Zoppi G, Forbes I 2008 phys. stat. sol. 245 1772Google Scholar

    [100]

    Scragg J J, Dale P J, Peter L M 2009 Thin Solid Films 517 2481Google Scholar

    [101]

    Wei S H, Zhang S B 2005 J. Phys. Chem. Solids 66 1994Google Scholar

    [102]

    Wei S H, Zhang S B, Zunger A 1998 Appl. Phys. Lett. 72 1Google Scholar

    [103]

    Kumar Y B K, Bhaskar P U, Babu G S, Raja V S 2009 Phys. Stat. Sol. 207 149

    [104]

    Wibowo R A, Kim W S, Lee E S, Munir B, Kim K H 2007 J. Phys. Chem. Solids 68 1908Google Scholar

    [105]

    Miyamoto Y, Tanaka K, Oonuki M, Moritake N, Uchiki H 2008 Sol. Energy Mater. Sol. Cells 47 596

    [106]

    Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J, Mellikov E 2008 Phys. Stat. Sol. 205 167Google Scholar

    [107]

    Oishi K, Saito G, Ebina K, Nagahashi M, Jimbo K, Maw W S, Katagiri H, Yamazaki M, Araki H, Takeuchi A 2008 Thin Solid Films 517 1449Google Scholar

    [108]

    Zhang X, Shi X, Ye W, Ma C, Wang C 2009 Appl. Phys. A-Mater. Sci. 94 381Google Scholar

    [109]

    Hones K, Zscherpel E, Scragg J, Siebentritt S 2009 Phys. Rev. B 404 4949

    [110]

    Chen S, Walsh A, Gong X G, Wei S H 2013 Adv. Mater. 25 1522Google Scholar

    [111]

    Chen S, Yang J H, Gong X G, Walsh A, Wei S H 2010 Phys. Rev. B 81 245204Google Scholar

    [112]

    Chen S, Gong X G, Walsh A, Wei S H 2010 Appl. Phys. Lett. 96 021902Google Scholar

    [113]

    Nagoya A, Asahi R, Wahl R, Kresse G 2010 Phys. Rev. B 81 113202Google Scholar

    [114]

    Persson C, Zhao Y J, Lany S, Zunger A 2005 Phys. Rev. B 72 035211Google Scholar

    [115]

    Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S 2001 Sol. Energy Mater. Sol. Cells 65 141Google Scholar

    [116]

    Tanaka T, Nagatomo T, Kawasaki D, Nishio M, Guo Q, Wakahara A, Yoshida A, Ogawa H 2005 J. Phys. Chem. Solids 66 1978Google Scholar

    [117]

    Kumar Y B K, Babu G S, Bhaskar P U, Raja V S 2009 Sol. Energy Mater. Sol. Cells 93 1230Google Scholar

    [118]

    Shinde N M, Dubal D P, Dhawale D S, Lokhande C D, Kim J H, Moon J H 2012 Mater. Res. Bull. 47 302Google Scholar

    [119]

    Tanaka K, Moritake N, Oonuki M, Uchiki H 2008 Jpn. J. Appl. Phys. 47 598Google Scholar

    [120]

    Prabhakar T, Jampana N 2011 Sol. Energy Mater. Sol. Cells 95 1001Google Scholar

    [121]

    Schmidt S S, Abouras D, Sadewasser S, Yin W, Feng C, Yan Y 2012 Phys. Rev. Lett. 109 6709

    [122]

    Azulay D, Balberg I, Millo O 2012 Phys. Rev. Lett. 108 076603Google Scholar

    [123]

    Schmid D, Ruckh M, Schock H W 1996 Appl. Surf. Sci. 103 409Google Scholar

    [124]

    Yan Y, Jones K M, Abushama J, Young M, Asher S, Al-Jassim M M, Noufi R 2002 Appl. Phys. Lett. 81 1008Google Scholar

    [125]

    Yan Y, Noufi R, Al-Jassim M M 2006 Phys. Rev. Lett. 96 205501Google Scholar

    [126]

    Yin W J, Wu Y, Wei S H, Noufi R, Yan Y 2014 Adv. Energy Mater. 4 1

    [127]

    Yin W J, Yang J H, Kang J, Yan Y, Wei S H 2015 J. Mater. Chem. A 3 8926Google Scholar

    [128]

    Best Research-Cell Efficiency Chart, Korea Research Institute of Chemical Technology and MIT https://www. nrel.gov/pv/cell-efficiency.html/[2019-11-20]

    [129]

    Walsh A, Watson G W 2005 J. Solid State Chem. 178 1422Google Scholar

    [130]

    Walsh A, Payne D J, Egdell R G, Watson G W 2011 Chemi. Soc. Rev. 40 4455Google Scholar

    [131]

    Wei S H, Zunger A 1997 Phys. Rev. B 55 16

    [132]

    Yu L, Zunger A 2012 Phys. Rev. Lett. 108 068701Google Scholar

    [133]

    Yu L, Kokenyesi R S, Keszler D A, Zunger A 2013 Adv. Energy Mater. 3 43Google Scholar

    [134]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [135]

    Wang Q, Shao Y, Xie H, Lyu L, Liu X, Gao Y, Huang J 2014 Appl. Phys. Lett. 105 163508Google Scholar

    [136]

    Yin W J, Wei S H, Al-Jassim M M, Yan Y 2011 Appl. Phys. Lett. 99 142109Google Scholar

    [137]

    Brandt R E, Stevanovic V, Ginley D S, Buonassisi T 2015 Mrs Commun. 5 265Google Scholar

    [138]

    Walsh A, Zunger A 2017 Nat. Mater. 16 964Google Scholar

    [139]

    Seok S I, Gratzel M, Park N G 2018 Small 14 1704177Google Scholar

    [140]

    Wang R, Xue J J, Wang K L, Wang Z K, Luo Y Q, Fenning D, Xu G W, Nuryyeva S, Huang T Y, Zhao Y P, Yang J L, Zhu J H, Wang M H, Tan S, Yavuz I, Houk K N, Yang Y 2019 Science 366 1509Google Scholar

    [141]

    Gao F, Zhao Y, Zhang X W, You J B 2019 Adv. Energy Mater. 1902650

    [142]

    Ni Z Y, Bao C X, Y. L, Jiang Q, Wu W Q, Chen S S, Dai X Z, Chen B, Hartweg B, Yu Z S, Holman Z, Huang J S 2020 Science 367 1352Google Scholar

    [143]

    Li J L, Yang J, Wu T, Wei S H 2019 J. Mater. Chem. C 7 4230

    [144]

    Agiorgousis M L, Sun Y Y, Zeng H, Zhang S 2014 J. Am. Chem. Soc. 136 14570Google Scholar

    [145]

    Li W, SunY Y, Li I Q, Zhou Z H, Tang J F, Prezhdo O V 2018 J. Am. Chem. Soc. 140 15753Google Scholar

    [146]

    Wang J, Li W, Yin W J 2020 Adv. Mater. 32 1906115Google Scholar

  • [1] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [4] 王艳, 陈南迪, 杨陈, 曾召益, 胡翠娥, 陈向荣. 二维材料XTe2 (X = Pd, Pt)热电性能的第一性原理计算. 物理学报, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [5] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [6] 王凯悦, 郭睿昂, 王宏兴. 金刚石氮-空位缺陷发光的温度依赖性. 物理学报, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [7] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [9] 杨义斌, 龚宇, 刘才林, 罗阳明, 陈平. 缺陷态对Y掺杂BaZrO3的质子导电性的影响. 物理学报, 2016, 65(6): 066701. doi: 10.7498/aps.65.066701
    [10] 袁振坤, 许鹏, 陈时友. 多元半导体光伏材料中晶格缺陷的计算预测. 物理学报, 2015, 64(18): 186102. doi: 10.7498/aps.64.186102
    [11] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [12] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源. 物理学报, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [13] 张华, 唐元昊, 周薇薇, 李沛娟, 施思齐. LiFePO4中对位缺陷的第一性原理研究. 物理学报, 2010, 59(7): 5135-5140. doi: 10.7498/aps.59.5135
    [14] 刘柏年, 马颖, 周益春. 四方相BaTiO3缺陷性质的第一性原理计算. 物理学报, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [15] 陈祥磊, 张杰, 杜淮江, 周先意, 叶邦角. 化合物半导体材料的正电子寿命计算. 物理学报, 2010, 59(1): 603-608. doi: 10.7498/aps.59.603
    [16] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [17] 王海云, 翁惠民, Ling C. C.. GaN/SiC异质结的慢正电子研究. 物理学报, 2008, 57(9): 5906-5910. doi: 10.7498/aps.57.5906
    [18] 赵文彬, 张冠军, 严 璋. 半导体闪络引起的材料表面破坏现象研究. 物理学报, 2008, 57(8): 5130-5137. doi: 10.7498/aps.57.5130
    [19] 于天宝, 刘念华. 光脉冲通过含有色散与增益型缺陷的一维光子晶体的传播. 物理学报, 2004, 53(9): 3049-3053. doi: 10.7498/aps.53.3049
    [20] 潘必才. 包含键环境修正的硅氢紧束缚势模型. 物理学报, 2001, 50(2): 268-272. doi: 10.7498/aps.50.268
计量
  • 文章访问数:  16287
  • PDF下载量:  662
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-03
  • 修回日期:  2020-05-30
  • 上网日期:  2020-06-03
  • 刊出日期:  2020-09-05

/

返回文章
返回