-
稀土掺杂是提高光电功能材料性能的重要途径. 把稀土掺杂铁电材料与稀土发光相结合, 还可拓展出铁电材料的新性能, 比如, 选择合适的稀土元素掺入钛酸铋铁电材料, 可使之在保持较好的铁电性能的同时, 又显示良好的发光性能. 近年来, 这类在氧化物铁电材料中由于稀土离子掺杂产生光致发光特性的研究引起了人们的关注, 有望研制集成发光铁电器件. 本文简要介绍了稀土发光铁电材料的研究状况, 重点介绍我们在稀土发光铁电薄膜方向的研究进展. 我们的研究表明, 稀土掺杂钛酸铋铁电薄膜同时具有较好的发光特性和铁电特性, 这与其独特的成分构成和层状钙钛矿结构密切相关; Eu3+离子荧光结构探针可以为进一步研究Eu3+掺杂铁电薄膜材料的结构与性能关系提供新思路; 在某些铁电薄膜(如Pr离子掺杂的x(K1/2Bi1/2)TiO3-(1-x)(Na1/2Bi1/2)TiO3薄膜等)中掺入稀土离子后, 稀土离子的发光可用于检测铁电薄膜中是否存在准同型相界; 将ZnO纳米材料和金、银纳米颗粒与掺铕钛酸铋薄膜复合, 可显著增强稀土发光.Rare earth doping is an important method to improve the properties of optoelectronic functional materials. Combining rare earth doping ferroelectric materials and rare earth photoluminescence can create new functional properties of ferroelectric materials. For example, choosing and using an appropriate rare earth element to be doped into a bismuth titanate ferroelectric material, the bismuth titanate will exhibit good photoluminescent properties as well as ferroelectric properties. Recently, photoluminescence properties originating from rare earth ions in oxide ferroelectric materials have attracted much attention for possible integrated photoluminescent ferroelectric device applications. In this paper, we briefly review the research status and progress of photoluminescence in rare earth photoluminescent ferroelectric materials, and we place the emphasis on our own research work in photoluminescent ferroelectric thin films such as (Bi,Eu)4Ti3O12, (Bi,Er)4Ti3O12, and codoped bismuth titanate thin films, and nanocomposite (Bi,Eu)4Ti3O12 ferroelectric thin films. Our results show that the rare earth doped bismuth titanate ferroelectric thin films exhibit good photoluminescent and ferroelectric properties due to unique compositions and layered perovskite structure, that the Eu3+ fluorescent structure probe can provide a new path for further studying the relationship between structure and property of Eu-doped ferroelectric thin films, that the rare earth photoluminescence can be used to examine the existence of morphotropic phase boundary in certain ferroelectric thin films such as Pr-doped x(K1/2Bi1/2)TiO3-(1-x)(Na1/2Bi1/2)TiO3 thin films, and nanocomposite materials of ZnO nanomaterials, and that Au nanoparticles, Ag nanoparticles with Eu-doped bismuth titanate exhibit obviously enhanced photoluminescent properties.
-
Keywords:
- ferroelectric thin films /
- rare earth doping /
- photoluminescence
[1] Scott J F 2007 Science 315 954Google Scholar
[2] Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K 2013 Nature 503 509Google Scholar
[3] Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R, Li R W 2017 Chin. Phys. B 26 067702Google Scholar
[4] Han D L, Uda T, Nose Y, Okajima T, Murata H, Tanaka I, Shinoda K 2012 Adv. Mater. 24 2051Google Scholar
[5] Geskus D, Aravazhi S, Garcia-Blanco S M, Pollnau M 2012 Adv. Mater. 24 OP19Google Scholar
[6] Zhong T, Kindem J M, Miyazono E, Faraon A 2015 Nat. Commun. 5 8206Google Scholar
[7] Park B H, Kang B S, Bu S D, Noh T W, Lee J, Jo W 1999 Nature 401 682Google Scholar
[8] Maiwa H, Iizawa N, Togawa D, Hayashi T, Sakamoto W, Yamada M, Hirano S 2003 Appl. Phys. Lett. 82 1760Google Scholar
[9] Zhang S T, Zhang X J, Cheng H W, Chen Y F, Liu Z G, Ming N B, Hu X B, Wang J Y 2003 Appl. Phys. Lett. 83 4378Google Scholar
[10] Kan D, Anbusathaiah V, Takeuchi I 2011 Adv. Mater. 23 1765Google Scholar
[11] Lee Y H, Wu J M, Lai C H 2006 Appl. Phys. Lett. 88 042903Google Scholar
[12] Freeman C L, Dawson J A, Harding J H, Ben L B, Sinclair D C 2013 Adv. Funct. Mater. 23 491Google Scholar
[13] Tsang M K, Bai G X, Hao J H 2015 Chem. Soc. Rev. 44 1585Google Scholar
[14] Zhang Y, Hao J H 2013 J. Appl. Phys. 113 184112Google Scholar
[15] Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar
[16] Makovec D, Ule N, Drofenik M 2001 J. Am. Ceram. Soc. 84 1273Google Scholar
[17] de Camargo A S S, Botero E R, Andreeta E R M, Garcia D, Eiras J A, Nunes L A O 2005 Appl. Phys. Lett. 86 241112Google Scholar
[18] Zheng J J, Lu Y L, Chen X S, Cronin-Golomb M, Zhao J 1999 Appl. Phys. Lett. 75 3470Google Scholar
[19] Block B A, Wessels B W 1994 Appl. Phys. Lett. 65 25Google Scholar
[20] Wang X S, Xu C N, Yamada H, Nishikubo K, Zheng X G 2005 Adv. Mater. 17 1254Google Scholar
[21] Zhang P Z, Shen M R, Fang L, Zheng F G, Wu X L, Shen J C, Chen H T 2008 Appl. Phys. Lett. 92 222908Google Scholar
[22] Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2012 J. Appl. Phys. 111 104111Google Scholar
[23] Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2013 J. Am. Ceram. Soc. 96 184Google Scholar
[24] Ruan, K B, Chen X M, Liang T, Wu G H, Bao D H 2008 J. Appl. Phys. 103 074101Google Scholar
[25] Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Appl. Phys. 109 043106Google Scholar
[26] Ruan K B, Chen X M, Liang T, Bao D H 2008 J. Appl. Phys. 103 086104Google Scholar
[27] Du X R, Huang W H, Thatikonda S K, Qin N, Bao D H 2019 J. Mater. Sci.- Mater. Electron. 30 13158Google Scholar
[28] Pradhan A K, Zhang K, Mohanty S, Dadson J, Hunter D, Loutts G B, Roy U N, Cui Y, Burger A, Wilkerson A L 2005 J. Appl. Phys. 97 023513Google Scholar
[29] Driesen K, Tikhomirov V K, Gorlier-Wairand C 2007 J. Appl. Phys. 102 024312Google Scholar
[30] Gao F, Wu G H, Zhou H, Bao D H 2009 J. Appl. Phys. 106 126104Google Scholar
[31] Ding G J, Gao F, Wu G H, Bao D H 2011 J. Appl. Phys. 109 123101Google Scholar
[32] Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Electrochem. Soc. 158 G128Google Scholar
[33] Zhou H, Wu G H, Qin N, Bao D H 2012 J. Am. Ceram. Soc. 95 483Google Scholar
[34] Huang W H, He S, Hao A Z, Qin N, Ismail M, Wu J, Bao D H 2018 J. Eur. Ceram. Soc. 38 2328Google Scholar
[35] 吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春 2015 物理学报 64 207802Google Scholar
Wu X P, Liu J Y, Lin L M, Zheng W F, Qu Y, Lai F C 2015 Acta Phys. Sin. 64 207802Google Scholar
[36] Chong M K, Abiyasa A P, Pita K, Yu S F 2008 Appl. Phys. Lett. 93 151105Google Scholar
[37] Chong M K, Vu Q V, Pita K 2010 Electrochem. Solid-State Lett. 13 J50Google Scholar
[38] Voora V M, Hofmann T, Brandt M, Lorenz M, Ashkenov N, Grundmann M, Schubert M 2009 Appl. Phys. Lett. 95 082902Google Scholar
[39] Wu J, Wang J 2010 J. Appl. Phys. 108 034102Google Scholar
[40] Zhou H, Chen X M, Wu G H, Gao F, Qin N, Bao D H 2010 J. Am. Chem. Soc. 132 1790Google Scholar
[41] Zhou X Y, Wu G H, Zhou H, Qin N, Bao D H 2013 Ceram. Int. 39 S507Google Scholar
[42] Liu X, Zhou H, Wu G H, Bao D H 2011 Appl. Phys. Express 4 032103Google Scholar
[43] Su L, Qin N, Xie W, Fu J H, Bao D H 2014 J. Appl. Phys. 116 034101Google Scholar
[44] Su L, Qin N, Sa T L, Bao D H 2013 Opt. Express 21 29425Google Scholar
-
图 8 Pr掺杂x(K1/2Bi1/2)TiO3-(1-x)(Na1/2Bi1/2)TiO3薄膜的(a)发射光谱和(b)发光强度随Pr掺杂量的变化[33]
Fig. 8. (a) Emission spectra excited at 350 nm UV radiation, and (b) 611 nm red emission intensity as a function of KBT content for Pr3+-doped x(K1/2Bi1/2)TiO3-(1-x) (Na1/2Bi1/2)TiO3 thin films[33]. The inset of (b) shows a photoluminescence photograph of the thin film (x = 0.15).
-
[1] Scott J F 2007 Science 315 954Google Scholar
[2] Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K 2013 Nature 503 509Google Scholar
[3] Yan T L, Chen B, Liu G, Niu R P, Shang J, Gao S, Xue W H, Jin J, Yang J R, Li R W 2017 Chin. Phys. B 26 067702Google Scholar
[4] Han D L, Uda T, Nose Y, Okajima T, Murata H, Tanaka I, Shinoda K 2012 Adv. Mater. 24 2051Google Scholar
[5] Geskus D, Aravazhi S, Garcia-Blanco S M, Pollnau M 2012 Adv. Mater. 24 OP19Google Scholar
[6] Zhong T, Kindem J M, Miyazono E, Faraon A 2015 Nat. Commun. 5 8206Google Scholar
[7] Park B H, Kang B S, Bu S D, Noh T W, Lee J, Jo W 1999 Nature 401 682Google Scholar
[8] Maiwa H, Iizawa N, Togawa D, Hayashi T, Sakamoto W, Yamada M, Hirano S 2003 Appl. Phys. Lett. 82 1760Google Scholar
[9] Zhang S T, Zhang X J, Cheng H W, Chen Y F, Liu Z G, Ming N B, Hu X B, Wang J Y 2003 Appl. Phys. Lett. 83 4378Google Scholar
[10] Kan D, Anbusathaiah V, Takeuchi I 2011 Adv. Mater. 23 1765Google Scholar
[11] Lee Y H, Wu J M, Lai C H 2006 Appl. Phys. Lett. 88 042903Google Scholar
[12] Freeman C L, Dawson J A, Harding J H, Ben L B, Sinclair D C 2013 Adv. Funct. Mater. 23 491Google Scholar
[13] Tsang M K, Bai G X, Hao J H 2015 Chem. Soc. Rev. 44 1585Google Scholar
[14] Zhang Y, Hao J H 2013 J. Appl. Phys. 113 184112Google Scholar
[15] Haertling G H 1999 J. Am. Ceram. Soc. 82 797Google Scholar
[16] Makovec D, Ule N, Drofenik M 2001 J. Am. Ceram. Soc. 84 1273Google Scholar
[17] de Camargo A S S, Botero E R, Andreeta E R M, Garcia D, Eiras J A, Nunes L A O 2005 Appl. Phys. Lett. 86 241112Google Scholar
[18] Zheng J J, Lu Y L, Chen X S, Cronin-Golomb M, Zhao J 1999 Appl. Phys. Lett. 75 3470Google Scholar
[19] Block B A, Wessels B W 1994 Appl. Phys. Lett. 65 25Google Scholar
[20] Wang X S, Xu C N, Yamada H, Nishikubo K, Zheng X G 2005 Adv. Mater. 17 1254Google Scholar
[21] Zhang P Z, Shen M R, Fang L, Zheng F G, Wu X L, Shen J C, Chen H T 2008 Appl. Phys. Lett. 92 222908Google Scholar
[22] Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2012 J. Appl. Phys. 111 104111Google Scholar
[23] Peng D, Wang X S, Xu C N, Yao X, Lin J. Sun T 2013 J. Am. Ceram. Soc. 96 184Google Scholar
[24] Ruan, K B, Chen X M, Liang T, Wu G H, Bao D H 2008 J. Appl. Phys. 103 074101Google Scholar
[25] Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Appl. Phys. 109 043106Google Scholar
[26] Ruan K B, Chen X M, Liang T, Bao D H 2008 J. Appl. Phys. 103 086104Google Scholar
[27] Du X R, Huang W H, Thatikonda S K, Qin N, Bao D H 2019 J. Mater. Sci.- Mater. Electron. 30 13158Google Scholar
[28] Pradhan A K, Zhang K, Mohanty S, Dadson J, Hunter D, Loutts G B, Roy U N, Cui Y, Burger A, Wilkerson A L 2005 J. Appl. Phys. 97 023513Google Scholar
[29] Driesen K, Tikhomirov V K, Gorlier-Wairand C 2007 J. Appl. Phys. 102 024312Google Scholar
[30] Gao F, Wu G H, Zhou H, Bao D H 2009 J. Appl. Phys. 106 126104Google Scholar
[31] Ding G J, Gao F, Wu G H, Bao D H 2011 J. Appl. Phys. 109 123101Google Scholar
[32] Gao F, Ding G J, Zhou H, Wu G H, Qin N, Bao D H 2011 J. Electrochem. Soc. 158 G128Google Scholar
[33] Zhou H, Wu G H, Qin N, Bao D H 2012 J. Am. Ceram. Soc. 95 483Google Scholar
[34] Huang W H, He S, Hao A Z, Qin N, Ismail M, Wu J, Bao D H 2018 J. Eur. Ceram. Soc. 38 2328Google Scholar
[35] 吴晓萍, 刘金养, 林丽梅, 郑卫峰, 瞿燕, 赖发春 2015 物理学报 64 207802Google Scholar
Wu X P, Liu J Y, Lin L M, Zheng W F, Qu Y, Lai F C 2015 Acta Phys. Sin. 64 207802Google Scholar
[36] Chong M K, Abiyasa A P, Pita K, Yu S F 2008 Appl. Phys. Lett. 93 151105Google Scholar
[37] Chong M K, Vu Q V, Pita K 2010 Electrochem. Solid-State Lett. 13 J50Google Scholar
[38] Voora V M, Hofmann T, Brandt M, Lorenz M, Ashkenov N, Grundmann M, Schubert M 2009 Appl. Phys. Lett. 95 082902Google Scholar
[39] Wu J, Wang J 2010 J. Appl. Phys. 108 034102Google Scholar
[40] Zhou H, Chen X M, Wu G H, Gao F, Qin N, Bao D H 2010 J. Am. Chem. Soc. 132 1790Google Scholar
[41] Zhou X Y, Wu G H, Zhou H, Qin N, Bao D H 2013 Ceram. Int. 39 S507Google Scholar
[42] Liu X, Zhou H, Wu G H, Bao D H 2011 Appl. Phys. Express 4 032103Google Scholar
[43] Su L, Qin N, Xie W, Fu J H, Bao D H 2014 J. Appl. Phys. 116 034101Google Scholar
[44] Su L, Qin N, Sa T L, Bao D H 2013 Opt. Express 21 29425Google Scholar
计量
- 文章访问数: 10434
- PDF下载量: 370
- 被引次数: 0