搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共焦腔稳定性突变的分析

胡悦 曹凤朝 董仁婧 郝辰悦 刘大禾 石锦卫

引用本文:
Citation:

共焦腔稳定性突变的分析

胡悦, 曹凤朝, 董仁婧, 郝辰悦, 刘大禾, 石锦卫

Analysis of stability catastrophe of confocal cavity

Hu Yue, Cao Feng-Zhao, Dong Ren-Jing, Hao Chen-Yue, Liu Da-He, Shi Jin-Wei
PDF
HTML
导出引用
  • 光学谐振腔是现代光学的基础性器件. 本文从最常见的共焦腔出发, 分别从代数解析和几何拓扑的角度解释了其稳定性随参数变化而发生突变的现象, 给出了突变的数学原因和物理原因. 从数学的角度看, 共焦腔稳定性突变是因为反三角余弦函数的函数值在传统的定义域以外由复数向实数的突变; 从几何拓扑的角度看, 根据光线在腔内的传播路径定义拓扑荷, 由于只有拓扑荷为零的腔是稳定的, 且拓扑荷的变化是量子化的, 因此共焦腔的稳定性发生突变. 并根据其突变原因设计由双非稳腔组合的耦合腔, 重新构建拓扑荷, 实现了新的稳定腔, 并且在其中发现了单腔中没有的新模式.
    Optical cavity is a fundamental device of modern optics and has a wide range of applications in the fields of laser generation, nonlinear optical conversion, and optical sensors. A major aspect of the properties of optical cavity is the stability analysis. According to different geometric losses, these optical cavities can be divided into three types: stable cavity, critical cavity, and unstable cavity. The determination of the stability of the optical cavity is the basic problem of a classic system, but the research and analysis of this point have been much insufficient in the past. In this paper, by extending the definition domain of the inverse trigonometric function, the propagation matrices of the symmetric confocal cavity and the asymmetric confocal cavity are solved. The sudden change of stability with the change of geometric parameters is explained by algebraic analysis and optical ray topology.The mathematical analysis shows that the stability catastrophe of confocal cavity is due to the sudden change in the value of inverse cosine function at the critical point of the traditional domain of definition. From the perspective of geometric topology, we define the topological charge of the cavities according to the geometric propagation path of light in the cavity. Only the cavities with zero topological charge are found to be stable, and the change of topological charge is quantized, which explains the sudden change of confocal cavity stability. Finally, we build a coupled stable cavity consisting of two unstable cavities with the same parameters. The quality factors of the coupled stable cavity and the unstable cavity are analyzed by the finite difference time domain method, which further verifies the origin of the sudden change in the stability of the confocal cavity. We propose that the coupled unstable dual cavities with opposite topological charges are able to be stable, and we also find that there are new modes in the coupled cavities which are not found in the corresponding single cavity. These findings suggest a new method for controlling microcavity loss, which has a certain value for studying the new micro-nano lasers, on-chip nonlinear devices, and non-Hermitian optical sensors.
      通信作者: 石锦卫, shijinwei@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674032, 11774035, 91950108)资助的课题
      Corresponding author: Shi Jin-Wei, shijinwei@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 11674032, 11774035, 91950108)
    [1]

    周炳琨, 高以智, 陈倜嵘 2009 激光原理 (北京: 国防工业出版社) 第33−39页

    Zhou B K, Gao Y Z, Chen T R 2009 Principles of Lasers (Vol.6) (Beijing: National Defense Industry Press) pp33−39 (in Chinese)

    [2]

    Svelto O, Hanna D C 2010 Principles of Lasers (New York: Springer)

    [3]

    Boyd R W 2003 Nonlinear Optics (Oxford: Elsevier) pp108−115

    [4]

    Matsko A B, Savchenkov A A, Strekalov D 2005 IPN Progress Report 42 162

    [5]

    Bravo-Abad J, Rodriguez A, Bermel P 2007 Opt. express 15 24Google Scholar

    [6]

    Smolyaninov I I, Davis C C 2004 Phys. Rev. B 69 20Google Scholar

    [7]

    Hsu C W, Zhen B, Stone A D 2016 Nat. Rev. Mater. 1 9Google Scholar

    [8]

    Kockum A F, Miranowicz A, De Liberato S 2019 Nat. Rev. Phys. 1 1Google Scholar

    [9]

    Li M, Cushing S K, Wu N 2015 Analyst 140 2Google Scholar

    [10]

    Vollmer F, Yang L 2012 Nanophotonics 1 3Google Scholar

    [11]

    Jing H, Ozdemir S K, Lu X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604Google Scholar

    [12]

    Vahala K J 2003 Nature 424 6950Google Scholar

    [13]

    王阳, 崔碧峰, 房天啸 2017 光电子 7 50Google Scholar

    Wang Y, Cui B F, Fang T X 2017 Optoelectron. 7 50Google Scholar

    [14]

    Liu Z Z, Yang J, Du J, Hu Z P, Shi T C, Zhang Z Y, Liu Y Q, Tang X S, Leng Y X, Li R 2018 ACS Nano 12 5923Google Scholar

    [15]

    Wang K Y, Sun W Z, Li J K, Gu Z Y, Xiao S M, Song Q H 2016 ACS Photonics 3 1125Google Scholar

    [16]

    杨建勇, 陈华俊 2019 物理学报 68 246302Google Scholar

    Yang Y, Chen H J 2019 Acta Phys. Sin. 68 246302Google Scholar

    [17]

    Chen W J, Ozdemir S K, Zhao G M, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [18]

    陈华俊, 方贤文, 陈昌兆, 李洋 2019 物理学报 65 194205Google Scholar

    Chen H J, Fang W X, Chen C Z, Li Y 2019 Acta Phys. Sin. 65 194205Google Scholar

    [19]

    Angelo B, Sara P, Francesco D A 2017 Analyst 142 883Google Scholar

    [20]

    Chang L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G Y, Wang G Z, Xiao M 2014 Nature Photon. 8 524Google Scholar

    [21]

    Peng B, Ozdemir S K, Lei F C, Monifi F, Gianfreda M, Long G L, Fan S H, Nori F, Bender C M, Yang L 2014 Nature Phys. 10 394Google Scholar

  • 图 1  腔的稳定性分析 (a)谐振腔的示意图及参数, O1O2代表腔镜的球心, R1R2分别表示两腔镜的半径, L表示腔长; (b)稳定图, 白色的区域表示稳定腔, 坐标轴和双曲线上的点表示临界腔, 灰色的区域表示非稳腔

    Fig. 1.  Stability analysis of the cavity: (a) Schematic diagram and parameters of the resonator cavity: O1 and O2 represent the spherical center of the cavity mirror, R1 and R2 represent the radius of the two mirrors, L represents the cavity length; (b) stability diagram, the white area represents the stable cavity, the coordinate axis and the hyperbola point represents the critical cavity, and the gray area represents the unstable cavity.

    图 2  共焦腔和几种非共焦腔对应的曲线, 实线表示共焦腔, 虚线表示满足$ {R}_{1}+{R}_{2}=2.3 L $的非共焦腔, 点划线表示满足$ {R}_{1}+{R}_{2}=1.5 L $的非共焦腔(红色圆圈除外)

    Fig. 2.  Stability curves corresponding to the confocal cavity and non-confocal cavities. The solid line represents the confocal cavity, the dotted line represents the non-confocal cavity satisfying $ {R}_{1}+{R}_{2}=2.3 L $, and the dash dot line represents the non-confocal cavity satisfying ${R}_{1}+ {R}_{2}=1.5 L$.(except for the red circle).

    图 3  对称和非对称共焦腔的拓扑荷分析 光线在 (a)稳定图上第二象限的非对称共焦腔($ {R}_{1} < {R}_{2} $); (b)对称共焦腔; (c)第四象限的非对称共焦腔($ {R}_{1}>{R}_{2} $)内的传播路径图

    Fig. 3.  Topological charge analysis of symmetric and asymmetric confocal cavities. The propagation path diagram of light in: (a) the asymmetric confocal cavity in the second quadrant ($ {R}_{1} < {R}_{2} $); (b) the symmetric confocal cavity; (c) the asymmetric confocal cavity in the fourth quadrant ($ {R}_{1}>{R}_{2} $).

    图 4  总拓扑荷为零的稳定的耦合腔 (a)耦合腔示意图; (b)对称共焦腔、耦合腔内的模式

    Fig. 4.  Stable coupling cavitys with a total topological charge of zero: (a) Schematic diagram of the coupling cavity; (b) symmetrical confocal cavity and the mode in the coupling cavity.

    图 5  模式1和模式4的相位 (a)对称共焦腔内模式1的相位分布; (b)耦合腔内模式1的相位分; (c)耦合腔内模式1-1的相位分布

    Fig. 5.  Phase distribution of mode 1 and mode 4: (a) Phase distribution of mode 1 in a coupled cavity; (b) phase distribution of mode 1 in a coupled cavity; (c) phase distribution of mode 1-1 in a coupled cavity.

    表 1  腔的稳定性与$ {g}_{1}{g}_{2} $的关系

    Table 1.  Relationship between the stability of the cavity and the factors.

    稳定性$ {g}_{1}{g}_{2} $的取值范围
    稳定腔$ 0<{g}_{1}{g}_{2}<1 $
    临界腔$ {g}_{1}{g}_{2}=0 $ 或 $ {g}_{1}{g}_{2}=1 $
    非稳腔$ {g}_{1}{g}_{2}<0 $ 或 $ {g}_{1}{g}_{2}>1 $
    下载: 导出CSV

    表 2  对称、非对称共焦腔及耦合腔内模式的Q

    Table 2.  Q factor of modes in symmetric, asymmetric and coupled confocal cavities.

    模式
    Q
    11-12344-1
    对称共焦腔666.2555.6505.6427.5
    非对称共焦腔40.423.528.927.4
    耦合腔274.1276.6491.2494.1406.2248.7
    下载: 导出CSV
  • [1]

    周炳琨, 高以智, 陈倜嵘 2009 激光原理 (北京: 国防工业出版社) 第33−39页

    Zhou B K, Gao Y Z, Chen T R 2009 Principles of Lasers (Vol.6) (Beijing: National Defense Industry Press) pp33−39 (in Chinese)

    [2]

    Svelto O, Hanna D C 2010 Principles of Lasers (New York: Springer)

    [3]

    Boyd R W 2003 Nonlinear Optics (Oxford: Elsevier) pp108−115

    [4]

    Matsko A B, Savchenkov A A, Strekalov D 2005 IPN Progress Report 42 162

    [5]

    Bravo-Abad J, Rodriguez A, Bermel P 2007 Opt. express 15 24Google Scholar

    [6]

    Smolyaninov I I, Davis C C 2004 Phys. Rev. B 69 20Google Scholar

    [7]

    Hsu C W, Zhen B, Stone A D 2016 Nat. Rev. Mater. 1 9Google Scholar

    [8]

    Kockum A F, Miranowicz A, De Liberato S 2019 Nat. Rev. Phys. 1 1Google Scholar

    [9]

    Li M, Cushing S K, Wu N 2015 Analyst 140 2Google Scholar

    [10]

    Vollmer F, Yang L 2012 Nanophotonics 1 3Google Scholar

    [11]

    Jing H, Ozdemir S K, Lu X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604Google Scholar

    [12]

    Vahala K J 2003 Nature 424 6950Google Scholar

    [13]

    王阳, 崔碧峰, 房天啸 2017 光电子 7 50Google Scholar

    Wang Y, Cui B F, Fang T X 2017 Optoelectron. 7 50Google Scholar

    [14]

    Liu Z Z, Yang J, Du J, Hu Z P, Shi T C, Zhang Z Y, Liu Y Q, Tang X S, Leng Y X, Li R 2018 ACS Nano 12 5923Google Scholar

    [15]

    Wang K Y, Sun W Z, Li J K, Gu Z Y, Xiao S M, Song Q H 2016 ACS Photonics 3 1125Google Scholar

    [16]

    杨建勇, 陈华俊 2019 物理学报 68 246302Google Scholar

    Yang Y, Chen H J 2019 Acta Phys. Sin. 68 246302Google Scholar

    [17]

    Chen W J, Ozdemir S K, Zhao G M, Wiersig J, Yang L 2017 Nature 548 192Google Scholar

    [18]

    陈华俊, 方贤文, 陈昌兆, 李洋 2019 物理学报 65 194205Google Scholar

    Chen H J, Fang W X, Chen C Z, Li Y 2019 Acta Phys. Sin. 65 194205Google Scholar

    [19]

    Angelo B, Sara P, Francesco D A 2017 Analyst 142 883Google Scholar

    [20]

    Chang L, Jiang X S, Hua S Y, Yang C, Wen J M, Jiang L, Li G Y, Wang G Z, Xiao M 2014 Nature Photon. 8 524Google Scholar

    [21]

    Peng B, Ozdemir S K, Lei F C, Monifi F, Gianfreda M, Long G L, Fan S H, Nori F, Bender C M, Yang L 2014 Nature Phys. 10 394Google Scholar

  • [1] 万兵兵, 胡伟波, 李晓虎, 黄文锋, 陈坚强, 涂国华. 高速钝锥对不同类型来流扰动的三维感受性. 物理学报, 2024, 73(23): 234701. doi: 10.7498/aps.73.20241383
    [2] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [3] 孔江涛, 黄健, 龚建兴, 李尔玉. 基于复杂网络动力学模型的无向加权网络节点重要性评估. 物理学报, 2018, 67(9): 098901. doi: 10.7498/aps.67.20172295
    [4] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [6] 王日兴, 叶华, 王丽娟, 敖章洪. 垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动. 物理学报, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [7] 吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思. 倾斜波动壁面上液膜表面波演化特性的影响. 物理学报, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [8] 孙棣华, 康义容, 李华民. 驾驶员预估效应下车流能耗演化机理研究. 物理学报, 2015, 64(15): 154503. doi: 10.7498/aps.64.154503
    [9] 王亚东, 甘雪涛, 俱沛, 庞燕, 袁林光, 赵建林. 利用非传统螺旋相位调控高阶涡旋光束的拓扑结构. 物理学报, 2015, 64(3): 034204. doi: 10.7498/aps.64.034204
    [10] 王日兴, 贺鹏斌, 肖运昌, 李建英. 铁磁/重金属双层薄膜结构中磁性状态的稳定性分析. 物理学报, 2015, 64(13): 137201. doi: 10.7498/aps.64.137201
    [11] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析. 物理学报, 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [12] 孙宁, 张化光, 王智良. 基于分数阶滑模面控制的分数阶超混沌系统的投影同步. 物理学报, 2011, 60(5): 050511. doi: 10.7498/aps.60.050511
    [13] 周磊, 支蓉, 冯爱霞, 龚志强. 基于二分图的温度网络拓扑性质研究. 物理学报, 2010, 59(9): 6689-6696. doi: 10.7498/aps.59.6689
    [14] 陈卫东, 徐华, 郭琦. 国际石油价格复杂网络的动力学拓扑性质. 物理学报, 2010, 59(7): 4514-4523. doi: 10.7498/aps.59.4514
    [15] 王利, 毕思文, 王果果. 利用三平面腔镜共焦腔产生多模压缩光束. 物理学报, 2010, 59(1): 87-91. doi: 10.7498/aps.59.87
    [16] 周磊, 龚志强, 支蓉, 封国林. 基于复杂网络研究中国温度变化的区域特征. 物理学报, 2009, 58(10): 7351-7358. doi: 10.7498/aps.58.7351
    [17] 周 磊, 龚志强, 支 蓉, 封国林. 利用复杂网络研究中国温度序列的拓扑性质. 物理学报, 2008, 57(11): 7380-7389. doi: 10.7498/aps.57.7380
    [18] 魏高峰, 李开泰, 冯 伟, 高洪芬. 非协调数值流形方法的稳定性和收敛性分析. 物理学报, 2008, 57(2): 639-647. doi: 10.7498/aps.57.639
    [19] 张丽丽, 张晋鲁, 蒋建国, 周恒为, 黄以能. 取向玻璃体系中分子之间取向关联的模型化及其模拟与分析. 物理学报, 2008, 57(9): 5817-5822. doi: 10.7498/aps.57.5817
    [20] 王 涛, 高自友, 赵小梅. 多速度差模型及稳定性分析. 物理学报, 2006, 55(2): 634-640. doi: 10.7498/aps.55.634
计量
  • 文章访问数:  7991
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-31
  • 修回日期:  2020-06-28
  • 上网日期:  2020-11-09
  • 刊出日期:  2020-11-20

/

返回文章
返回