搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压电驻极体的微能量采集

张咪 左西 杨同青 张晓青

引用本文:
Citation:

基于压电驻极体的微能量采集

张咪, 左西, 杨同青, 张晓青

Research progress of piezoelectrets based micro-energy harvesting

Zhang Mi, Zuo Xi, Yang Tong-Qing, Zhang Xiao-Qing
PDF
HTML
导出引用
  • 综述了以压电驻极体换能器为核心部件的微能量采集研究, 包括压电驻极体的基本物理原理和性能特点, 以及该材料在微能量采集领域的应用研究. 压电驻极体是具有微孔结构的驻极体材料, 其压电效应是基体聚合物的驻极体性能和材料微孔机械结构协同作用的结果, 是一类新型人工微结构柔性机电耦合材料. 压电驻极体以强压电效应、柔韧、低密度、低声阻抗、薄膜型等为特征, 是制备轻量化柔性传感器和机械能量采集器的理想换能材料. 压电驻极体已被应用于振动能量采集器、人体运动能量采集器、以及声能采集器的研究中. 根据压电驻极体膜受力方向的不同, 可以将能量采集器的工作模式分为33模式和31模式两种. 本文对基于压电驻极体的三类能量采集器的研究状况进行综述, 并讨论未来的发展方向.
    In this paper, the progress of micro-energy harvesters by using piezoelectret-based transducers as a core element is reviewed, including basic physical principle and properties of piezoelectrets, and their applications in micro-energy harvesting. Piezoelectret is electret-based piezoelectric polymer with a foamed structure. The piezoelectric effect of such material is a synergistic effect of the electret property of the matrix polymer and the foam mechanical structure in the material. Piezoelectret, featuring strong piezoelectric effect, flexibility, low density, very small acoustic impedance and film form, is an ideal electromechanical material for lightweight flexible sensors and mechanical energy harvesters. The piezoelectret prepared by means of grid, template patterning, supercritical CO2 assisted low-temperature assembly, lithography mold combined with rotary coating and hot pressing has regular voids and good piezoelectric properties. Piezoelectret has been used to harvest vibrational energy, human motion energy and sound energy. According to the stress direction applied to the piezoelectrets, operating modes of energy harvesters can be divided into 33 and 31 modes. The vibrational energy harvesters based on piezoelectret are utilized to harvest medium frequency vibrational energy generated by factory machines, aircrafts, automobiles, etc. Such energy harvesters can generate considerable power even in a small size. Human motion energy harvesters are generally used to power wearable sensors. The high sensitivity, lightweight, and flexibility of the piezoelectret make such a material a promising candidate for harvesting human motion energy. Owing to very small acoustic impedance, high figure-of-merit, flat response in audio and low-frequency ultrasonic range, the piezoelectrets are more appropriate for acoustic energy harvesting in air medium than conventional PZT and ferroelectric polymer PVDF.In the future, specific micro-energy harvesters using piezoelectrets as transduction material can be designed and fabricated according to the practical application environment, and their performance can be enhanced by using flexible connections of transduction elements.
      通信作者: 杨同青, yangtongqing@tongji.edu.cn ; 张晓青, x.zhang@tongji.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61761136004)资助的课题
      Corresponding author: Yang Tong-Qing, yangtongqing@tongji.edu.cn ; Zhang Xiao-Qing, x.zhang@tongji.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61761136004)
    [1]

    Statista Research Department https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ [2020-4-25]

    [2]

    Fan K Q, Zhang Y W, E S J, Tang L H, Qu H H 2019 Appl. Phys. Lett. 115 203903Google Scholar

    [3]

    Zhu J X, Liu X M, Shi Q F, et al. 2020 Micromachines-Basel 11 7Google Scholar

    [4]

    Yang Y Y W, Wang S, Stein P, Xu B X, Yang T Q 2017 Smart Mater. Struct. 26 045011Google Scholar

    [5]

    Kim H, Tadesse Y, Priya S 2009 Energy Harvesting Technologies 3 39Google Scholar

    [6]

    Panda P K, Sahoo B 2015 Ferroelectr. 474 128Google Scholar

    [7]

    Bauer S, Gerhard-Multhaupt R, Sessler G M 2004 Phys. Today 57 37Google Scholar

    [8]

    Bauer S 2006 IEEE Trans. Dielectr. Electr. Insul. 13 953Google Scholar

    [9]

    Qiu X L 2010 J. Appl. Phys. 108 011101Google Scholar

    [10]

    Mohebbi A, Mighri F, Ajji A, Rodrigue D 2018 Adv. Polym. Tech. 37 468Google Scholar

    [11]

    Ma X C, Zhang X Q, Sessler G M, Chen L, Yang X Y, Dai Y, He P F 2019 AIP Adv. 9 125334Google Scholar

    [12]

    张欣梧, 张晓青 2013 物理学报 62 167702Google Scholar

    Zhang X W, Zhang X Q 2013 Acta Phys. Sin. 62 167702Google Scholar

    [13]

    Gerhard-Multhaupt R 2002 IEEE Trans. Dielectr. Electr. Insul. 9 850Google Scholar

    [14]

    Zhang X Q, Huang J F, Chen J B, Wan Z M, Wang S, Xia Z F 2007 Appl. Phys. Lett. 91 182901Google Scholar

    [15]

    张晓青, 黄金峰, 王学文, 夏钟福 2009 物理学报 58 3525Google Scholar

    Zhang X Q, Huang J F, Wang X W, Xia Z F 2009 Acta Phys. Sin. 58 3525Google Scholar

    [16]

    Chen L, Cao J L, Li G L, Fang P, Gong X S, Zhang X Q 2019 IEEE Sens. J. 19 11262Google Scholar

    [17]

    Zhang X Q, Pondrom P, Sessler G M, Ma X C 2018 Nano Energy 50 52Google Scholar

    [18]

    Ko W C, Chen J L, Wu W J, Lee C K 2008 Proc. SPIE 6927 69271VGoogle Scholar

    [19]

    Fang P, Wirges W, Wegener M, Zirkel L, Gerhard R 2008 E-Polymers 8 1Google Scholar

    [20]

    Fujita T, Fujii K, Onishi T, Kanda K, Higuchi K, Maenaka K 2011 Procedia Eng. 25 733Google Scholar

    [21]

    Furukawa T 1989 Phase Transitions 18 143Google Scholar

    [22]

    Guo D, Cai K, Wang Y 2017 J. Mater. Chem. C 5 2531Google Scholar

    [23]

    Salimi A, Yousefi A 2003 Polym. Test. 22 699Google Scholar

    [24]

    Ribeiro C, Sencadas V, Ribelles J L G, Lanceros-Méndez S 2010 Soft Mater. 8 274Google Scholar

    [25]

    Yang D C, Chen Y 1987 J. Mater. Sci. Lett. 6 599Google Scholar

    [26]

    Ye H J, Shao W Z, Zhen L 2013 J. Appl. Polym. Sci. 129 2940Google Scholar

    [27]

    Li X, Lim Y F, Yao K, Tay F E H, Seah K H 2013 Chem. Mater. 25 524Google Scholar

    [28]

    Lindner M, Hoislbauer H, Schwodiauer R, Bauer-Gogonea S, Bauer S 2004 IEEE Trans. Dielectr. Electr. Insul. 11 255Google Scholar

    [29]

    Mo X W, Zhou H, Li W B, Xu Z S, Duan J J, Huang L, Hu B, Zhou J 2019 Nano Energy 65 104033Google Scholar

    [30]

    Zhang Y, Bowen C R, Ghosh S K, Mandal D, Khanbareh H, Arafa M, Wan C 2019 Nano Energy 57 118Google Scholar

    [31]

    Berlincourt D A, Curran D R, Jaffe H 1964 Physical Acoustics (Pittsburgh: Academic Press) pp169−270

    [32]

    Xu R, Kim S G 2012 Power MEMS Atlanta, GA, USA, December 2−5, 2012 p464

    [33]

    Sinoceramics http://sinocera.net/en/piezo_material.asp [2020−4−25]

    [34]

    Ohigashi H 1976 J. Appl. Phys. 47 949Google Scholar

    [35]

    Neugschwandtner G S, Schwödiauer R, Vieytes M, et al. 2000 Appl. Phys. Lett. 77 3827Google Scholar

    [36]

    武丽明, 张晓青 2015 物理学报 64 177701Google Scholar

    Wu L M, Zhang X Q 2015 Acta Phys. Sin. 64 177701Google Scholar

    [37]

    Zhang X Q, Hillenbrand J, Sessler G M, Haberzettl S, Lou K 2012 Appl. Phys. A 107 621Google Scholar

    [38]

    Zhang X Q, Sessler G M, Wang Y J 2014 J. Appl. Phys. 116 074109.1Google Scholar

    [39]

    Kachroudi A, Basrour S, Rufer L, Jomni F 2015 J. Phys. Conf. Ser. 660 012040Google Scholar

    [40]

    Sessler G M, Hillenbrand J 1999 Appl. Phys. Lett. 75 3405Google Scholar

    [41]

    Paajanen M, Välimäki H, Lekkala J 2000 J. Electrostat. 48 193Google Scholar

    [42]

    张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪 2014 物理学报 63 157703Google Scholar

    Zhang T L, Huang X, Zheng K, Zhang X W, Wang Y J, Wu L M, Zhang X Q, Zheng J, Zhu B 2014 Acta Phys. Sin. 63 157703Google Scholar

    [43]

    Wegener M, Wirges W, Gerhard-Multhaupt R 2005 Adv. Eng. Mater. 7 1128Google Scholar

    [44]

    Wegener M 2010 Proceedings of SPIE San Diego, California, United States, March 7, 2010 p76441A-1

    [45]

    Mohebbi A, Mighri F, Ajji A, Rodrigue D 2015 Cell. Polym. 34 299Google Scholar

    [46]

    Altafim R A C, Basso H C, Neto L G, Lima L, Altafim R A P, Aquino C V d 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2005. Nashville, TN, USA, October 16−19, 2005 p669

    [47]

    Altafim R A P, Qiu X L, Wirges W, et al. 2009 J. Appl. Phys. 106 014106Google Scholar

    [48]

    Zhang X Q, Hillenbrand J, Sessler G M 2006 Appl. Phys. A 84 139

    [49]

    Zhang X Q, Cao G X, Sun Z L, Xia Z F 2010 J. Appl. Phys. 108 064113Google Scholar

    [50]

    Zhang X Q, Sessler G M, Xue Y, Ma X C 2016 J. Phys. D: Appl. Phys. 49 205502Google Scholar

    [51]

    Zhang X Q, Wang Y J 2014 Proceedings of IEEE 15th International Symposium on Electrets Baltimore, Maryland, USA, August 10−13, 2014 Poster P2.2

    [52]

    Zhang X Q, Pondrom P, Wu L M, Sessler G M 2016 Appl. Phys. Lett. 108 193903Google Scholar

    [53]

    Li Y, Zeng C C 2013 Macromol. Chem. Phys. 214 2733Google Scholar

    [54]

    Kachroudi A, Basrour S, Rufer L, Sylvestre A, Jomni F 2015 Smart Mater. Struct. 24 125013Google Scholar

    [55]

    Kachroudi A, Basrour S, Rufer L, Jomni F 2016 J. Phys. Conf. Ser. 773 012072Google Scholar

    [56]

    Zhong J W, Zhong Q Z, Zang X N, Wu N, Li W B, Chu Y, Lin L W 2017 Nano Energy 37 268Google Scholar

    [57]

    Rychkov D, Altafim R A P, Gerhard R 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Des Moines, IA, USA, October 19−22, 2014 p860

    [58]

    马星晨, 叶瑞丰, 张添乐, 张晓青 2016 物理学报 65 177701Google Scholar

    Ma X C, Ye R F, Zhang T L, Zhang X Q 2016 Acta Phys. Sin. 65 177701Google Scholar

    [59]

    Ma X C, Zhang X Q 2017 Smart Mater. Struct. 26 085001Google Scholar

    [60]

    Hagiwara K, Goto M, Iguchi Y, et al. 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1291Google Scholar

    [61]

    张晓青, 黄金峰, 王飞鹏, 夏钟福 2008 物理学报 57 1902Google Scholar

    Zhang X Q, Huang J F, Wang F P, Xia Z F 2008 Acta Phys. Sin. 57 1902Google Scholar

    [62]

    Zhang X Q, Hillenbrand J, Sessler G M 2004 J. Phys. D: Appl. Phys. 37 2146Google Scholar

    [63]

    Anton S, Farinholt K 2012 Proc. SPIE 8341 14Google Scholar

    [64]

    Pondrom P, Hillenbrand J, Sessler G M, Bös J, Melz T 2014 Appl. Phys. Lett. 104 172901Google Scholar

    [65]

    Pondrom P, Hillenbrand J, Sessler G M, Bös J, Melz T 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1470Google Scholar

    [66]

    Sessler G M, Pondrom P, Zhang X Q 2016 Phase Transitions 89 667Google Scholar

    [67]

    Anton S R, Farinholt K M, Erturk A 2014 J. Intell. Mater. Syst. Struct. 25 1681Google Scholar

    [68]

    Ray C A, Anton S R 2016 J. Intell. Mater. Syst. Struct. 28 408Google Scholar

    [69]

    Zhang X Q, Wu L M, Sessler G M 2015 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM) Singapore, May 24−27, 2015 p24

    [70]

    Ben Dali O, Pondrom P, Sessler G M, Zhukov S, von Seggern H, Zhang X Q, Kupnik M 2020 Appl. Phys. Lett. 116 243901Google Scholar

    [71]

    Li W B, Zhao S, Wu N, et al. 2017 ACS Appl. Mater. Interfaces 9 23716Google Scholar

    [72]

    Yan C, Deng W L, Jin L, Yang T, Wang Z X, Chu X, Su H, Chen J, Yang W Q 2018 ACS Appl. Mater. Interfaces 10 41070Google Scholar

    [73]

    Wu N, Chen S W, Lin S Z, Li W B, Xu Z S, Yuan F, Huang L, Hu B, Zhou J 2018 J. Mater. Chem. A 6 5065Google Scholar

    [74]

    Wu N, Jiang H L, Li W B, Lin S Z, Zhong J W, Yuan F, Huang L, Hu B, Zhou J 2017 J. Mater. Chem. A 5 12787Google Scholar

    [75]

    Tajitsu Y, Takarada J, Hiramoto M, et al. 2019 Jpn. J. Appl. Phys. 58 SLLD05Google Scholar

    [76]

    Xue Y, Zhang X Q, Zheng J, Liu T, Zhu B 2018 IEEE Trans. Dielectr. Electr. Insul. 25 228Google Scholar

    [77]

    Xue Y, Zhao J F, Zhang X Q, Sessler G M, Kupnik M 2019 Phys. Scr. 94 095002Google Scholar

    [78]

    eTouch http://etouchcn.com/ [2020-7-15]

    [79]

    Hillenbrand J, Sessler G M 2004 J. Acoust. Soc. Am. 116 3267Google Scholar

    [80]

    Eimfit https://www.emfit.com/active-life-sleep-and-recovery [2020-7-15]

    [81]

    B-Band http://www.b-band.net.cn/ [2020-7-15]

    [82]

    Screentec https://www.screentec.com/ [2020-7-15]

    [83]

    Panphonics https://panphonics.com/ [2020-7-15]

    [84]

    Fang P, Wegener M, Wirges W, Gerhard R, Zirkel L 2007 Appl. Phys. Lett. 90 192908Google Scholar

    [85]

    吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 物理学报 67 207701Google Scholar

    Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar

  • 图 1  (a) β晶型PVDF分子链的构象示意图; (b) 用于解释聚合物压电行为的电荷-弹簧模型; (c) 压电驻极体PP (椭圆形区域为气体孔洞, 其余部分为聚合物基体) (经允许转载, 版权所有2004, IEEE)[28]

    Fig. 1.  (a) Schematic of the molecular chain of β-phase PVDF; (b) charge-spring model for the occurrence of piezoelectricity in polymers; (c) piezoelectret PP (ellipsoidal areas are gas bubble and the dark area is the polymer matrix). Reproduced with permission. Copyright 2004, IEEE[28].

    图 2  压电驻极体的层状理论模型[42]

    Fig. 2.  Layer model of piezoelectrets[42].

    图 3  压电活性(粗线)和弹性系数(细线)对样品密度的依赖关系, 以及对应多孔结构的横截面示意图(经允许转载, 版权所有2006, John Wiley and Sons)[43]

    Fig. 3.  Dependence of the piezoelectric activity (thick line) and elastic coefficient (thin line) on the sample density, and the cross section diagram of the corresponding cellular structures. Reproduced with permission. Copyright 2006, John Wiley and Sons[43].

    图 4  基于熔融拉伸(上)和发泡剂发泡(下)工艺制备多孔压电驻极体膜示意图(经允许转载, 版权所有2010, SPIE)[44]

    Fig. 4.  Schematic diagram of preparation of cellular piezoelectrets based on melt stretching (top) and foaming agent foams (bottom) processes. Reproduced with permission. Copyright 2010, SPIE[44].

    图 5  多孔氟聚合物压电驻极体示意图 (a) 均匀多孔FEP层合膜示意图(经允许转载, 版权所有2005, IEEE)[46]; (b) 用平行矩形开口的PTFE模板制备具有管状通道的双层FEP薄膜的工艺示意图和孔洞的SEM图(经AIP出版社许可转载)[47]; (c) 金属栅网压印制备PTFE-FEP-PTFE层合膜示意图(经允许转载, 版权所有2006, Springer Nature)[48]; (d) 模板压印制备平行隧道结构FEP层合膜示意图(图片经允许转载, 版权所有2018, Elsevier Publishing)[17]

    Fig. 5.  Schematic of piezoelectrets of cellular fluoropolymer: (a) Schematic of uniform cellular FEP laminated film. Reproduced with permission. Copyright 2005, IEEE[46]; (b) a schematic illustration of the fabrication process with a PTFE template with parallel rectangular openings to prepare a two-layer FEP film with tubular channels and the SEM image of the air voids. Reproduced with the permission of AIP Publishing[47]; (c) schematic of PTFE-FEP-PTFE laminated film prepared by metal mesh patterning. Reproduced with permission. Copyright 2006, Springer Nature[48]; (d) schematic of template patterning fabrication process of FEP laminated film with parallel-tunnel structure. Images reproduced with permission. Copyright 2018, Elsevier Publishing[17].

    图 6  一些多孔压电驻极体制备工艺示意图 (a) 超临界二氧化碳辅助低温组装法制备COC层合膜示意图(经允许转载, 版权所有2013, John Wiley and Sons)[53]; (b) 制备拱形气泡PET/EVA/PET复合膜示意图(图片经允许转载, 版权所有2017, Elsevier Publishing)[56]

    Fig. 6.  Schematic preparation process of other typical cellular piezoelectrets: (a) Schematic of COC laminated film prepared by supercritical CO2-assisted low temperature assembly method. Reproduced with permission. Copyright 2013, John Wiley and Sons[53]; (b) schematic of preparing arched bubble PET/EVA/PET composite film. Images reproduced with permission. Copyright 2017 Elsevier Publishing[56].

    图 7  极化方式 (a) 电晕极化; (b) 接触法极化

    Fig. 7.  Polarization methods: (a) Corona polarization; (b) contact polarization.

    图 8  (a) 沿压电驻极体膜平面双轴加载示意图; (b) 垂直于压电驻极体膜平面加载示意图[30]

    Fig. 8.  (a) Schematic of biaxial loading along the plane of piezoelectret film; (b) schematic of loading perpendicular to the piezoelectret film[30].

    图 9  动态$ {d}_{33} $测试及能量采集实验装置示意图(经允许转载, 版权所有2012, SPIE)[63]

    Fig. 9.  Schematic of experimental setup used for dynamic d33 testing and energy harvesting. Reproduced with permission. Copyright 2012, SPIE[63].

    图 10  (a) 能量采集装置示意图; (b) FENG; (c) 归一化输出功率随频率的变化; (d)用于点亮LED灯的能量采集装置(图片经允许转载, 版权所有2018, Elsevier Publishing)[17]

    Fig. 10.  (a) Schematic of energy harvesting setup; (b) FENG; (c) measured normalized power generated by a FENG; (d) setup of energy harvester to power LED. Images reproduced with permission. Copyright 2018, Elsevier Publishing[17].

    图 11  (a) FEP单极性压电驻极体结构的截面示意图(上层膜带负电, 下层膜不带电); (b)归一化输出功率与频率的关系; (c) 用FEP单极性铁电驻极体能量采集装置点亮LED灯[11]

    Fig. 11.  (a) Schematic cross sectional view of the structure of the FEP unipolar ferroelectret (The upper layer is negatively charged and the lower layer is not charged); (b) normalized output power vs. frequency; (c) setup of energy harvester to power LED[11].

    图 12  可穿戴传感器 (a) PP可穿戴声纹识别传感器(图片经允许转载, 版权所有2017, American Chemical Society)[71]; (b) 多孔PP/PZT复合框架的三维细胞传感器阵列(图片经允许转载, 版权所有2018, American Chemical Society)[72]; (c) PFA压电柔性压力传感器(图片经允许转载, 版权所有2018, Royal Society of Chemistry)[73]

    Fig. 12.  Wearable sensors: (a) Voiceprint recognition system based on PP films. Images reproduced with permission. Copyright 2017, American Chemical Society[71]; (b) three-dimensional cellular sensor array (3D-CSA) array for wearable biomedical monitoring based on cellular PP/PZT composite films; Images reproduced with permission. Copyright 2018, American Chemical Society[72]; (c) flexible piezoelectret-based pressure sensors based on PFA films. Images reproduced with permission. Copyright 2018, Royal Society of Chemistry[73].

    图 13  自供电无线远程操控系统 (a) FEP球状突起阵列驻极体膜的示意图和实物图; (b) 自供电无线操控系统控制风扇开关(图片经允许转载, 版权所有2017, Royal Society of Chemistry)[74]

    Fig. 13.  Self-powered wireless remote system: (a) Schematic diagram and photograph of raised bubble shape FEP laminated films; (b) the fan can be controlled by self-powered wireless remote system. Images reproduced with permission. Copyright 2017, Royal Society of Chemistry[74].

    图 14  基于压电驻极体的地板下能量采集系统 (a) 多层堆叠的压电驻极体膜; (b) 地板下的能量采集系统(图片经允许转载, 版权所有2019, Japanese Journal of Applied Physics)[75]

    Fig. 14.  Underfloor energy harvesting system based on piezoelectrets: (a) FEP/p-PTFE/FEP multilayer films; (b) schematic view and photograph of the system. Images reproduced with permission. Copyright 2019, Japanese Journal of Applied Physics[75].

    图 15  IXPP声能采集器 (a) IXPP压电驻极体薄膜的制备过程、工作原理、以及实物图; (b) 声能采集系统示意图; (c) 结合亥姆霍兹共振腔制得的声能采集器件的示意图和实物图; (d) PP压电驻极体膜和IXPP压电驻极体膜制备得到的声能采集器件的灵敏度-频率曲线图; (e) 五个表面都附着IXPP样品的声能采集器件的输出功率-频率曲线图[76,77]. 图片经允许转载, 图(a), (b), (c), (e)版权所有2019, IOP Publishing Ltd., 图(d)版权所有2018, IEEE

    Fig. 15.  IXPP acoustic energy harvesters: (a) Schematic views of the preparation process, the working principle and the photographs of IXPP piezoelectret films; (b) experimental configuration of measurements for output power of IXPP acoustic energy harvesters; (c) cross-sectional view and optical image of IXPP energy harvesters made of a Helmholtz resonator with one IXPP piezoelectret film; (d) free-field sensitivities of PP and IXPP microphones in audio range; (e) schematic view (inset) and generated output power of an acoustic energy harvester consisting of a Helmholtz resonator with five IXPP films[76,77]. Images reproduced with permission. Panels (a), (b), (c), (e) Copyright 2019, IOP Publishing Ltd., Panel (d) Copyright 2018, IEEE.

    表 1  一些材料的压电系数[17]

    Table 1.  Piezoelectric coefficients of some materials[17].

    材料$ {d}_{33} $/pC·N–1$ {g}_{33} $/V·m·N–1$ {d}_{33} \cdot {g}_{33} $/TPa–1$ {d}_{31} $/pC·N–1$ {g}_{31} $/V·m·N–1$ {d}_{31} \cdot {g}_{31} $/TPa–1Ref.
    PZT-5H6400.02113.44–283–0.00932.6[33]
    PVDF–330.33–10.89230.2165.0[34]
    压电驻极体PP14013*1820~2~0.2~0.4[35]
    IXPP62018.0611200[36]
    圆形孔洞FEP层压膜35030*10500[37]
    交叉隧道FEP层压膜30028*8400[38]
    平行隧道FEP层压膜32*396[17]
    PDMS35028.810083[39]
    *由${g}_{33}=\dfrac{ {d}_{33} }{ {\varepsilon }_{0}{\varepsilon }_{\rm{r} } }$计算得到, $ {\varepsilon }_{\rm{r}} $为1.2.
    下载: 导出CSV
  • [1]

    Statista Research Department https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/ [2020-4-25]

    [2]

    Fan K Q, Zhang Y W, E S J, Tang L H, Qu H H 2019 Appl. Phys. Lett. 115 203903Google Scholar

    [3]

    Zhu J X, Liu X M, Shi Q F, et al. 2020 Micromachines-Basel 11 7Google Scholar

    [4]

    Yang Y Y W, Wang S, Stein P, Xu B X, Yang T Q 2017 Smart Mater. Struct. 26 045011Google Scholar

    [5]

    Kim H, Tadesse Y, Priya S 2009 Energy Harvesting Technologies 3 39Google Scholar

    [6]

    Panda P K, Sahoo B 2015 Ferroelectr. 474 128Google Scholar

    [7]

    Bauer S, Gerhard-Multhaupt R, Sessler G M 2004 Phys. Today 57 37Google Scholar

    [8]

    Bauer S 2006 IEEE Trans. Dielectr. Electr. Insul. 13 953Google Scholar

    [9]

    Qiu X L 2010 J. Appl. Phys. 108 011101Google Scholar

    [10]

    Mohebbi A, Mighri F, Ajji A, Rodrigue D 2018 Adv. Polym. Tech. 37 468Google Scholar

    [11]

    Ma X C, Zhang X Q, Sessler G M, Chen L, Yang X Y, Dai Y, He P F 2019 AIP Adv. 9 125334Google Scholar

    [12]

    张欣梧, 张晓青 2013 物理学报 62 167702Google Scholar

    Zhang X W, Zhang X Q 2013 Acta Phys. Sin. 62 167702Google Scholar

    [13]

    Gerhard-Multhaupt R 2002 IEEE Trans. Dielectr. Electr. Insul. 9 850Google Scholar

    [14]

    Zhang X Q, Huang J F, Chen J B, Wan Z M, Wang S, Xia Z F 2007 Appl. Phys. Lett. 91 182901Google Scholar

    [15]

    张晓青, 黄金峰, 王学文, 夏钟福 2009 物理学报 58 3525Google Scholar

    Zhang X Q, Huang J F, Wang X W, Xia Z F 2009 Acta Phys. Sin. 58 3525Google Scholar

    [16]

    Chen L, Cao J L, Li G L, Fang P, Gong X S, Zhang X Q 2019 IEEE Sens. J. 19 11262Google Scholar

    [17]

    Zhang X Q, Pondrom P, Sessler G M, Ma X C 2018 Nano Energy 50 52Google Scholar

    [18]

    Ko W C, Chen J L, Wu W J, Lee C K 2008 Proc. SPIE 6927 69271VGoogle Scholar

    [19]

    Fang P, Wirges W, Wegener M, Zirkel L, Gerhard R 2008 E-Polymers 8 1Google Scholar

    [20]

    Fujita T, Fujii K, Onishi T, Kanda K, Higuchi K, Maenaka K 2011 Procedia Eng. 25 733Google Scholar

    [21]

    Furukawa T 1989 Phase Transitions 18 143Google Scholar

    [22]

    Guo D, Cai K, Wang Y 2017 J. Mater. Chem. C 5 2531Google Scholar

    [23]

    Salimi A, Yousefi A 2003 Polym. Test. 22 699Google Scholar

    [24]

    Ribeiro C, Sencadas V, Ribelles J L G, Lanceros-Méndez S 2010 Soft Mater. 8 274Google Scholar

    [25]

    Yang D C, Chen Y 1987 J. Mater. Sci. Lett. 6 599Google Scholar

    [26]

    Ye H J, Shao W Z, Zhen L 2013 J. Appl. Polym. Sci. 129 2940Google Scholar

    [27]

    Li X, Lim Y F, Yao K, Tay F E H, Seah K H 2013 Chem. Mater. 25 524Google Scholar

    [28]

    Lindner M, Hoislbauer H, Schwodiauer R, Bauer-Gogonea S, Bauer S 2004 IEEE Trans. Dielectr. Electr. Insul. 11 255Google Scholar

    [29]

    Mo X W, Zhou H, Li W B, Xu Z S, Duan J J, Huang L, Hu B, Zhou J 2019 Nano Energy 65 104033Google Scholar

    [30]

    Zhang Y, Bowen C R, Ghosh S K, Mandal D, Khanbareh H, Arafa M, Wan C 2019 Nano Energy 57 118Google Scholar

    [31]

    Berlincourt D A, Curran D R, Jaffe H 1964 Physical Acoustics (Pittsburgh: Academic Press) pp169−270

    [32]

    Xu R, Kim S G 2012 Power MEMS Atlanta, GA, USA, December 2−5, 2012 p464

    [33]

    Sinoceramics http://sinocera.net/en/piezo_material.asp [2020−4−25]

    [34]

    Ohigashi H 1976 J. Appl. Phys. 47 949Google Scholar

    [35]

    Neugschwandtner G S, Schwödiauer R, Vieytes M, et al. 2000 Appl. Phys. Lett. 77 3827Google Scholar

    [36]

    武丽明, 张晓青 2015 物理学报 64 177701Google Scholar

    Wu L M, Zhang X Q 2015 Acta Phys. Sin. 64 177701Google Scholar

    [37]

    Zhang X Q, Hillenbrand J, Sessler G M, Haberzettl S, Lou K 2012 Appl. Phys. A 107 621Google Scholar

    [38]

    Zhang X Q, Sessler G M, Wang Y J 2014 J. Appl. Phys. 116 074109.1Google Scholar

    [39]

    Kachroudi A, Basrour S, Rufer L, Jomni F 2015 J. Phys. Conf. Ser. 660 012040Google Scholar

    [40]

    Sessler G M, Hillenbrand J 1999 Appl. Phys. Lett. 75 3405Google Scholar

    [41]

    Paajanen M, Välimäki H, Lekkala J 2000 J. Electrostat. 48 193Google Scholar

    [42]

    张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪 2014 物理学报 63 157703Google Scholar

    Zhang T L, Huang X, Zheng K, Zhang X W, Wang Y J, Wu L M, Zhang X Q, Zheng J, Zhu B 2014 Acta Phys. Sin. 63 157703Google Scholar

    [43]

    Wegener M, Wirges W, Gerhard-Multhaupt R 2005 Adv. Eng. Mater. 7 1128Google Scholar

    [44]

    Wegener M 2010 Proceedings of SPIE San Diego, California, United States, March 7, 2010 p76441A-1

    [45]

    Mohebbi A, Mighri F, Ajji A, Rodrigue D 2015 Cell. Polym. 34 299Google Scholar

    [46]

    Altafim R A C, Basso H C, Neto L G, Lima L, Altafim R A P, Aquino C V d 2005 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2005. Nashville, TN, USA, October 16−19, 2005 p669

    [47]

    Altafim R A P, Qiu X L, Wirges W, et al. 2009 J. Appl. Phys. 106 014106Google Scholar

    [48]

    Zhang X Q, Hillenbrand J, Sessler G M 2006 Appl. Phys. A 84 139

    [49]

    Zhang X Q, Cao G X, Sun Z L, Xia Z F 2010 J. Appl. Phys. 108 064113Google Scholar

    [50]

    Zhang X Q, Sessler G M, Xue Y, Ma X C 2016 J. Phys. D: Appl. Phys. 49 205502Google Scholar

    [51]

    Zhang X Q, Wang Y J 2014 Proceedings of IEEE 15th International Symposium on Electrets Baltimore, Maryland, USA, August 10−13, 2014 Poster P2.2

    [52]

    Zhang X Q, Pondrom P, Wu L M, Sessler G M 2016 Appl. Phys. Lett. 108 193903Google Scholar

    [53]

    Li Y, Zeng C C 2013 Macromol. Chem. Phys. 214 2733Google Scholar

    [54]

    Kachroudi A, Basrour S, Rufer L, Sylvestre A, Jomni F 2015 Smart Mater. Struct. 24 125013Google Scholar

    [55]

    Kachroudi A, Basrour S, Rufer L, Jomni F 2016 J. Phys. Conf. Ser. 773 012072Google Scholar

    [56]

    Zhong J W, Zhong Q Z, Zang X N, Wu N, Li W B, Chu Y, Lin L W 2017 Nano Energy 37 268Google Scholar

    [57]

    Rychkov D, Altafim R A P, Gerhard R 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Des Moines, IA, USA, October 19−22, 2014 p860

    [58]

    马星晨, 叶瑞丰, 张添乐, 张晓青 2016 物理学报 65 177701Google Scholar

    Ma X C, Ye R F, Zhang T L, Zhang X Q 2016 Acta Phys. Sin. 65 177701Google Scholar

    [59]

    Ma X C, Zhang X Q 2017 Smart Mater. Struct. 26 085001Google Scholar

    [60]

    Hagiwara K, Goto M, Iguchi Y, et al. 2012 IEEE Trans. Dielectr. Electr. Insul. 19 1291Google Scholar

    [61]

    张晓青, 黄金峰, 王飞鹏, 夏钟福 2008 物理学报 57 1902Google Scholar

    Zhang X Q, Huang J F, Wang F P, Xia Z F 2008 Acta Phys. Sin. 57 1902Google Scholar

    [62]

    Zhang X Q, Hillenbrand J, Sessler G M 2004 J. Phys. D: Appl. Phys. 37 2146Google Scholar

    [63]

    Anton S, Farinholt K 2012 Proc. SPIE 8341 14Google Scholar

    [64]

    Pondrom P, Hillenbrand J, Sessler G M, Bös J, Melz T 2014 Appl. Phys. Lett. 104 172901Google Scholar

    [65]

    Pondrom P, Hillenbrand J, Sessler G M, Bös J, Melz T 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1470Google Scholar

    [66]

    Sessler G M, Pondrom P, Zhang X Q 2016 Phase Transitions 89 667Google Scholar

    [67]

    Anton S R, Farinholt K M, Erturk A 2014 J. Intell. Mater. Syst. Struct. 25 1681Google Scholar

    [68]

    Ray C A, Anton S R 2016 J. Intell. Mater. Syst. Struct. 28 408Google Scholar

    [69]

    Zhang X Q, Wu L M, Sessler G M 2015 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM) Singapore, May 24−27, 2015 p24

    [70]

    Ben Dali O, Pondrom P, Sessler G M, Zhukov S, von Seggern H, Zhang X Q, Kupnik M 2020 Appl. Phys. Lett. 116 243901Google Scholar

    [71]

    Li W B, Zhao S, Wu N, et al. 2017 ACS Appl. Mater. Interfaces 9 23716Google Scholar

    [72]

    Yan C, Deng W L, Jin L, Yang T, Wang Z X, Chu X, Su H, Chen J, Yang W Q 2018 ACS Appl. Mater. Interfaces 10 41070Google Scholar

    [73]

    Wu N, Chen S W, Lin S Z, Li W B, Xu Z S, Yuan F, Huang L, Hu B, Zhou J 2018 J. Mater. Chem. A 6 5065Google Scholar

    [74]

    Wu N, Jiang H L, Li W B, Lin S Z, Zhong J W, Yuan F, Huang L, Hu B, Zhou J 2017 J. Mater. Chem. A 5 12787Google Scholar

    [75]

    Tajitsu Y, Takarada J, Hiramoto M, et al. 2019 Jpn. J. Appl. Phys. 58 SLLD05Google Scholar

    [76]

    Xue Y, Zhang X Q, Zheng J, Liu T, Zhu B 2018 IEEE Trans. Dielectr. Electr. Insul. 25 228Google Scholar

    [77]

    Xue Y, Zhao J F, Zhang X Q, Sessler G M, Kupnik M 2019 Phys. Scr. 94 095002Google Scholar

    [78]

    eTouch http://etouchcn.com/ [2020-7-15]

    [79]

    Hillenbrand J, Sessler G M 2004 J. Acoust. Soc. Am. 116 3267Google Scholar

    [80]

    Eimfit https://www.emfit.com/active-life-sleep-and-recovery [2020-7-15]

    [81]

    B-Band http://www.b-band.net.cn/ [2020-7-15]

    [82]

    Screentec https://www.screentec.com/ [2020-7-15]

    [83]

    Panphonics https://panphonics.com/ [2020-7-15]

    [84]

    Fang P, Wegener M, Wirges W, Gerhard R, Zirkel L 2007 Appl. Phys. Lett. 90 192908Google Scholar

    [85]

    吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 物理学报 67 207701Google Scholar

    Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar

  • [1] 王新宇, 王艺霖, 石虔韩, 汪庆龙, 于洪洋, 金园园, 李松. SbS电子基态及激发态势能曲线和振动能级的理论研究. 物理学报, 2022, 71(2): 023101. doi: 10.7498/aps.71.20211441
    [2] 陈延辉, 谢伟博, 代克杰, 高玲肖, 卢山, 陈鑫, 李宇航, 牟笑静. 非谐振式低频电磁-摩擦电复合振动能收集器. 物理学报, 2020, 69(20): 208402. doi: 10.7498/aps.69.20200793
    [3] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [4] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [5] 秦立振, 张振宇, 张坤, 丁建桥, 段智勇, 苏宇锋. 抗磁悬浮振动能量采集器动力学响应的仿真分析. 物理学报, 2018, 67(1): 018501. doi: 10.7498/aps.67.20171551
    [6] 代显智, 刘小亚, 陈蕾. 一种采用双换能器和摆式结构的宽频振动能量采集器. 物理学报, 2016, 65(13): 130701. doi: 10.7498/aps.65.130701
    [7] 马星晨, 叶瑞丰, 张添乐, 张晓青. 基于单极性驻极体薄膜的振动能俘获研究. 物理学报, 2016, 65(17): 177701. doi: 10.7498/aps.65.177701
    [8] 武丽明, 张晓青. 交联聚丙烯压电驻极体的压电性能及振动能量采集研究. 物理学报, 2015, 64(17): 177701. doi: 10.7498/aps.64.177701
    [9] 唐炜, 王小璞, 曹景军. 非线性磁式压电振动能量采集系统建模与分析. 物理学报, 2014, 63(24): 240504. doi: 10.7498/aps.63.240504
    [10] 陈恒杰. LiAl分子基态、激发态势能曲线和振动能级. 物理学报, 2013, 62(8): 083301. doi: 10.7498/aps.62.083301
    [11] 田寅, 冯灏, 孙卫国. 碱金属双原子分子部分电子态的完全振动能谱和离解能. 物理学报, 2011, 60(2): 023301. doi: 10.7498/aps.60.023301
    [12] 陈仲生, 杨拥民. 悬臂梁压电振子宽带低频振动能量俘获的随机共振机理研究. 物理学报, 2011, 60(7): 074301. doi: 10.7498/aps.60.074301
    [13] 张亮, 张立凤, 吴海燕, 李刚. 正压Rossby波扰动能量. 物理学报, 2010, 59(1): 44-53. doi: 10.7498/aps.59.44
    [14] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [15] 刘 艳, 任维义, 王阿署, 刘松红. 分子部分电子态的高阶振动能级和离解能的精确研究. 物理学报, 2008, 57(3): 1599-1607. doi: 10.7498/aps.57.1599
    [16] 汪 华, 刘世林, 刘 杰, 王凤燕, 姜 波, 杨学明. N2O+离子A2Σ+电子态高振动能级的转动结构分析. 物理学报, 2008, 57(2): 796-802. doi: 10.7498/aps.57.796
    [17] 侯喜文, 谢汨, 马中骐. 费密共振和甲烷的振动能谱. 物理学报, 1997, 46(6): 1073-1078. doi: 10.7498/aps.46.1073
    [18] 庞小峰. 水的非线性振动能谱的自陷理论计算. 物理学报, 1994, 43(12): 1987-1996. doi: 10.7498/aps.43.1987
    [19] 向天翔, 孙胜, 龚顺生, 王嘉铭. 态—态振动能量跃迁的时间分辨研究(Ⅰ)——碘分子的自碰撞过程. 物理学报, 1990, 39(10): 1547-1554. doi: 10.7498/aps.39.1547
    [20] 高文斌, 沈玉其, J. H?GER, W. KRIEGER. 激光诱导荧光法研究CH2Cl2分子的振动能量转移. 物理学报, 1985, 34(10): 1261-1269. doi: 10.7498/aps.34.1261
计量
  • 文章访问数:  8884
  • PDF下载量:  291
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-29
  • 修回日期:  2020-06-26
  • 上网日期:  2020-12-03
  • 刊出日期:  2020-12-20

/

返回文章
返回