搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外延应变和铁电极化双重调控LaMnO3/BaTiO3超晶格的磁性

陈东 余本海

引用本文:
Citation:

外延应变和铁电极化双重调控LaMnO3/BaTiO3超晶格的磁性

陈东, 余本海

Dual control of magnetism in LaMnO3/BaTiO3 superlattice by epitaxial strain and ferroelectric polarization

Chen Dong, Yu Ben-Hai
PDF
HTML
导出引用
  • 对钙钛矿锰氧化物的磁性进行调控在科学上具有重要意义, 在自旋电子学领域更是有紧迫需求. 利用外延应变和铁电极化双重调控超晶格材料的磁性不但更加接近体系的真实状态, 而且能诱导出丰富的物理性质. 本文采用第一性原理计算, 系统地研究了外延应变和铁电极化对LaMnO3/BaTiO3超晶格磁性的鲁棒控制. 通过精确调控Mn原子磁矩的大小和方向, 实现了铁磁$\leftrightarrow$反铁磁$\leftrightarrow$亚铁磁之间的可逆转变, 同时产生了强烈的磁电耦合效应. 除此之外, 本文在超晶格中实现了铁电极化和金属性共存. 通过分析Jahn-Teller效应, 氧八面体旋转、倾斜以及体系内部电子转移对磁性的影响, 揭示了磁性调控的物理机制. 研究结果不但对系统地了解LaMnO3体系的磁性变化具有重要意义, 而且可以为设计基于钙钛矿锰氧化物的自旋电子器件提供理论指导.
    The controlling of magnetism of perovskite oxides is scientifically interesting and technically important for numerous functionalities in spintronic devices and next-generation magnetic memories. The experimenally prepared superlattices often contain strain, polarization, oxygen vacancy and other factors, which can affect their magnetic properties. The magnetism of superlattice materials, controlled by using both epitaxial strain and ferroelectric polarization, is not only close to the real state of the material, but also can induce rich physical properties. In this work, we demonstrate a strong magnetoelectric coupling that appears in the LaMnO3/ BaTiO3 superlattice. First-principles calculations reveal that the reversible transitions among ferromagnetism, ferrimagnetism and anti-ferromagnetism are achieved by precisely controlling the magnitude and spin-direction of the magnetic moments of the Mn ions. A maximal change can be achieved to be 100.1% of the net magnetization by switching the ferroelectric polarization, which is much higher than the previous value 93.9%. The half-metallicity is demonstrated in the MnO2 layer, and accompanied by the spin polarization of the superlattice varying from 100% to 0. In addition, we realize the coexistence of ferroelectric polarization and metallicity, i.e. “ferroelectric metal”. Neither of the strong covalent Mn—O bond and La—O bond acts as an obstacle that prevents the ferroelectric polarization from penetrating the LMO layer. The Jahn-Teller effect, the tilt and rotation of oxygen octahedron, and the charge transfer of the superlattice are systemically analyzed. The variation of strain and re-orientation of polarization lead the electrons to transfer between the eg and t2g orbitals of Mn, which determines the magnetism of our system. Our purpose-designed LMO/BTO superlattice with robust intrinsic magnetoelectric coupling is a particularly interesting model system that can provide guidance for developing the spintronics for future applications.
      通信作者: 陈东, chchendong2010@163.com
    • 基金项目: 国家自然科学基金(批准号: 61475132)和河南省高等学校重点科研项目(批准号: 16A140033)资助的课题
      Corresponding author: Chen Dong, chchendong2010@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61475132) and the Key Projects of the Higher Education Institutions of Henan Province (Grant No. 16A140033)
    [1]

    Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046Google Scholar

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519Google Scholar

    [3]

    王春雷, 易晓磊, 姚超, 张谦君, 林鹤, 王栋梁, 马衍伟 2015 物理学报 64 117401Google Scholar

    Wang C L, Yi X L, Yao C, Zhang Q J, Lin H, Wang D L, Ma Y W 2015 Acta Phys. Sin. 64 117401Google Scholar

    [4]

    Yin H, Liu C, Zheng G P, Wang Y, Ren F 2019 Appl. Phys. Lett. 114 192903Google Scholar

    [5]

    Dong S, Yamauchi K, Yunoki S, et al. 2009 Phys. Rev. Lett. 103 127201Google Scholar

    [6]

    Zhou P X, Dong S, Liu H M, Ma C Y, Yan Z B, Zhong C G, Liu J M 2015 Sci. Rep. 5 13052Google Scholar

    [7]

    Feng M H, You S, Cheng N, Du J H 2019 Electrochim. Acta 293 356Google Scholar

    [8]

    Sun Z Z, Feng S, Gu C, Cheng N, Liu J 2019 Phys. Chem. Chem. Phys. 21 15206Google Scholar

    [9]

    Chen M, Zha R H, Yuan Z Y, et al. 2017 Chem. Eng. J. 313 791Google Scholar

    [10]

    倪利红 2012 博士学位论文 (杭州: 浙江大学)

    Ni L H 2012 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [11]

    Zhou Y J, Rabe K M 2013 Phys. Rev. B 88 094416Google Scholar

    [12]

    Zhong C, Lu X, Wan Y, Min Y, Zhao Z, Zhou P, Dong Z, Liu J 2018 J. Magn. Magn. Mater. 466 406Google Scholar

    [13]

    Renshaw Wang X, Li C J, et al. 2015 Science 349 716Google Scholar

    [14]

    Burton J D, Tsymbal E Y 2009 Phys. Rev. B 80 174406Google Scholar

    [15]

    Dong S, Dagotto E 2013 Phys. Rev. B 88 140404RGoogle Scholar

    [16]

    Cui B, Song C, Mao H, Wu H, Li F, Peng J, Wang G, Zeng F, Pan F 2015 Adv. Mater. 27 6651Google Scholar

    [17]

    Mishina E D, Buryakov A M, Sherstyuk N E, Sigov A S, Rasing T 2016 Ferroelectrics 500 37Google Scholar

    [18]

    Weng Y K, Huang X, Yao Y G, Dong S 2015 Phys. Rev. B 92 195114Google Scholar

    [19]

    Chen L Y, Chen C L, Jin K X, Wu T 2014 J. Appl. Phys. 116 074102Google Scholar

    [20]

    Lysogorskii Y V, Piyanzina I I, Lenotyev A V, et al. 2019 Ferroelectrics 541 74Google Scholar

    [21]

    Chen D, Zhang G B, Cheng Z X, Dong S, Wang Y X 2019 IUCrJ 6 189Google Scholar

    [22]

    Weng Y K, Lin L F, Dagotto E, Dong S 2016 Phys. Rev. Lett. 117 037601Google Scholar

    [23]

    Callori S J, Gabel J, Su D, Sinsheimer J, Fernandez-Serra M V, Dawber M 2012 Phys. Rev. Lett. 109 067601Google Scholar

    [24]

    Zhou P X, Liu H M, Yan Z B, Dong S, Liu J M 2014 J. Appl. Phys. 115 17D710Google Scholar

    [25]

    Wei L Y, Lian C, Meng S 2017 Phys. Rev. B 95 184102Google Scholar

    [26]

    Cheng X R, Shen M R 2007 Solid State Commun. 141 587Google Scholar

    [27]

    Zhang H M, Weng Y K, Yao Y X, Dong S 2015 Phys. Rev. B 91 195145Google Scholar

    [28]

    赵润, 杨浩 2018 物理学报 67 156101Google Scholar

    Zhao R, Yang H 2018 Acta Phys. Sin. 67 156101Google Scholar

    [29]

    Sheng J M, Kan X C, Ge H, et al. 2020 Chin. Phys. B 29 057503Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467Google Scholar

    [32]

    Lee J H, Delaney K T, Bousquet E, Spaldin N A, Rabe K M 2013 Phys. Rev. B 88 174426Google Scholar

    [33]

    Broyden C G 1969 AMS Notices 16 670Google Scholar

    [34]

    Ciucivara A, Sahu B, Kleinman L 2008 Phys. Rev. B 77 092407Google Scholar

    [35]

    Hashimoto T, Ishibashi S, Terakura K 2010 Phys. Rev. B 82 045124Google Scholar

    [36]

    Betancourt J, Paudel T R, Tsymbal E Y, Velev J P 2017 Phys. Rev. B 96 045113Google Scholar

    [37]

    He J, Borisevich A, Kalinin S V, Pennycook S J, Pantelides S T 2010 Phys. Rev. Lett. 105 227203Google Scholar

    [38]

    Sun W, Wang W X, Chen D, Cheng Z X, Wang Y X 2019 Nanoscale 11 9931Google Scholar

    [39]

    An M, Weng Y K, Zhang H M, Zhang J J, Zhang Y, Dong S 2017 Phys. Rev. B 96 235112Google Scholar

    [40]

    Aruta C, Adamo C, Galdi A, et al. 2009 Phys. Rev. B 80 140405RGoogle Scholar

    [41]

    Song G, Zhang W Y 2014 Sci. Rep. 4 4564Google Scholar

    [42]

    Liu C, Wang W H, Gong S, Zhang H B, Guo W 2017 Sci. Rep. 7 3856Google Scholar

    [43]

    Lee J, Sai N, Cai T, Niu Q, Demkov A A 2010 Phys. Rev. B 81 144425Google Scholar

  • 图 1  LaMnO3/BaTiO3超晶格的结构示意图(± P铁电极化的方向如箭头所示)

    Fig. 1.  Schematic structure of the LaMnO3/BaTiO3 superlattice. (The arrows denote the directions of ferroelectric polarization).

    图 2  (a)−(n) LaMnO3/BaTiO3超晶格的磁序随着外延应变(–3%−3%)和极化方向的变化示意图 (蓝色代表自旋向上的Mn原子, 红色代表自旋向下的Mn原子); (o) 不同应变对应的最稳定结构的能量

    Fig. 2.  (a)−(n) Schematic diagram of the magnetic configuration variation with the epitaxial strain (–3%−3%) and the direction of ferroelectric polarization in the LaMnO3/BaTiO3 superlattices (The blue and red balls represent the spin-up and spin-down Mn atoms, respectively); (o) the total energies of the ground-state superlattices under different strains.

    图 3  LaMnO3/BaTiO3超晶格的态密度: (a)–P极化和–3%外延应变时的总态密度和BaTiO3层的分层态密度; (b) +P极化和–3%外延应变时的总态密度和BaTiO3层的分层态密度; (c)–P极化和–3%外延应变以及(d) +P极化和–3%外延应变时的LaMnO3层的分层态密度和Mn原子的eg/t2g轨道的态密度

    Fig. 3.  The total density of states (TDOS) and layer-resolved DOS of the BaTiO3 part of the LaMnO3/BaTiO3 superlattice: (a) for the –P case with –3% epitaxial strain; (b) for the +P case with –3% strain. The Mn-eg/t2g DOS and the layer-resolved DOS of the LaMnO3 part (c) for the –P case with –3% epitaxial strain; (d) for the +P case with –3% strain.

    图 4  LaMnO3/BaTiO3超晶格的态密度: (a) –P极化和3%外延应变时的总态密度和BaTiO3层的分层态密度; (b) +P极化和3%外延应变时的总态密度和BaTiO3层的分层态密度; (c) –P极化和3%外延应变以及(d) +P极化和3%外延应变时的LaMnO3层的分层态密度和Mn原子的eg/t2g轨道的态密度

    Fig. 4.  The total density of states (TDOS) and layer-resolved DOS of the BaTiO3 part of the LaMnO3/BaTiO3 superlattice: (a) for the –P case with 3% epitaxial strain; (b) for the +P case with 3% strain. The Mn-eg/t2 g DOS and the layer-resolved DOS of the LaMnO3 part (c) for the –P case with 3% strain; (d) for the +P case with 3% strain.

    图 5  LaMnO3/BaTiO3超晶格在 (a) –P极化和–3%外延应变; (b) –P极化和3%外延应变; (c) +P极化和–3%外延应变和(d) +P极化和3%外延应变条件下的差分电荷密度图(等值面的数值为0.01 e/bohr3)

    Fig. 5.  Charge density difference of the LaMnO3/BaTiO3 superlattices for the (a) –P polarization and –3% epitaxial strain; (b) –P polarization and 3% strain; (c) +P polarization and –3% strain; and (d) +P polarization and 3% strain. The isosurface value is set to be 0.01 e/bohr3.

    表 1  计算得到的LaMnO3/BaTiO3超晶格的基态性质: m1m2 (μB)是Mn原子的平均磁矩, M (μB)是超晶格的净磁化强度, 导电性, LaMnO3层的Jahn-Teller畸变Q2, Q3(nm), 氧八面体倾斜角θ和旋转角φ

    Table 1.  The calculated ground-state properties of the LaMnO3/BaTiO3 superlattice at different strains: m1 and m2 (μB) are the local magnetic moment for the Mn atoms, M (μB) is the net magnetization, the conductivity, the Jahn-Teller distortions Q2, Q3 (nm), the octahedral tilt angle θ and rotation angle φ (degree) of the LaMnO3 layers.

    应变极化磁序m1m2M导电性θ1θ2φ1φ2Q2Q3
    +FM3.563.5614.65金属5.76.64.45.30.00150.0259
    FiM23.38–3.766.41金属6.57.85.17.10.00170.0172
    +FiM23.41–3.866.34金属7.28.24.56.90.00160.0198
    FM3.593.5914.76金属7.58.75.37.80.00260.0199
    +FiM13.60–3.726.78金属8.810.03.96.90.00190.0229
    FiM33.55–3.597.20半金属9.310.44.15.8–0.00070.0347
    0+A-AFM3.24–3.55金属1.71.211.71.20.00100.0139
    0FM3.673.6715.28半金属7.19.19.30.80.00470.0042
    1%+A-AFM3.66–3.68金属9.39.97.56.40.04490.0272
    1%A-AFM3.46–3.92半金属11.512.44.48.00.00710.0286
    2%+G-AFM3.31–3.95绝缘体11.911.16.17.00.05070.0165
    2%FiM4-3.783.667.24半金属12.511.13.38.80.00130.0114
    3%+A-AFM3.71–3.72绝缘体12.212.26.37.4–1.03080.0967
    3%FM3.753.7515.17半金属13.713.35.08.90.02080.0324
    下载: 导出CSV

    表 2  不同外延应变和极化条件下LaMnO3/BaTiO3超晶格的Mn-3d轨道(含eg和t2g)的电子数

    Table 2.  Number of electrons for the Mn-3d orbitals (both eg and t2g) in the LaMnO3/BaTiO3 superlattice at different conditions.

    应变极化磁序eg轨道t2g轨道3d轨道
    –3%PFiM21.773.154.92
    +PFM1.683.264.94
    0PFM1.913.034.94
    +PA-AFM1.753.164.91
    3%PFM1.803.024.81
    +PA-AFM1.603.264.87
    下载: 导出CSV
  • [1]

    Fiebig M, Lottermoser T, Meier D, Trassin M 2016 Nat. Rev. Mater. 1 16046Google Scholar

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519Google Scholar

    [3]

    王春雷, 易晓磊, 姚超, 张谦君, 林鹤, 王栋梁, 马衍伟 2015 物理学报 64 117401Google Scholar

    Wang C L, Yi X L, Yao C, Zhang Q J, Lin H, Wang D L, Ma Y W 2015 Acta Phys. Sin. 64 117401Google Scholar

    [4]

    Yin H, Liu C, Zheng G P, Wang Y, Ren F 2019 Appl. Phys. Lett. 114 192903Google Scholar

    [5]

    Dong S, Yamauchi K, Yunoki S, et al. 2009 Phys. Rev. Lett. 103 127201Google Scholar

    [6]

    Zhou P X, Dong S, Liu H M, Ma C Y, Yan Z B, Zhong C G, Liu J M 2015 Sci. Rep. 5 13052Google Scholar

    [7]

    Feng M H, You S, Cheng N, Du J H 2019 Electrochim. Acta 293 356Google Scholar

    [8]

    Sun Z Z, Feng S, Gu C, Cheng N, Liu J 2019 Phys. Chem. Chem. Phys. 21 15206Google Scholar

    [9]

    Chen M, Zha R H, Yuan Z Y, et al. 2017 Chem. Eng. J. 313 791Google Scholar

    [10]

    倪利红 2012 博士学位论文 (杭州: 浙江大学)

    Ni L H 2012 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese)

    [11]

    Zhou Y J, Rabe K M 2013 Phys. Rev. B 88 094416Google Scholar

    [12]

    Zhong C, Lu X, Wan Y, Min Y, Zhao Z, Zhou P, Dong Z, Liu J 2018 J. Magn. Magn. Mater. 466 406Google Scholar

    [13]

    Renshaw Wang X, Li C J, et al. 2015 Science 349 716Google Scholar

    [14]

    Burton J D, Tsymbal E Y 2009 Phys. Rev. B 80 174406Google Scholar

    [15]

    Dong S, Dagotto E 2013 Phys. Rev. B 88 140404RGoogle Scholar

    [16]

    Cui B, Song C, Mao H, Wu H, Li F, Peng J, Wang G, Zeng F, Pan F 2015 Adv. Mater. 27 6651Google Scholar

    [17]

    Mishina E D, Buryakov A M, Sherstyuk N E, Sigov A S, Rasing T 2016 Ferroelectrics 500 37Google Scholar

    [18]

    Weng Y K, Huang X, Yao Y G, Dong S 2015 Phys. Rev. B 92 195114Google Scholar

    [19]

    Chen L Y, Chen C L, Jin K X, Wu T 2014 J. Appl. Phys. 116 074102Google Scholar

    [20]

    Lysogorskii Y V, Piyanzina I I, Lenotyev A V, et al. 2019 Ferroelectrics 541 74Google Scholar

    [21]

    Chen D, Zhang G B, Cheng Z X, Dong S, Wang Y X 2019 IUCrJ 6 189Google Scholar

    [22]

    Weng Y K, Lin L F, Dagotto E, Dong S 2016 Phys. Rev. Lett. 117 037601Google Scholar

    [23]

    Callori S J, Gabel J, Su D, Sinsheimer J, Fernandez-Serra M V, Dawber M 2012 Phys. Rev. Lett. 109 067601Google Scholar

    [24]

    Zhou P X, Liu H M, Yan Z B, Dong S, Liu J M 2014 J. Appl. Phys. 115 17D710Google Scholar

    [25]

    Wei L Y, Lian C, Meng S 2017 Phys. Rev. B 95 184102Google Scholar

    [26]

    Cheng X R, Shen M R 2007 Solid State Commun. 141 587Google Scholar

    [27]

    Zhang H M, Weng Y K, Yao Y X, Dong S 2015 Phys. Rev. B 91 195145Google Scholar

    [28]

    赵润, 杨浩 2018 物理学报 67 156101Google Scholar

    Zhao R, Yang H 2018 Acta Phys. Sin. 67 156101Google Scholar

    [29]

    Sheng J M, Kan X C, Ge H, et al. 2020 Chin. Phys. B 29 057503Google Scholar

    [30]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [31]

    Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467Google Scholar

    [32]

    Lee J H, Delaney K T, Bousquet E, Spaldin N A, Rabe K M 2013 Phys. Rev. B 88 174426Google Scholar

    [33]

    Broyden C G 1969 AMS Notices 16 670Google Scholar

    [34]

    Ciucivara A, Sahu B, Kleinman L 2008 Phys. Rev. B 77 092407Google Scholar

    [35]

    Hashimoto T, Ishibashi S, Terakura K 2010 Phys. Rev. B 82 045124Google Scholar

    [36]

    Betancourt J, Paudel T R, Tsymbal E Y, Velev J P 2017 Phys. Rev. B 96 045113Google Scholar

    [37]

    He J, Borisevich A, Kalinin S V, Pennycook S J, Pantelides S T 2010 Phys. Rev. Lett. 105 227203Google Scholar

    [38]

    Sun W, Wang W X, Chen D, Cheng Z X, Wang Y X 2019 Nanoscale 11 9931Google Scholar

    [39]

    An M, Weng Y K, Zhang H M, Zhang J J, Zhang Y, Dong S 2017 Phys. Rev. B 96 235112Google Scholar

    [40]

    Aruta C, Adamo C, Galdi A, et al. 2009 Phys. Rev. B 80 140405RGoogle Scholar

    [41]

    Song G, Zhang W Y 2014 Sci. Rep. 4 4564Google Scholar

    [42]

    Liu C, Wang W H, Gong S, Zhang H B, Guo W 2017 Sci. Rep. 7 3856Google Scholar

    [43]

    Lee J, Sai N, Cai T, Niu Q, Demkov A A 2010 Phys. Rev. B 81 144425Google Scholar

  • [1] 张江林, 王仲民, 王殿辉, 胡朝浩, 王凤, 甘伟江, 林振琨. V/Pd界面氢吸附扩散行为的第一性原理研究. 物理学报, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [2] 孙士阳, 迟中波, 徐平平, 安泽宇, 张俊皓, 谭心, 任元. 金刚石(111)/Al界面形成及性能的第一性原理研究. 物理学报, 2021, 70(18): 188101. doi: 10.7498/aps.70.20210572
    [3] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究. 物理学报, 2017, 66(6): 067202. doi: 10.7498/aps.66.067202
    [4] 林俏露, 李公平, 许楠楠, 刘欢, 王苍龙. 金红石TiO2本征缺陷磁性的第一性原理计算. 物理学报, 2017, 66(3): 037101. doi: 10.7498/aps.66.037101
    [5] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [6] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响. 物理学报, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [7] 颜送灵, 唐黎明, 赵宇清. 不同组分厚度比的LaMnO3/SrTiO3异质界面电子结构和磁性的第一性原理研究. 物理学报, 2016, 65(7): 077301. doi: 10.7498/aps.65.077301
    [8] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究. 物理学报, 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [9] 侯清玉, 赵春旺. 第一性原理研究钨掺杂对锐钛矿物性的影响. 物理学报, 2015, 64(24): 247201. doi: 10.7498/aps.64.247201
    [10] 饶雪, 王如志, 曹觉先, 严辉. 掺杂GaN/AlN超晶格第一性原理计算研究. 物理学报, 2015, 64(10): 107303. doi: 10.7498/aps.64.107303
    [11] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [12] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [13] 卢金炼, 曹觉先. 单个钛原子储氢能力和储氢机制的第一性原理研究. 物理学报, 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [14] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [15] 肖振林, 史力斌. 利用第一性原理研究Ni掺杂ZnO铁磁性起源. 物理学报, 2011, 60(2): 027502. doi: 10.7498/aps.60.027502
    [16] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [17] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [18] 林竹, 郭志友, 毕艳军, 董玉成. Cu掺杂的AlN铁磁性和光学性质的第一性原理研究. 物理学报, 2009, 58(3): 1917-1923. doi: 10.7498/aps.58.1917
    [19] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [20] 童六牛, 何贤美, 鹿 牧. 真空退火对周期性界面掺杂Ni80Co20薄膜磁性的影响. 物理学报, 2000, 49(11): 2290-2295. doi: 10.7498/aps.49.2290
计量
  • 文章访问数:  6567
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-03
  • 修回日期:  2020-07-20
  • 上网日期:  2020-11-14
  • 刊出日期:  2020-11-20

/

返回文章
返回