-
可拉伸超级电容器因在可穿戴电子和健康监测等领域的潜在应用而受到人们的广泛关注, 它不但具备普通超级电容器功率密度高、循环寿命长、安全、成本低等优点, 而且良好的柔软性和可拉伸性使其能够很好地与可穿戴系统进行集成. 本文对已有文献中可拉伸电极/器件的制备方法进行归类、分析, 详细总结了可拉伸电极/器件的三种制备方法, 即弹性聚合物基底、可拉伸结构设计以及弹性聚合物和可拉伸结构结合; 另外, 还介绍了多功能可拉伸超级电容器和高弹性凝胶电解质的研究进展; 最后, 分析总结了可拉伸超级电容器未来发展中仍需面临的一些挑战. 期望能够激发更多的研究创造以推动可拉伸超级电容器的实际应用.Stretchable supercapacitors have received more and more attention due to their potential applications in wearable electronics and health monitoring. The stretchable supercapacitors have not only the advantages of high power density, long cycle life, safety and low cost of ordinary supercapacitor, but also good flexibility and stretchability to integrate well with wearable system. In this review, according to the structures of supercapacitors, the methods of preparing stretchable electrodes/devices reported in the literature are categorized and analyzed. We particularly highlight the key findings of creating stretchable electrodes/devices, which include elastic polymer substrates, tensile structure design and elastic polymer + tensile structure. In addition, the research progress of multi-functional stretchable supercapacitors and high elastic gel electrolytes are discussed. Finally, the challenges to the future development of the stretchable supercapacitors are analyzed and summarized. We expect to stimulate more research in creating stretchable supercapacitors for wide practical applications.
-
Keywords:
- supercapacitor /
- stretchable /
- electrode /
- electrolyte
[1] Wang X, Liu Z, Zhang T 2017 Small 13 1602790Google Scholar
[2] Heo J S, Eom J, Kim Y H, Park S K 2018 Small 14 1703034Google Scholar
[3] Weng W, Chen P, He S, Sun X, Peng H 2016 Angew. Chem. Int. Ed. 55 6140Google Scholar
[4] Wu X, Peng H 2019 Sci. Bull. 64 634Google Scholar
[5] Jung S, Lee J, Hyeon T, Lee M, Kim D H 2014 Adv. Mater. 26 6329Google Scholar
[6] Zhai S, Karahan H E, Wei L, Qian Q, Harris A T, Minett A I, Ramakrishna S, Ng A K, Chen Y 2016 Energy Storage Mater. 3 123Google Scholar
[7] Chen X, Villa N S, Zhuang Y, Chen L, Wang T, Li Z, Kong T 2019 Adv. Energy Mater. 10 1902769Google Scholar
[8] Huang Y, Zhi C 2017 J. Phys. D: Appl. Phys. 50 273001Google Scholar
[9] Wang Y, Ding Y, Guo X, Yu G 2019 Nano Res. 12 1978Google Scholar
[10] Shao Y, El Kady M F, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner R B 2018 Chem. Rev. 118 9233Google Scholar
[11] Wang K, Wu H, Meng Y, Wei Z 2014 Small 10 14Google Scholar
[12] Wang Y, Song Y, Xia Y 2016 Chem. Soc. Rev. 45 5925Google Scholar
[13] Lu X, Yu M, Wang G, Tong Y, Li Y 2014 Energy Environ. Sci. 7 2160Google Scholar
[14] Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen Z X 2018 Adv. Sci. 5 1700322Google Scholar
[15] An T, Cheng W 2018 J. Mater. Chem. A 6 15478Google Scholar
[16] Wen L, Li F, Cheng H M 2016 Adv. Mater. 28 4306Google Scholar
[17] Liu L, Yu Y, Yan C, Li K, Zheng Z 2015 Nat. Commun. 6 7260Google Scholar
[18] Molina J, Fernández J, Inés J C, del Río A I, Bonastre J, Cases F 2013 Electrochim. Acta 93 44Google Scholar
[19] Sun H, Xie S, Li Y, Jiang Y, Sun X, Wang B, Peng H 2016 Adv. Mater. 28 8431Google Scholar
[20] Yang Y, Huang Q, Niu L, Wang D, Yan C, She Y, Zheng Z 2017 Adv. Mater. 29 1606679Google Scholar
[21] Zhang Z, Wang L, Li Y, Wang Y, Zhang J, Guan G, Pan Z, Zheng G, Peng H 2017 Adv. Energy Mater. 7 1601814Google Scholar
[22] Wang C, Hu K, Li W, Wang H, Li H, Zou Y, Zhao C, Li Z, Yu M, Tan P, Li Z 2018 ACS Appl. Mater. Interfaces 10 34302Google Scholar
[23] Jost K, Stenger D, Perez C R, McDonough J K, Lian K, Gogotsi Y, Dion G 2013 Energy Environ. Sci. 6 2698Google Scholar
[24] Cao J, Li X, Wang Y, Walsh F C, Ouyang J, Jia D, Zhou Y 2015 J. Power Sources 293 657Google Scholar
[25] Zhi M, Xiang C, Li J, Li M, Wu N 2013 Nanoscale 5 72Google Scholar
[26] Gao Y P, Huang K J 2017 Chem. Asian J. 12 1969Google Scholar
[27] Yu D, Qian Q, Wei L, Jiang W, Goh K, Wei J, Zhang J, Chen Y 2015 Chem. Soc. Rev. 44 647Google Scholar
[28] Zeng W, Zhang G, Wu X, Zhang K, Zhang H, Hou S, Li C, Wang T, Duan H 2015 J. Mater. Chem. A 3 24033Google Scholar
[29] Huang Y, Huang Y, Meng W, Zhu M, Xue H, Lee C, Zhi C 2015 ACS Appl. Mater. Interfaces 7 2569Google Scholar
[30] Gong W, Fugetsu B, Wang Z, Sakata I, Su L, Zhang X, Ogata H, Li M, Wang C, Li J, Ortiz Medina J, Terrones M, Endo M 2018 Comm. Chem. 1 16 Google Scholar
[31] Nie W, Liu L, Li Q, Zhang S, Hu J, Yang X, Ding X 2019 RSC Adv. 9 19180Google Scholar
[32] Xinping H, Bo G, Guibao W, Jiatong W, Chun Z 2013 Electrochim. Acta 111 210Google Scholar
[33] Liu X, Wu Z, Yin Y 2017 Chem. Eng. J. 323 330Google Scholar
[34] Wang X, Yan C, Yan J, Sumboja A, Lee P S 2015 Nano Energy 11 765Google Scholar
[35] Lamberti A, Clerici F, Fontana M, Scaltrito L 2016 Adv. Energy Mater. 6 1600050Google Scholar
[36] Qi R, Nie J, Liu M, Xia M, Lu X 2018 Nanoscale 10 7719Google Scholar
[37] Yue B, Wang C, Ding X, Wallace G G 2012 Electrochim. Acta 68 18Google Scholar
[38] Ding Y, Xu W, Wang W, Fong H, Zhu Z 2017 ACS Appl. Mater. Interfaces 9 30014Google Scholar
[39] He Z, Zhou G, Byun J H, Lee S K, Um M K, Park B, Kim T, Lee S B, Chou T W 2019 Nanoscale 11 5884Google Scholar
[40] Souri H, Bhattacharyya D 2018 ACS Appl. Mater. Interfaces 10 20845Google Scholar
[41] Chu X, Zhang H, Su H, Liu F, Gu B, Huang H, Zhang H, Deng W, Zheng X, Yang W 2018 Chem. Eng. J. 349 168Google Scholar
[42] Shang Y, Wang C, He X, Li J, Peng Q, Shi E, Wang R, Du S, Cao A, Li Y 2015 Nano Energy 12 401Google Scholar
[43] Chen C, Cao J, Wang X, Lu Q, Han M, Wang Q, Dai H, Niu Z, Chen J, Xie S 2017 Nano Energy 42 187Google Scholar
[44] Pu J, Wang X, Xu R, Komvopoulos K 2016 ACS Nano 10 9306Google Scholar
[45] He S, Qiu L, Wang L, Cao J, Xie S, Gao Q, Zhang Z, Zhang J, Wang B, Peng H 2016 J. Mater. Chem. A 4 14968Google Scholar
[46] Huang Y, Tao J, Meng W, Zhu M, Huang Y, Fu Y, Gao Y, Zhi C 2015 Nano Energy 11 518Google Scholar
[47] Lv J, Jeerapan I, Tehrani F, Yin L, Silva-Lopez C A, Jang J H, Joshuia D, Shah R, Liang Y, Xie L, Soto F, Chen C, Karshalev E, Kong C, Yang Z, Wang J 2018 Energy Environ. Sci. 11 3431Google Scholar
[48] Zhang Y, Wang S, Li X, Fan J A, Xu S, Song Y M, Choi K J, Yeo W H, Lee W, Nazaar S N, Lu B, Yin L, Hwang K C, Rogers J A, Huang Y 2014 Adv. Funct.Mater. 24 2028Google Scholar
[49] Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y, Su J, Zhang H, Cheng H, Lu B, Yu C, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y, Paik U, Rogers J A 2013 Nat. Commun. 4 1543Google Scholar
[50] Gilshteyn E P, Kallio T, Kanninen P, Fedorovskaya E O, Anisimov A S, Nasibulin A G 2016 RSC Adv. 6 93915Google Scholar
[51] Gilshteyn E P, Amanbayev D, Anisimov A S, Kallio T, Nasibulin A G 2017 Sci. Rep. 7 17449Google Scholar
[52] Yoon J, Lee J, Hur J 2018 Nanomaterials 8 541Google Scholar
[53] Zhu Y, Li N, Lv T, Yao Y, Peng H, Shi J, Cao S, Chen T 2018 J. Mater. Chem. A 6 941Google Scholar
[54] Lee J H, Jeong Y R, Lee G, Jin S W, Lee Y H, Hong S Y, Park H, Kim J W, Lee S S, Ha J S 2018 ACS Appl. Mater. Interfaces 10 28027Google Scholar
[55] Yang Z, Deng J, Chen X, Ren J, Peng H 2013 Angew. Chem. Int. Ed. 52 13453Google Scholar
[56] Wang X, Yang C, Jin J, Li X, Cheng Q, Wang G 2018 J. Mater. Chem. A 6 4432Google Scholar
[57] Li L, Lou Z, Han W, Chen D, Jiang K, Shen G 2017 Adv. Mater. Tech. 2 1600282Google Scholar
[58] Shi M, Yang C, Song X, Liu J, Zhao L, Zhang P, Gao L 2017 Chem. Eng. J. 322 538Google Scholar
[59] Lee Y, Chae S, Park H, Kim J, Jeong S H 2020 Chem. Eng. J. 382 122798Google Scholar
[60] Li K, Huang Y, Liu J, Sarfraz M, Agboola P O, Shakir I, Xu Y 2018 J. Mater. Chem. A 6 1802Google Scholar
[61] Huang Y, Hu H, Huang Y, Zhu M, Meng W, Liu C, Pei Z, Hao C, Wang Z, Zhi C 2015 ACS Nano 9 4766Google Scholar
[62] Gu T, Wei B 2016 J. Mater. Chem. A 4 12289Google Scholar
[63] Jost K, Dion G, Gogotsi Y 2014 J. Mater. Chem. A 2 10776Google Scholar
[64] Guo K, Wang X, Hu L, Zhai T, Li H, Yu N 2018 ACS Appl. Mater. Interfaces 10 19820Google Scholar
[65] Yu J, Lu W, Smith J P, Booksh K S, Meng L, Huang Y, Li Q, Byun J H, Oh Y, Yan Y, Chou T W 2017 Adv. Energy Mater. 7 1600976Google Scholar
[66] Zhang Y, Bai W, Cheng X, Ren J, Weng W, Chen P, Fang X, Zhang Z, Peng H 2014 Angew. Chem. Int. Ed. 53 14564Google Scholar
[67] Tang Q, Chen M, Yang C, Wang W, Bao H, Wang G 2015 ACS Appl. Mater. Interfaces 7 15303Google Scholar
[68] Xie Y, Liu Y, Zhao Y, Tsang Y H, Lau S P, Huang H, Chai Y 2014 J. Mater. Chem. A 2 9142Google Scholar
[69] Liu L, Tian Q, Yao W, Li M, Li Y, Wu W 2018 J. Power Sources 397 59Google Scholar
[70] Yun T G, Hwang B, Kim D, Hyun S, Han S M 2015 ACS Appl. Mater. Interfaces 7 9228Google Scholar
[71] Dong K, Wang Y C, Deng J, Dai Y, Zhang S L, Zou H, Gu B, Sun B, Wang Z L 2017 ACS Nano 11 9490Google Scholar
[72] Hu L, Pasta M, Mantia F L, Cui L, Jeong S, Deshazer H D, Choi J W, Han S M, Cui Y 2010 Nano Lett. 10 708Google Scholar
[73] Park H, Kim J W, Hong S Y, Lee G, Lee H, Song C, Keum K, Jeong Y R, Jin S W, Kim D S, Ha J S 2019 ACS Nano 13 10469Google Scholar
[74] Yun J, Song C, Lee H, Park H, Jeong Y R, Kim J W, Jin S W, Oh S Y, Sun L, Zi G, Ha J S 2018 Nano Energy 49 644Google Scholar
[75] Kim D, Shin G, Kang Y, Kim W, Ha J 2013 ACS Nano 7 7975Google Scholar
[76] Lv Z, Tang Y, Zhu Z, Wei J, Li W, Xia H, Jiang Y, Liu Z, Luo Y, Ge X, Zhang Y, Wang R, Zhang W, Loh X J, Chen X 2018 Adv. Mater. 30 e1805468Google Scholar
[77] Guo F M, Xu R Q, Cui X, Zhang L, Wang K L, Yao Y W, Wei J Q 2016 J. Mater. Chem. A 4 9311Google Scholar
[78] Lv Z, Luo Y, Tang Y, Wei J, Zhu Z, Zhou X, Li W, Zeng Y, Zhang W, Zhang Y, Qi D, Pan S, Loh X J, Chen X 2018 Adv. Mater. 30 1704531Google Scholar
[79] Ren D, Dong L, Wang J, Ma X, Xu C, Kang F 2018 Chem. Select. 3 4179Google Scholar
[80] Ren J, Ren R P, Lv Y K 2018 Chem. Eng. J. 349 111Google Scholar
[81] Shao G, Yu R, Zhang X, Chen X, He F, Zhao X, Chen N, Ye M, Liu X 2020 Adv. Funct. Mater. 2003151
[82] Chen X, Lin H, Chen P, Guan G, Deng J, Peng H 2014 Adv. Mater. 26 4444Google Scholar
[83] Zhang N, Zhou W, Zhang Q, Luan P, Cai L, Yang F, Zhang X, Fan Q, Zhou W, Xiao Z, Gu X, Chen H, Li K, Xiao S, Wang Y, Liu H, Xie S 2015 Nanoscale 7 12492Google Scholar
[84] Chen Y, Xu B, Wen J, Gong J, Hua T, Kan C W, Deng J 2018 Small 14 e1704373Google Scholar
[85] Zhang N, Luan P, Zhou W, Zhang Q, Cai L, Zhang X, Zhou W, Fan Q, Yang F, Zhao D, Wang Y, Xie S 2014 Nano Res. 7 1680Google Scholar
[86] Li H, Ding Y, Ha H, Shi Y, Peng L, Zhang X, Ellison C J, Yu G 2017 Adv. Mater. 29 1700898Google Scholar
[87] Moon H, Lee H, Kwon J, Suh Y D, Kim D K, Ha I, Yeo J, Hong S, Ko S H 2017 Sci. Rep. 7 41981Google Scholar
[88] Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H 2016 Nano Energy 27 230Google Scholar
[89] Zhou G, Kim N R, Chun S E, Lee W, Um M K, Chou T W, Islam M F, Byun J H, Oh Y 2018 Carbon 130 137Google Scholar
[90] Wang S, Liu N, Su J, Li L, Long F, Zou Z, Jiang X, Gao Y 2017 ACS Nano 11 2066Google Scholar
[91] Choi C, Lee J M, Kim S H, Kim S J, Di J, Baughman R H 2016 Nano Lett. 16 7677Google Scholar
[92] Kim K J, Lee J A, Lima M D, Baughman R H, Kim S J 2016 RSC Adv. 6 24756Google Scholar
[93] Wang Z, Cheng J, Guan Q, Huang H, Li Y, Zhou J, Ni W, Wang B, He S, Peng H 2018 Nano Energy 45 210Google Scholar
[94] Xu J, Ding J, Zhou X, Zhang Y, Zhu W, Liu Z, Ge S, Yuan N, Fang S, Baughman R H 2017 J. Power Sources 340 302Google Scholar
[95] Zhang Q, Sun J, Pan Z, Zhang J, Zhao J, Wang X, Zhang C, Yao Y, Lu W, Li Q, Zhang Y, Zhang Z 2017 Nano Energy 39 219Google Scholar
[96] Choi C, Kim J H, Sim H J, Di J, Baughman R H, Kim S J 2016 Adv. Energy Mater. 7 1602021Google Scholar
[97] Zang X, Zhu M, Li X, Li X, Zhen Z, Lao J, Wang K, Kang F, Wei B, Zhu H 2015 Nano Energy 15 83Google Scholar
[98] Yu C, Masarapu C, Rong J, Wei B, Jiang H 2009 Adv. Mater. 21 4793Google Scholar
[99] Chen C, Qin H, Cong H, Yu S 2019 Adv. Mater. 31 1900573Google Scholar
[100] Zheng X, Zhou X, Xu J, Zou L, Nie W, Hu X, Dai S, Qiu Y, Yuan N 2020 J. Mater. Sci. 55 8251Google Scholar
[101] Li X, Gu T, Wei B 2012 Nano Lett. 12 6366Google Scholar
[102] Zang J, Cao C, Feng Y, Liu J, Zhao X 2014 Sci. Rep. 4 6492Google Scholar
[103] Zhao C, Jia X, Shu K, Yu C, Min Y, Wang C 2020 Electrochim. Acta 343 136099Google Scholar
[104] Jeong H 2020 Carbon Lett. 30 55Google Scholar
[105] Zhao C, Wang C, Yue Z, Shu K, Wallace G G 2013 ACS Appl. Mater. Interfaces 5 9008Google Scholar
[106] Chen T, Peng H, Durstock M, Dai L 2014 Sci. Rep. 4 3612Google Scholar
[107] Hong S, Yoon J, Jin S, Lim Y, Lee S, Zi G, Ha J 2014 ACS Nano 8 8844Google Scholar
[108] Park S, Thangavel G, Parida K, Li S, Lee P 2019 Adv. Mater. 31 1805536Google Scholar
[109] Qi D, Liu Z, Liu Y, Leow W, Zhu B, Yang H, Yu J, Wang W, Wang H, Yin S, Chen X 2015 Adv. Mater. 27 5559Google Scholar
[110] Lee J, Kim W, Kim W 2014 ACS Appl. Mater. Interfaces 6 13578Google Scholar
[111] Fu X, Li Z, Xu L, Liao M, Sun H, Xie S, Sun X, Wang B, Peng H 2019 Sci. China Mater. 62 955Google Scholar
[112] Luan P, Zhang N, Zhou W, Niu Z, Zhang Q, Cai L, Zhang X, Yang F, Fan Q, Zhou W, Xiao Z, Gu X, Chen H, Li K, Xiao S, Wang Y, Liu H, Xie S 2016 Adv. Funct. Mater. 26 8178Google Scholar
[113] Lee H, Hong S, Lee J, Suh Y D, Kwon J, Moon H, Kim H, Yeo J, Ko S H 2016 ACS Appl. Mater. Interfaces 8 15449Google Scholar
[114] Yun T, Park M, Kim D, Kim D, Cheong J, Bae J, Han S, Kim D 2019 ACS Nano 13 3141Google Scholar
[115] Fu Y, Wu H, Ye S, Cai X, Yu X, Hou S, Kafafy H, Zou D 2013 Energy Environ. Sci. 6 805Google Scholar
[116] Liao M, Ye L, Zhang Y, Chen T, Peng H 2019 Adv. Electron. Mater. 5 1800456Google Scholar
[117] Sun H, Zhang Y, Zhang J, Sun X, Peng H 2017 Nat. Rev. Mater. 2 17023Google Scholar
[118] Zhang Y, Zhao Y, Ren J, Weng W, Peng H 2016 Adv. Mater. 28 4524Google Scholar
[119] Hong Y, Cheng X, Liu G, Hong D, He S, Wang B, Sun X, Peng H 2019 Chin. J. Polym. Sci. 37 737Google Scholar
[120] Xu P, Kang J, Choi J, Suhr J, Yu J, Li F, Byun J, Kim B, Chou T 2014 ACS Nano 8 9437Google Scholar
[121] Hao G, Hippauf F, Oschatz M, Wisser F, Leifert A, Nickel W, Noroega N, Zheng Z, Kaskel S 2014 ACS Nano 8 7138Google Scholar
[122] Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C 2015 Nat. Commun. 6 10310Google Scholar
[123] Zhao Y, Chen S, Hu J, Yu J, Feng G, Yang B, Li C, Zhao N, Zhu C, Xu J 2018 ACS Appl. Mater. Interfaces 10 19323Google Scholar
[124] Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G 2018 Adv. Mater. 30 e1800124Google Scholar
[125] Guo Y, Zheng K, Wan P 2018 Small 14 e1704497Google Scholar
[126] Wang Y, Chen F, Liu Z, Tang Z, Yang Q, Zhao Y, Du S, Chen Q, Zhi C 2019 Angew. Chem. Int. Ed. 58 15707Google Scholar
[127] Textile Standards, ASTM International https://www.astm.org/Standards/textile-standards.html [2020-6-30]
[128] Vlad A, Singh N, Galande C, Ajayan P M 2015 Adv. Energy Mater. 5 1402115Google Scholar
-
图 4 可拉伸结构设计制得的电极/器件 (a) 螺旋结构[66]; (b) 波浪结构[68]; (c) 织物结构[71]; (d) 蛇形结构[75]; (e)−(g) 网状结构[45,76,78]
Fig. 4. Stretchable supercapacitors based on stretchable structure: (a) Helical structure[66]; (b) wave structure[68]; (c) fabric structure[71]; (d) serpentine structure[75]; (e)−(g) net structure[45,76,78].
图 5 织物结构可拉伸超级电容器 (a)织物结构可拉伸超级电容器示意图; (b)可拉伸织物结构示意图; (c)不可拉伸织物结构示意图; (d)可拉伸织物结构实物图; (e)不同应变(10%, 20%和30%)和8 A/g电流密度情况下, 不同拉伸/释放循环次数后的电容量保持率(插图为拉伸循环期间可拉伸超级电容器的实物图); (f)在肘部放置可拉伸超级电容器的示意图; 两个放置于肘部并串联的可拉伸超级电容器用于点亮肘部的LED灯泡的实物图: (g)胳膊拉伸和(h)胳膊弯曲; (i)两个串联的器件可以点亮40个组装成“DHU”字母的LED灯泡[81]
Fig. 5. Schematic illustrations of stretchable supercapacitors: (a) Fabric structure stretchable supercapacitors; (b) stretchable fabric structure; (c) non-stretchable fabric structure; (d) image of stretchable fabric structure; (e) capacity retention after different numbers of stretch/release cycles under different strains (10%, 20%, and 30%) at a current density of 8 A/g (the inset presents the images of the hybrid supercapacitor device during stretching cycles); (f) schematic of elbow-fitted supercapacitor; images of two supercapacitors connected in series for the illumination of an elbow-fitted LED for (g) stretching and (h) bending. (i) Two devices connected in series for the illumination of a set of 40 LEDs with a parallel "DHU" pattern[81].
图 6 织物结构可拉伸超级电容器与文献中报道的超级电容器在拉伸恢复率、拉伸循环稳定性和电化学性能等方面的比较, 其中C0和C分别对应于拉伸循环前后的比容量
Fig. 6. Comparison of the stretchable supercapacitor with reported supercapacitors with respect to the tensile recovery, stretching cyclic stability, and electrochemical properties, where C0 and C correspond to the specific capacities before and after stretching cycles, respectively.
图 7 弹性聚合物和可拉伸结构组合制备的可拉伸复合电极/器件 (a), (b) 弹性聚合物和波浪结构[57,92]; (c) 弹性聚合物和螺旋结构[94]; (d) 弹性聚合物和织物结构[97]; (e) 弹性聚合物和网状结构[59]
Fig. 7. Stretchable supercapacitors based on elastic polymer and stretchable structure: (a), (b) Elastic polymer and wave structure[57,92]; (c) elastic polymer and helical structure[94]; (d) elastic polymer and fabric structure[97]; (e) elastic polymer and net structure[59].
图 10 高弹性凝胶电解质 (a), (b) 琼脂/HPAAm双网络水凝胶[126]; (c) H3PO4-聚乙烯醇(PVA)聚合物凝胶电解质[105]
Fig. 10. (a) Illustration of the preparation of Agar/HPAAm double-net hydrogel; (b) the recovery performance of Agar/HPAAm hydrogel and Agar/PAAm hydrogel under different stretching conditions[126]; (c) schematic configuration of the intrinsically stretcha-ble supercapacitor using highly stretchable gel electrolyte[105].
表 1 利用弹性聚合物为基底制备可拉伸超级电容器的研究概括
Table 1. Summary of recent studies on stretchable supercapacitor based on elastic polymer.
导电处理 活性材料 沉积方法 电容表现 极限拉伸率/% 电容稳定性 文献 PDMS基底材料的可拉伸超级电容器 石墨烯 石墨烯 激光诱发 650 μF/cm2
@35 μA/cm250 1000次拉伸循环后
保持84%电容[35] 碳纳米管 V2O5/PEDOT 旋涂 135 mF/cm2
@0.5 mA/cm250 100次拉伸循环后
保持85%电容[36] 单壁碳纳米管 单壁碳纳米管 化学汽相淀积 17.5 F/g 120 1000次拉伸循环后
电容没有变化[50] 单壁碳纳米管 单壁碳纳米管/
氮化硼纳米管干压 7.7 F/g
@19 μF/cm250 50%应变下1000次
拉伸循环后
电容增加25%[51] PU基底材料的可拉伸超级电容器 聚吡咯 聚吡咯 化学聚合 108.5 F/g@1 A/g 100 100%应变下拉伸1000次后保持90%电容 [37] 氮-碳纳米管 氮-碳纳米管 化学气相沉积 37.6 mF/cm2
@0.05 mA/cm2500 1000次拉伸后保持96%电容 [21] Ecoflex基底材料的可拉伸超级电容器 碳纳米管 单壁碳纳米管 涂覆 15.2 F/cm3
@0.021 A/cm360 在0, 20%, 40%应变下, 1000次充放电循环后电容保持97.4%, 95.5%, 94.5% [52] PEDOT:PSS基底材料的可拉伸超级电容器 银掺杂 PEDOT:PSS/碳纳米管 浸渍烘干 64 mF/cm2 (85.3 F/g) 480 400%应变下100次拉伸循环后保持90%电容 [53] 多壁碳纳米管 多米碳纳米管@聚苯胺 电聚合 2.2 F/cm3 @1 mA/cm2 50 50%应变下300次拉伸循环后CV曲线没有明显变化 [54] 表 2 通过可拉伸结构设计制备可拉伸超级电容器的研究概括
Table 2. Summary of recent studies on stretchable supercapacitors based on stretchable structure.
导电处理 活性材料 沉积方法 电容表现 极限拉伸率/% 电容稳定性 文献 螺旋结构设计的可拉伸超级电容器 不锈钢弹簧 碳纳米管/聚苯胺 原位合成 277.8 F/g@1 A/g, 402.8 mF/cm @1 mA/cm 100 在100%应变下电容没有
明显降低[41] 碳纳米管纱线 聚吡咯/碳纳米管 电沉积 63.6 F/g@1 A/g 150 — [42] 不锈钢线 MnO2/还原氧化石墨烯 电沉积 2.86 mWh/cm3 400 400%应变下拉伸循环3000次后保持95%电容 [64] 碳纳米管纱线 碳纳米管纱线/MnO2/聚吡咯 电沉积 60.43 mF/cm2, 7.72 F/g, 9.46 F/cm3, 9.86 mF/cm@10 mV/s 20 20%应变下拉伸循环200次后保持88%电容 [65] 碳纳米管纤维 碳纳米管 纺丝 0.51 mF/cm, 27.07 mF/cm2
@150 mA/cm3300 拉伸循环300次后保持94%电容 [66] 波浪结构设计的可拉伸超级电容器 碳纳米管 碳纳米管@MnO2/碳纳米管@聚吡咯 电沉积 2.2 F/cm3
@2 mA/cm2100 拉伸循环500次后保持96%电容 [67] 泡沫镍 聚苯胺/石墨烯 电聚合 261 F/g 30 30%应变下拉伸循环100次后保持95%电容 [68] 织物结构设计的可拉伸超级电容器 银涂层 聚吡咯@MnO2 丝网印刷 0.0337 mWh/cm2, 95.3 mF/cm2@5 mV/s 40 40%应变下保持
86.2%电容[69] 不锈钢网 聚吡咯 电化学沉积 170 F/g@0.5 A/g 20 20%应变下拉伸循环10000次后保持87%电容 [46] 碳纳米管 织物 聚吡咯@MnO2 电镀 461 F/g@0.2 A/g 21 21%应变下保持98.5%电容 [70] 碳纤维 PEDOT:PSS/碳 浸渍涂覆 — 100 100%应变下拉伸循环6000次后保持70%电容 [71] 导电过滤网 聚吡咯@MnO2 电沉积 — 20 — [29] 银镀层 MnO2–碳纳米管/PEDOT:PSS 丝网印刷 17.5 mWh/cm2
@0.4 mW/cm220 20%应变下拉伸循环100次后保持95.26%电容 [47] 单壁碳纳米管 单壁碳纳米管 浸渍烘干 140 F/g, 0.48 F/cm2@20 μA/cm2 120 拉伸后比电容没有变化 [72] 多壁碳纳米管 多壁碳纳米管/MoO3 喷涂 48.3 F/g@0.14 A/g, 33.8 mF/cm2 @0.1 mA/cm 50 应变从10%增加到50%,
拉伸循环5000次后
保持80%电容[73] 蛇形结构设计的可拉伸超级电容器 钛/铂 聚吡咯-多壁碳纳米管 喷涂 5.17 mF/cm2
@100 μA/cm230 30%应变下双轴拉伸循环1000次后充放电行为没有发生明显变化 [74] 单壁碳纳米管 单壁碳纳米管 喷涂 100 μF@0.5 V/s 30 30%应变下拉伸循环10次后电容没有明显恶化 [75] 网状结构设计的可拉伸超级电容器 单壁碳纳米管膜 单壁碳纳米管 喷涂 1.6 F/cm3, 448 nF/cm2 @1 V/s 150 150%应变下电容保持不变 [44] 碳纳米管膜 聚吡咯/黑磷/碳纳米管 电沉积 7.35 F/cm2
@7.8 mA/cm22000 2000%应变下拉伸循环10000次后保持95%电容 [76] 碳纳米管 碳纳米管/聚吡咯 电沉积 69 F/g, 3.5 mF/cm, 74.1 mF/cm2, 9.9 F/cm3 @2 mV/s 10 5%应变下拉伸循环5000次后有101%动态电容 [77] 碳纳米管膜 碳纳米管 化学气
相沉积61.4 mF/cm2, 35.7 F/g 16.0 F/cm3@1 mA/cm2 16 16%应变下拉伸循环3000次后保持93.3%电容 [45] 碳纳米管 MnO2/碳纳米管 水热合成法 227.2 mF/cm2 500 400%应变下拉伸循环10000次后保持98%电容 [78] 表 3 弹性聚合物与可拉伸结构结合的复合电极制备可拉伸超级电容器研究概括
Table 3. Summary of recent studies on stretchable supercapacitors based on elastic polymer + stretchable structure.
基底材料 结构类型 导电处理 活性材料 沉积方法 电容表现 拉伸率/% 电容稳定性 文献 PDMS 波浪结构 多壁碳纳米管 多壁碳纳米管/聚苯胺 3D打印 44.13 mF/cm2@
0.2 mA/cm240 在5%-40%不同应变情况下, 电化学性能几乎没有变化 [57] PDMS 波浪结构 3D-石墨烯 3D-石墨烯/聚苯胺 原位聚合 77.8 Wh/kg
@995 W/kg100 100%应变下拉伸循环100次后保持91.2%电容 [60] PDMS 波浪结构 碳纳米管 聚苯胺/碳纳米管 涂覆 308.4 F/g@8 A/g 100 100%应变下拉伸循环200次后电容保持不变 [82] PDMS 波浪结构 单壁碳纳米管/PEDOT 混合纤维 单壁碳纳米管/PEDOT 电沉积 53 F/g, 1.6 mF/cm2@1 A/g 100 X和Y两个方向, 100%应变下拉伸循环5000次后保持96.9% 和 90.1%电容 [83] PDMS 波浪结构 碳纳米管膜 MnO2/碳纳米管, Fe2O3/碳纳米管 水热反应 45.8 Wh/kg 100 在多种应变下电化学循环10000次后保持98.9%电容 [62] PDMS 波浪结构 不锈钢线 Ni-Co-S/还原氧化石墨烯 电沉积 127.2 mF/cm2
@0.1 mA/cm100 100%应变下拉伸循环1000次后保持91%电容 [84] PDMS 波浪结构 单壁碳纳米管/聚苯胺混合膜 单壁碳纳米管/聚苯胺 化学气
相沉积106 F/g@1 A/g 120 拉伸循环200次后保持85%电容 [85] PDMS 网状结构 还原氧化
石墨烯还原氧化石墨烯 浸渍烘干 188 mAh/g
@0.05 A/g50 50%应变下拉伸循环100次后保持89%电容 [86] PDMS 网状结构 金-聚甲基丙烯酸甲酯PMMA 纳米纤维网 MnO2 电沉积 3.68 mF/cm2
@0.007 mA/cm260 60%应变下保持92%电容 [59] PDMS 网状结构 银/金核壳
纳米线聚吡咯 电化学沉积 580 μF/cm2
@5.8 μA/cm250 应变从10%增加到50%, CV曲线几乎没有变化 [87] PDMS 网状结构 泡沫石墨烯 聚吡咯/
石墨烯化学气相沉积和化学界面聚合 258 mF/cm2
@1 mA/cm250 30%应变下充放电循环100次后保持88%电容 [80] PU 螺旋结构 镀银 碳纳米管 浸渍涂覆 4.17 mWh/cm3 150 重复拉伸变形后电容没有明显下降 [58] PU 螺旋结构 碳纳米管 聚吡咯/碳纳米管 电沉积 69 mF/cm2 130 应变从0%增加到40%, 拉伸循环1000次后保持85%电容 [88] PU 螺旋结构 纳米碳 N-石墨烯/3D镍钴铝 原位聚合 1.1 mWh/cm2
@2.59 mW/cm2100 50%应变下拉伸循环10000次后保持91%电容 [89] PU 螺旋结构 还原氧化石墨烯纤维 聚吡咯/还原氧化石墨烯/多壁碳
纳米管0.94 mWh/cm3 100 100%应变下保持82.4%电容 [90] Ecoflex
橡胶芯螺旋结构 碳纳米管 MnO2/PEDOT@碳
纳米管电沉积 2.38 mF/cm, 11.88 mF/cm2 200 在拉伸循环和扭曲循环后电容分别保持92.8%和98.2% [91] Ecoflex 波浪结构 泡沫镍 聚苯胺/
石墨烯电沉积 261 F/g@0.38 A/g 30 30%应变下拉伸循环100次后保持95%电容 [68] Ecoflex 橡胶 波浪结构 碳纳米管 PEDOT/碳纳米管 气相聚合 82 F/g, 11 mF/cm2
@10 mV/s600 600%双向拉伸应变下保持94%电容 [92] PEDOT:PSS 螺旋结构 PEDOT-S:PSS PEDOT-S:PSS 湿法纺丝 93.1 mF/cm2
@50 μA/cm2400 400%应变下保持80%电容 [93] 弹性橡胶
纤维螺旋结构 金@碳纳米管 聚苯胺/碳纳米管 电沉积 6 F/cm3@70 A/cm3 400 应变从0%增加到400%保持96%电容 [94] 弹性纤维 螺旋结构 碳纳米管纤维 MnO2@PEDOT:PSS@碳纳米管 涂覆和
电沉积278.6 mF/cm2 100 100%应变下拉伸循环3000次后保持92%电容 [95] 弹性纤维 螺旋结构 碳纳米管 碳纳米管 包裹 0.515 Wh/kg@
0.05 A/g100 75%应变下拉伸循环100次后保持95%电容 [55] 橡胶纤维 螺旋结构 碳纳米管片 MnO2/碳纳米管 包裹 4.8 mF/cm, 22.8 mF/cm2 40—800 600%应变下保持92.6%电容 [96] 聚合物基底 波浪结构 石墨烯机织布 聚苯胺/
石墨烯原位电沉积 17 μF/cm2
@0.06 V/s30 拉伸循环100次后CV 曲线略有下降(应变速率 60%/s) [97] 橡皮筋 波浪结构 碳纳米管膜 碳纳米管/
聚苯胺电沉积 394 F/g@2 mV/s 100 100%应变下拉伸循环100次后保持98%电容 [79] -
[1] Wang X, Liu Z, Zhang T 2017 Small 13 1602790Google Scholar
[2] Heo J S, Eom J, Kim Y H, Park S K 2018 Small 14 1703034Google Scholar
[3] Weng W, Chen P, He S, Sun X, Peng H 2016 Angew. Chem. Int. Ed. 55 6140Google Scholar
[4] Wu X, Peng H 2019 Sci. Bull. 64 634Google Scholar
[5] Jung S, Lee J, Hyeon T, Lee M, Kim D H 2014 Adv. Mater. 26 6329Google Scholar
[6] Zhai S, Karahan H E, Wei L, Qian Q, Harris A T, Minett A I, Ramakrishna S, Ng A K, Chen Y 2016 Energy Storage Mater. 3 123Google Scholar
[7] Chen X, Villa N S, Zhuang Y, Chen L, Wang T, Li Z, Kong T 2019 Adv. Energy Mater. 10 1902769Google Scholar
[8] Huang Y, Zhi C 2017 J. Phys. D: Appl. Phys. 50 273001Google Scholar
[9] Wang Y, Ding Y, Guo X, Yu G 2019 Nano Res. 12 1978Google Scholar
[10] Shao Y, El Kady M F, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner R B 2018 Chem. Rev. 118 9233Google Scholar
[11] Wang K, Wu H, Meng Y, Wei Z 2014 Small 10 14Google Scholar
[12] Wang Y, Song Y, Xia Y 2016 Chem. Soc. Rev. 45 5925Google Scholar
[13] Lu X, Yu M, Wang G, Tong Y, Li Y 2014 Energy Environ. Sci. 7 2160Google Scholar
[14] Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen Z X 2018 Adv. Sci. 5 1700322Google Scholar
[15] An T, Cheng W 2018 J. Mater. Chem. A 6 15478Google Scholar
[16] Wen L, Li F, Cheng H M 2016 Adv. Mater. 28 4306Google Scholar
[17] Liu L, Yu Y, Yan C, Li K, Zheng Z 2015 Nat. Commun. 6 7260Google Scholar
[18] Molina J, Fernández J, Inés J C, del Río A I, Bonastre J, Cases F 2013 Electrochim. Acta 93 44Google Scholar
[19] Sun H, Xie S, Li Y, Jiang Y, Sun X, Wang B, Peng H 2016 Adv. Mater. 28 8431Google Scholar
[20] Yang Y, Huang Q, Niu L, Wang D, Yan C, She Y, Zheng Z 2017 Adv. Mater. 29 1606679Google Scholar
[21] Zhang Z, Wang L, Li Y, Wang Y, Zhang J, Guan G, Pan Z, Zheng G, Peng H 2017 Adv. Energy Mater. 7 1601814Google Scholar
[22] Wang C, Hu K, Li W, Wang H, Li H, Zou Y, Zhao C, Li Z, Yu M, Tan P, Li Z 2018 ACS Appl. Mater. Interfaces 10 34302Google Scholar
[23] Jost K, Stenger D, Perez C R, McDonough J K, Lian K, Gogotsi Y, Dion G 2013 Energy Environ. Sci. 6 2698Google Scholar
[24] Cao J, Li X, Wang Y, Walsh F C, Ouyang J, Jia D, Zhou Y 2015 J. Power Sources 293 657Google Scholar
[25] Zhi M, Xiang C, Li J, Li M, Wu N 2013 Nanoscale 5 72Google Scholar
[26] Gao Y P, Huang K J 2017 Chem. Asian J. 12 1969Google Scholar
[27] Yu D, Qian Q, Wei L, Jiang W, Goh K, Wei J, Zhang J, Chen Y 2015 Chem. Soc. Rev. 44 647Google Scholar
[28] Zeng W, Zhang G, Wu X, Zhang K, Zhang H, Hou S, Li C, Wang T, Duan H 2015 J. Mater. Chem. A 3 24033Google Scholar
[29] Huang Y, Huang Y, Meng W, Zhu M, Xue H, Lee C, Zhi C 2015 ACS Appl. Mater. Interfaces 7 2569Google Scholar
[30] Gong W, Fugetsu B, Wang Z, Sakata I, Su L, Zhang X, Ogata H, Li M, Wang C, Li J, Ortiz Medina J, Terrones M, Endo M 2018 Comm. Chem. 1 16 Google Scholar
[31] Nie W, Liu L, Li Q, Zhang S, Hu J, Yang X, Ding X 2019 RSC Adv. 9 19180Google Scholar
[32] Xinping H, Bo G, Guibao W, Jiatong W, Chun Z 2013 Electrochim. Acta 111 210Google Scholar
[33] Liu X, Wu Z, Yin Y 2017 Chem. Eng. J. 323 330Google Scholar
[34] Wang X, Yan C, Yan J, Sumboja A, Lee P S 2015 Nano Energy 11 765Google Scholar
[35] Lamberti A, Clerici F, Fontana M, Scaltrito L 2016 Adv. Energy Mater. 6 1600050Google Scholar
[36] Qi R, Nie J, Liu M, Xia M, Lu X 2018 Nanoscale 10 7719Google Scholar
[37] Yue B, Wang C, Ding X, Wallace G G 2012 Electrochim. Acta 68 18Google Scholar
[38] Ding Y, Xu W, Wang W, Fong H, Zhu Z 2017 ACS Appl. Mater. Interfaces 9 30014Google Scholar
[39] He Z, Zhou G, Byun J H, Lee S K, Um M K, Park B, Kim T, Lee S B, Chou T W 2019 Nanoscale 11 5884Google Scholar
[40] Souri H, Bhattacharyya D 2018 ACS Appl. Mater. Interfaces 10 20845Google Scholar
[41] Chu X, Zhang H, Su H, Liu F, Gu B, Huang H, Zhang H, Deng W, Zheng X, Yang W 2018 Chem. Eng. J. 349 168Google Scholar
[42] Shang Y, Wang C, He X, Li J, Peng Q, Shi E, Wang R, Du S, Cao A, Li Y 2015 Nano Energy 12 401Google Scholar
[43] Chen C, Cao J, Wang X, Lu Q, Han M, Wang Q, Dai H, Niu Z, Chen J, Xie S 2017 Nano Energy 42 187Google Scholar
[44] Pu J, Wang X, Xu R, Komvopoulos K 2016 ACS Nano 10 9306Google Scholar
[45] He S, Qiu L, Wang L, Cao J, Xie S, Gao Q, Zhang Z, Zhang J, Wang B, Peng H 2016 J. Mater. Chem. A 4 14968Google Scholar
[46] Huang Y, Tao J, Meng W, Zhu M, Huang Y, Fu Y, Gao Y, Zhi C 2015 Nano Energy 11 518Google Scholar
[47] Lv J, Jeerapan I, Tehrani F, Yin L, Silva-Lopez C A, Jang J H, Joshuia D, Shah R, Liang Y, Xie L, Soto F, Chen C, Karshalev E, Kong C, Yang Z, Wang J 2018 Energy Environ. Sci. 11 3431Google Scholar
[48] Zhang Y, Wang S, Li X, Fan J A, Xu S, Song Y M, Choi K J, Yeo W H, Lee W, Nazaar S N, Lu B, Yin L, Hwang K C, Rogers J A, Huang Y 2014 Adv. Funct.Mater. 24 2028Google Scholar
[49] Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y, Su J, Zhang H, Cheng H, Lu B, Yu C, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y, Paik U, Rogers J A 2013 Nat. Commun. 4 1543Google Scholar
[50] Gilshteyn E P, Kallio T, Kanninen P, Fedorovskaya E O, Anisimov A S, Nasibulin A G 2016 RSC Adv. 6 93915Google Scholar
[51] Gilshteyn E P, Amanbayev D, Anisimov A S, Kallio T, Nasibulin A G 2017 Sci. Rep. 7 17449Google Scholar
[52] Yoon J, Lee J, Hur J 2018 Nanomaterials 8 541Google Scholar
[53] Zhu Y, Li N, Lv T, Yao Y, Peng H, Shi J, Cao S, Chen T 2018 J. Mater. Chem. A 6 941Google Scholar
[54] Lee J H, Jeong Y R, Lee G, Jin S W, Lee Y H, Hong S Y, Park H, Kim J W, Lee S S, Ha J S 2018 ACS Appl. Mater. Interfaces 10 28027Google Scholar
[55] Yang Z, Deng J, Chen X, Ren J, Peng H 2013 Angew. Chem. Int. Ed. 52 13453Google Scholar
[56] Wang X, Yang C, Jin J, Li X, Cheng Q, Wang G 2018 J. Mater. Chem. A 6 4432Google Scholar
[57] Li L, Lou Z, Han W, Chen D, Jiang K, Shen G 2017 Adv. Mater. Tech. 2 1600282Google Scholar
[58] Shi M, Yang C, Song X, Liu J, Zhao L, Zhang P, Gao L 2017 Chem. Eng. J. 322 538Google Scholar
[59] Lee Y, Chae S, Park H, Kim J, Jeong S H 2020 Chem. Eng. J. 382 122798Google Scholar
[60] Li K, Huang Y, Liu J, Sarfraz M, Agboola P O, Shakir I, Xu Y 2018 J. Mater. Chem. A 6 1802Google Scholar
[61] Huang Y, Hu H, Huang Y, Zhu M, Meng W, Liu C, Pei Z, Hao C, Wang Z, Zhi C 2015 ACS Nano 9 4766Google Scholar
[62] Gu T, Wei B 2016 J. Mater. Chem. A 4 12289Google Scholar
[63] Jost K, Dion G, Gogotsi Y 2014 J. Mater. Chem. A 2 10776Google Scholar
[64] Guo K, Wang X, Hu L, Zhai T, Li H, Yu N 2018 ACS Appl. Mater. Interfaces 10 19820Google Scholar
[65] Yu J, Lu W, Smith J P, Booksh K S, Meng L, Huang Y, Li Q, Byun J H, Oh Y, Yan Y, Chou T W 2017 Adv. Energy Mater. 7 1600976Google Scholar
[66] Zhang Y, Bai W, Cheng X, Ren J, Weng W, Chen P, Fang X, Zhang Z, Peng H 2014 Angew. Chem. Int. Ed. 53 14564Google Scholar
[67] Tang Q, Chen M, Yang C, Wang W, Bao H, Wang G 2015 ACS Appl. Mater. Interfaces 7 15303Google Scholar
[68] Xie Y, Liu Y, Zhao Y, Tsang Y H, Lau S P, Huang H, Chai Y 2014 J. Mater. Chem. A 2 9142Google Scholar
[69] Liu L, Tian Q, Yao W, Li M, Li Y, Wu W 2018 J. Power Sources 397 59Google Scholar
[70] Yun T G, Hwang B, Kim D, Hyun S, Han S M 2015 ACS Appl. Mater. Interfaces 7 9228Google Scholar
[71] Dong K, Wang Y C, Deng J, Dai Y, Zhang S L, Zou H, Gu B, Sun B, Wang Z L 2017 ACS Nano 11 9490Google Scholar
[72] Hu L, Pasta M, Mantia F L, Cui L, Jeong S, Deshazer H D, Choi J W, Han S M, Cui Y 2010 Nano Lett. 10 708Google Scholar
[73] Park H, Kim J W, Hong S Y, Lee G, Lee H, Song C, Keum K, Jeong Y R, Jin S W, Kim D S, Ha J S 2019 ACS Nano 13 10469Google Scholar
[74] Yun J, Song C, Lee H, Park H, Jeong Y R, Kim J W, Jin S W, Oh S Y, Sun L, Zi G, Ha J S 2018 Nano Energy 49 644Google Scholar
[75] Kim D, Shin G, Kang Y, Kim W, Ha J 2013 ACS Nano 7 7975Google Scholar
[76] Lv Z, Tang Y, Zhu Z, Wei J, Li W, Xia H, Jiang Y, Liu Z, Luo Y, Ge X, Zhang Y, Wang R, Zhang W, Loh X J, Chen X 2018 Adv. Mater. 30 e1805468Google Scholar
[77] Guo F M, Xu R Q, Cui X, Zhang L, Wang K L, Yao Y W, Wei J Q 2016 J. Mater. Chem. A 4 9311Google Scholar
[78] Lv Z, Luo Y, Tang Y, Wei J, Zhu Z, Zhou X, Li W, Zeng Y, Zhang W, Zhang Y, Qi D, Pan S, Loh X J, Chen X 2018 Adv. Mater. 30 1704531Google Scholar
[79] Ren D, Dong L, Wang J, Ma X, Xu C, Kang F 2018 Chem. Select. 3 4179Google Scholar
[80] Ren J, Ren R P, Lv Y K 2018 Chem. Eng. J. 349 111Google Scholar
[81] Shao G, Yu R, Zhang X, Chen X, He F, Zhao X, Chen N, Ye M, Liu X 2020 Adv. Funct. Mater. 2003151
[82] Chen X, Lin H, Chen P, Guan G, Deng J, Peng H 2014 Adv. Mater. 26 4444Google Scholar
[83] Zhang N, Zhou W, Zhang Q, Luan P, Cai L, Yang F, Zhang X, Fan Q, Zhou W, Xiao Z, Gu X, Chen H, Li K, Xiao S, Wang Y, Liu H, Xie S 2015 Nanoscale 7 12492Google Scholar
[84] Chen Y, Xu B, Wen J, Gong J, Hua T, Kan C W, Deng J 2018 Small 14 e1704373Google Scholar
[85] Zhang N, Luan P, Zhou W, Zhang Q, Cai L, Zhang X, Zhou W, Fan Q, Yang F, Zhao D, Wang Y, Xie S 2014 Nano Res. 7 1680Google Scholar
[86] Li H, Ding Y, Ha H, Shi Y, Peng L, Zhang X, Ellison C J, Yu G 2017 Adv. Mater. 29 1700898Google Scholar
[87] Moon H, Lee H, Kwon J, Suh Y D, Kim D K, Ha I, Yeo J, Hong S, Ko S H 2017 Sci. Rep. 7 41981Google Scholar
[88] Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H 2016 Nano Energy 27 230Google Scholar
[89] Zhou G, Kim N R, Chun S E, Lee W, Um M K, Chou T W, Islam M F, Byun J H, Oh Y 2018 Carbon 130 137Google Scholar
[90] Wang S, Liu N, Su J, Li L, Long F, Zou Z, Jiang X, Gao Y 2017 ACS Nano 11 2066Google Scholar
[91] Choi C, Lee J M, Kim S H, Kim S J, Di J, Baughman R H 2016 Nano Lett. 16 7677Google Scholar
[92] Kim K J, Lee J A, Lima M D, Baughman R H, Kim S J 2016 RSC Adv. 6 24756Google Scholar
[93] Wang Z, Cheng J, Guan Q, Huang H, Li Y, Zhou J, Ni W, Wang B, He S, Peng H 2018 Nano Energy 45 210Google Scholar
[94] Xu J, Ding J, Zhou X, Zhang Y, Zhu W, Liu Z, Ge S, Yuan N, Fang S, Baughman R H 2017 J. Power Sources 340 302Google Scholar
[95] Zhang Q, Sun J, Pan Z, Zhang J, Zhao J, Wang X, Zhang C, Yao Y, Lu W, Li Q, Zhang Y, Zhang Z 2017 Nano Energy 39 219Google Scholar
[96] Choi C, Kim J H, Sim H J, Di J, Baughman R H, Kim S J 2016 Adv. Energy Mater. 7 1602021Google Scholar
[97] Zang X, Zhu M, Li X, Li X, Zhen Z, Lao J, Wang K, Kang F, Wei B, Zhu H 2015 Nano Energy 15 83Google Scholar
[98] Yu C, Masarapu C, Rong J, Wei B, Jiang H 2009 Adv. Mater. 21 4793Google Scholar
[99] Chen C, Qin H, Cong H, Yu S 2019 Adv. Mater. 31 1900573Google Scholar
[100] Zheng X, Zhou X, Xu J, Zou L, Nie W, Hu X, Dai S, Qiu Y, Yuan N 2020 J. Mater. Sci. 55 8251Google Scholar
[101] Li X, Gu T, Wei B 2012 Nano Lett. 12 6366Google Scholar
[102] Zang J, Cao C, Feng Y, Liu J, Zhao X 2014 Sci. Rep. 4 6492Google Scholar
[103] Zhao C, Jia X, Shu K, Yu C, Min Y, Wang C 2020 Electrochim. Acta 343 136099Google Scholar
[104] Jeong H 2020 Carbon Lett. 30 55Google Scholar
[105] Zhao C, Wang C, Yue Z, Shu K, Wallace G G 2013 ACS Appl. Mater. Interfaces 5 9008Google Scholar
[106] Chen T, Peng H, Durstock M, Dai L 2014 Sci. Rep. 4 3612Google Scholar
[107] Hong S, Yoon J, Jin S, Lim Y, Lee S, Zi G, Ha J 2014 ACS Nano 8 8844Google Scholar
[108] Park S, Thangavel G, Parida K, Li S, Lee P 2019 Adv. Mater. 31 1805536Google Scholar
[109] Qi D, Liu Z, Liu Y, Leow W, Zhu B, Yang H, Yu J, Wang W, Wang H, Yin S, Chen X 2015 Adv. Mater. 27 5559Google Scholar
[110] Lee J, Kim W, Kim W 2014 ACS Appl. Mater. Interfaces 6 13578Google Scholar
[111] Fu X, Li Z, Xu L, Liao M, Sun H, Xie S, Sun X, Wang B, Peng H 2019 Sci. China Mater. 62 955Google Scholar
[112] Luan P, Zhang N, Zhou W, Niu Z, Zhang Q, Cai L, Zhang X, Yang F, Fan Q, Zhou W, Xiao Z, Gu X, Chen H, Li K, Xiao S, Wang Y, Liu H, Xie S 2016 Adv. Funct. Mater. 26 8178Google Scholar
[113] Lee H, Hong S, Lee J, Suh Y D, Kwon J, Moon H, Kim H, Yeo J, Ko S H 2016 ACS Appl. Mater. Interfaces 8 15449Google Scholar
[114] Yun T, Park M, Kim D, Kim D, Cheong J, Bae J, Han S, Kim D 2019 ACS Nano 13 3141Google Scholar
[115] Fu Y, Wu H, Ye S, Cai X, Yu X, Hou S, Kafafy H, Zou D 2013 Energy Environ. Sci. 6 805Google Scholar
[116] Liao M, Ye L, Zhang Y, Chen T, Peng H 2019 Adv. Electron. Mater. 5 1800456Google Scholar
[117] Sun H, Zhang Y, Zhang J, Sun X, Peng H 2017 Nat. Rev. Mater. 2 17023Google Scholar
[118] Zhang Y, Zhao Y, Ren J, Weng W, Peng H 2016 Adv. Mater. 28 4524Google Scholar
[119] Hong Y, Cheng X, Liu G, Hong D, He S, Wang B, Sun X, Peng H 2019 Chin. J. Polym. Sci. 37 737Google Scholar
[120] Xu P, Kang J, Choi J, Suhr J, Yu J, Li F, Byun J, Kim B, Chou T 2014 ACS Nano 8 9437Google Scholar
[121] Hao G, Hippauf F, Oschatz M, Wisser F, Leifert A, Nickel W, Noroega N, Zheng Z, Kaskel S 2014 ACS Nano 8 7138Google Scholar
[122] Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C 2015 Nat. Commun. 6 10310Google Scholar
[123] Zhao Y, Chen S, Hu J, Yu J, Feng G, Yang B, Li C, Zhao N, Zhu C, Xu J 2018 ACS Appl. Mater. Interfaces 10 19323Google Scholar
[124] Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G 2018 Adv. Mater. 30 e1800124Google Scholar
[125] Guo Y, Zheng K, Wan P 2018 Small 14 e1704497Google Scholar
[126] Wang Y, Chen F, Liu Z, Tang Z, Yang Q, Zhao Y, Du S, Chen Q, Zhi C 2019 Angew. Chem. Int. Ed. 58 15707Google Scholar
[127] Textile Standards, ASTM International https://www.astm.org/Standards/textile-standards.html [2020-6-30]
[128] Vlad A, Singh N, Galande C, Ajayan P M 2015 Adv. Energy Mater. 5 1402115Google Scholar
计量
- 文章访问数: 18212
- PDF下载量: 539
- 被引次数: 0