搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

实用化条件下金属锂负极失效的研究

王鑫萌 石鹏 张学强 陈爱兵 张强

引用本文:
Citation:

实用化条件下金属锂负极失效的研究

王鑫萌, 石鹏, 张学强, 陈爱兵, 张强

Failure mechanism of lithium metal anode under practical conditions

Wang Xin-Meng, Shi Peng, Zhang Xue-Qiang, Chen Ai-Bing, Zhang Qiang
PDF
HTML
导出引用
  • 金属锂因其高理论比容量和低电极电势, 被视为下一代高比能二次电池理想的负极材料之一. 然而, 其表面不稳定的固液界面膜及不均匀锂沉积等问题严重限制着其实际应用. 目前, 金属锂负极的研究大多采用温和的实验条件, 这对于理解负极表界面的物理化学性质和揭示锂沉积规律等基础研究具有重要意义. 但是, 超薄锂负极(< 50 μm), 低负极/正极面容量比(< 3.0), 低电解液量(< 3.0 g·Ah–1)等实用化条件是实现高比能金属锂电池(> 350 W·h·kg–1)的前提. 本文对金属锂负极在温和及实用化条件下的循环稳定性和负极表面形貌等进行比较, 分析造成差异的原因, 揭示金属锂负极在实用化条件下面临的挑战, 并提出潜在的实用化金属锂负极的研究策略, 以望促进高比能金属锂电池的发展.
    Lithium (Li) metal is regarded as one of the most promising anodes in the next-generation high-energy-density rechargeable batteries due to its ultrahigh theoretical specific capacity and low reduction potential. Nevertheless, the unstable solid electrolyte interphase on the surface of Li metal anode and the nonuniform Li deposition seriously hinder its practical applications. Currently, mild conditions are employed in the researches of Li metal anode, which is of great significance for fundamentally understanding the physicochemical features of the anode interface and the mechanisms of Li deposition. However, practical conditions including ultrathin Li metal anode (< 50 μm), low negative/positive electrode areal capacity ratio (< 3.0), and lean electrolyte (< 3.0 g·Ah–1) are the premise to realize high energy density of Li metal batteries (> 350 W·h·kg–1). Herein, the gaps of Li metal anode under mild and practical conditions in terms of the cycling stability and surface morphology are compared and the reasons for the gaps are analyzed carefully. The total quantity of active Li metal decreases and the utilization depth of Li per cycle has been greatly improved under practical conditions. Therefore, the huge volume fluctuation and uneven Li deposition result in ceaseless destruction and regeneration of solid electrolyte interphase, and thus consuming the lean electrolyte and generating a large quantity of dead Li rapidly. Consequently, the polarization voltage of Li metal anode increases rapidly and the cycling stability of Li metal batteries deteriorates evidently under practical conditions. Moreover, the electrochemical reaction of Li metal anode is accelerated while fast charge/discharge process is employed, which further aggravates the stability of Li metal anode. This work reveals the challenges of Li metal anode under practical conditions and present the perspectives for the further researches in practical Li metal anode, which conduces to the solid development of high-energy-density Li metal batteries.
      通信作者: 陈爱兵, chen_ab@163.com ; 张强, zhang-qiang@mails.tsinghua.edu.cn
    • 基金项目: 国家重点研发计划项目(批准号: 2016YFA0202500, 2016YFA0200102)、国家自然科学基金(批准号: 21676160)、国家杰出青年科学基金(批准号: 21825501)、国家自然科学基金地区联合基金项目(批准号: U1801257)和清华大学自主科研基金资助的课题
      Corresponding author: Chen Ai-Bing, chen_ab@163.com ; Zhang Qiang, zhang-qiang@mails.tsinghua.edu.cn
    • Funds: Project supported by the National Key Research and Development Program (Grant Nos. 2016YFA0202500, 2016YFA0200102), the National Natural Scientific Foundation of China (Grant No. 21676160), the National Science Fund for Distinguished Young Scholars of China (Grant No. 21825501), the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant No. U1801257), and the Tsinghua University Initiative Scientific Research Program of China
    [1]

    Cheng X, Zhang R, Zhao C, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar

    [2]

    Lu Y, Zhang Q, Li L, Niu Z, Chen J 2018 Chem. 4 2786Google Scholar

    [3]

    Sun T, Li Z, Zhang X 2018 Research 2018 1Google Scholar

    [4]

    Guan P, Zhou L, Yu Z, Sun Y, Liu Y, Wu F, Jiang Y, Chu D 2020 J. Energy Chem. 43 220Google Scholar

    [5]

    Li H 2019 Joule 3 911Google Scholar

    [6]

    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J 2014 Energy Environ. Sci. 7 513Google Scholar

    [7]

    Zhang X, Zhao C, Huang J, Zhang Q 2018 Engineering 4 831Google Scholar

    [8]

    Tikekar M D, Choudhury S, Tu Z, Archer L A 2016 Nat. Energy 1 16114Google Scholar

    [9]

    Jie Y, Ren X, Cao R, Cai W, Jiao S 2020 Adv. Funct. Mater. 30 1910777Google Scholar

    [10]

    Zhang X, Wang X, Li B, Shi P, Huang J, Chen A, Zhang Q 2020 J. Mater. Chem. A 8 4283Google Scholar

    [11]

    Yang H, Guo C, Naveed A, Lei J, Yang J, Nuli Y, Wang J 2018 Energy Storage Mater. 14 199Google Scholar

    [12]

    Chen J, Zhang X, Li B, Wang X, Shi P, Zhu W, Chen A, Jin Z, Xiang R, Huang J, Zhang Q 2020 J. Energy Chem. 47 128Google Scholar

    [13]

    Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J, Zhang J G 2018 Adv. Mater. 30 1706102Google Scholar

    [14]

    Zhang X, Li T, Li B, Zhang R, Shi P, Yan C, Huang J, Zhang Q 2020 Angew. Chem. Int. Ed. 59 3252Google Scholar

    [15]

    Ma Y, Zhou Z, Li C, Wang L, Wang Y, Cheng X, Zuo P, Du C, Huo H, Gao Y, Yin G 2018 Energy Storage Mater. 11 197Google Scholar

    [16]

    Zhang W D, Zhuang H L, Fan L, Gao L N, Lu Y Y 2018 Sci. Adv. 4 eaar4410Google Scholar

    [17]

    He M, Guo R, Hobold G M, Gao H, Gallant B M 2020 Proc. Natl. Acad. Sci. U.S.A. 117 73Google Scholar

    [18]

    Wang Z, Qi F, Yin L, Shi Y, Sun C, An B, Cheng H, Li F 2020 Adv. Energy Mater. 10 1903843Google Scholar

    [19]

    Liu J, Wang Y, Liu F, Cheng F, Chen J 2020 J. Energy Chem. 42 1Google Scholar

    [20]

    Xu R, Xiao Y, Zhang R, Cheng X, Zhao C, Zhang X, Yan C, Zhang Q, Huang J 2019 Adv. Mater. 31 1808392Google Scholar

    [21]

    Yuan Y, Wu F, Chen G, Bai Y, Wu C 2019 J. Energy Chem. 37 197Google Scholar

    [22]

    Li N, Yin Y X, Yang C P, Guo Y 2016 Adv. Mater. 28 1853Google Scholar

    [23]

    Zhang S, Gao Z, Wang W, Lu Y, Deng Y, You J, Li J, Zhou Y, Huang L, Zhou X, Sun S 2018 Small 14 1801054Google Scholar

    [24]

    Lei D, He Y, Huang H, Yuan Y, Zhong G, Zhao Q, Hao X, Zhang D, Lai C, Zhang S, Ma J, Wei Y, Yu Q, Lü W, Yu Y, Li B, Yang Q, Yang Y, Lu J, Kang F 2019 Nat. Commun. 10 4244Google Scholar

    [25]

    Ma Q, Sun X, Liu P, Xia Y, Liu X, Luo J 2019 Angew. Chem. Int. Ed. 58 6200Google Scholar

    [26]

    Liang J, Zeng X, Zhang X, Zuo T, Yan M, Yin Y, Shi J, Wu X, Guo Y, Wan L 2019 J. Am. Chem. Soc. 141 9165Google Scholar

    [27]

    Zhang H, Liao X, Guan Y, Xiang Y, Li M, Zhang W, Zhu X, Ming H, Lu L, Qiu J, Huang Y, Cao G, Yang Y, Mai L, Zhao Y, Zhang H 2018 Nat. Commun. 9 3729Google Scholar

    [28]

    Shen X, Cheng X, Shi P, Huang J, Zhang X, Yan C, Li T, Zhang Q 2019 J. Energy Chem. 37 29Google Scholar

    [29]

    Duan H, Zhang J, Chen X, Zhang X, Li J, Huang L, Zhang X, Shi J, Yin Y, Zhang Q, Guo Y, Jiang L, Wan L 2018 J. Am. Chem. Soc. 140 18051Google Scholar

    [30]

    Shi P, Zhang X, Shen X, Zhang R, Liu H, Zhang Q 2020 Adv. Mater. Technol. 5 1900806Google Scholar

    [31]

    Jin C, Sheng O, Luo J, Yuan H, Fang C, Zhang W, Huang H, Gan Y, Xia Y, Liang C, Zhang J, Tao X 2017 Nano Energy 37 177Google Scholar

    [32]

    Li B, Chen X, Xiang C, Zhao C, Zhang R, Cheng X, Zhang Q 2019 Research 2019 1Google Scholar

    [33]

    Pei F, Fu A, Ye W, Peng J, Fang X, Wang M S, Zheng N 2019 ACS Nano 13 8337Google Scholar

    [34]

    Gao Z, Zhang S, Huang Z, Lu Y, Wang W, Wang K, Li J, Zhou Y, Huang L, Sun S 2019 Chin. Chem. Lett. 30 525Google Scholar

    [35]

    Liu Y, Qin X, Zhang S, Huang Y, Kang F, Chen G, Li B 2019 Energy Storage Mater. 18 320Google Scholar

    [36]

    Chen J, Yang Z, Liu G, Li C, Yi J, Fan M, Tan H, Lu Z, Yang C 2020 Energy Storage Mater. 25 305Google Scholar

    [37]

    Xing Y, Chen N, Luo M, Sun Y, Yang Y, Qian J, Li L, Guo S, Chen R, Wu F 2020 Energy Storage Mater. 24 707Google Scholar

    [38]

    Xu D, Su J, Jin J, Sun C, Ruan Y, Chen C, Wen Z 2019 Adv. Energy Mater. 9 1900611Google Scholar

    [39]

    Yu X, Wang L, Ma J, Sun X, Zhou X, Cui G 2020 Adv. Energy Mater. 10 1903939Google Scholar

    [40]

    Li G, Guan X, Wang A, Wang C, Luo J 2020 Energy Storage Mater. 24 574Google Scholar

    [41]

    Shen Y, Zhang Y, Han S, Wang J, Peng Z, Chen L 2018 Joule 2 1674Google Scholar

    [42]

    Zhao Q, Liu X, Stalin S, Khan K, Archer L A 2019 Nat. Energy 4 365Google Scholar

    [43]

    Zhang Y, Chen R, Wang S, Liu T, Xu B, Zhang X, Wang X, Shen Y, Lin Y, Li M, Fan L, Li L, Nan C 2020 Energy Storage Mater. 25 145Google Scholar

    [44]

    Zhang J, Zheng C, Li L, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W 2020 Adv. Energy Mater. 10 1903311Google Scholar

    [45]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212Google Scholar

    [46]

    Umeshbabu E, Zheng B, Yang Y 2019 Electrochem. Energy Rev. 2 199Google Scholar

    [47]

    肖睿娟, 李泓, 陈立泉 2018 物理学报 67 128801Google Scholar

    Xiao R J, Li H, Chen L Q 2018 Acta Phys. Sin. 67 128801Google Scholar

    [48]

    王其钰, 褚赓, 张杰男, 王怡, 周格, 聂凯会, 郑杰允, 禹习谦, 李泓 2018 储能科学与技术 7 327Google Scholar

    Wang Q Y, Chu G, Zhang J N, Wang Y, Zhou G, Nie K H, Zheng J Y, Yu X Q, Li H 2018 Energy Storage Sci. Technol. 7 327Google Scholar

    [49]

    Xiang J, Yang L, Yuan L, Yuan K, Zhang Y, Huang Y, Lin J, Pan F, Huang Y 2019 Joule 3 2334Google Scholar

    [50]

    Ghazi Z A, Sun Z, Sun C, Qi F, An B, Li F, Cheng H 2019 Small 15 1900687Google Scholar

    [51]

    Louli A J, Genovese M, Weber R, Hames S G, Logan E R, Dahn J R 2019 J. Electrochem. Soc. 166 A1291Google Scholar

    [52]

    Niu C, Lee H, Chen S, Li Q, Du J, Xu W, Zhang J, Whittingham M S, Xiao J, Liu J 2019 Nat. Energy 4 551Google Scholar

    [53]

    Chae S, Ko M, Kim K, Ahn K, Cho J 2017 Joule 1 47Google Scholar

    [54]

    Zheng H, Li J, Song X, Liu G, Battaglia V S 2012 Electrochim. Acta 71 258Google Scholar

    [55]

    Huang W, Attia P M, Wang H, Renfrew S E, Jin N, Das S, Zhang Z, Boyle D T, Li Y, Bazant M Z, McCloskey B D, Chueh W C, Cui Y 2019 Nano Lett. 19 5140Google Scholar

    [56]

    Zhang X, Cheng X, Zhang Q 2018 Adv. Mater. Interfaces 5 1701097Google Scholar

    [57]

    Liu J, Bao Z, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J, Yang X, Zhang J 2019 Nat. Energy 4 180Google Scholar

    [58]

    Pei A, Zheng G, Shi F, Li Y, Cui Y 2017 Nano Lett. 17 1132Google Scholar

    [59]

    Biswal P, Stalin S, Kludze A, Choudhury S, Archer L A 2019 Nano Lett. 19 8191Google Scholar

    [60]

    Shi P, Cheng X B, Li T, Zhang R, Liu H, Yan C, Zhang X Q, Huang J Q, Zhang Q 2019 Adv. Mater. 31 1902785Google Scholar

    [61]

    Liu Y, Lin D, Li Y, Chen G, Pei A, Nix O, Li Y, Cui Y 2018 Nat. Commun. 9 3656Google Scholar

    [62]

    Gao Y, Yan Z, Gray J L, He X, Wang D, Chen T, Huang Q, Li Y C, Wang H, Kim S H, Mallouk T E, Wang D 2019 Nat. Mater. 18 384Google Scholar

  • 图 1  金属锂负极厚度对电池循环的影响 (a)不同锂负极厚度条件下电池结构示意图; (b) Li | NCM523全电池的循环性能; (c) Li | NCM523全电池第3圈和第60圈对应的充放电曲线

    Fig. 1.  The effect of the thickness of Li metal anode on the cycling of batteries: (a) The schematics of batteries with Li metal anode in different thicknesses; (b) the cycling performance of Li | NCM523 batteries; (c) the corresponding charge and discharge curves of Li | NCM523 batteries at the 3rd and 60th cycle.

    图 2  金属锂厚度对锂负极沉积形貌的影响 (a) 锂负极厚度为600 μm, 电流密度为1.0 mA·cm–2, 循环容量为1.0 mA·h·cm–2条件下, Li | Li对称电池的沉积形貌; (b) 锂负极厚度为50 μm, 电流密度为1.0 mA· cm–2, 循环容量为1.0 mA·h·cm–2条件下, Li | Li对称电池的沉积形貌; (c) 锂负极厚度为600 μm, 电流密度为3.0 mA·cm–2, 循环容量为3.0 mA·h·cm–2条件下, Li | Li对称电池的沉积形貌; (d)锂负极厚度为50 μm, 电流密度为3.0 mA·cm–2, 循环容量为3.0 mA·h·cm–2条件下, Li | Li对称电池的沉积形貌

    Fig. 2.  The effect of the thickness of Li metal anode on the morphology of Li deposition: The morphology of the deposited Li in Li | Li symmetrical cells at (a, b) a current density of 1.0 mA·cm–2 and a capacity of 1.0 mA·h·cm–2, and (c, d) a current density of 3.0 mA·cm–2 and a capacity of 3.0 mA·h·cm–2. The thickness of the Li anode is 600 μm in (a, c) and 50 μm in (b, d).

    图 3  N/P比对电池循环的影响 (a)不同N/P比条件下的电池示意图; (b) Li | NCM523全电池循环性能; (c) Li | NCM523全电池第3圈和第50圈对应的充放电曲线

    Fig. 3.  The effect of the N/P ratio on the cycling of batteries: (a) The schematics of batteries with different N/P ratios; (b) the cycling performance of Li | NCM523 batteries; (c) the corresponding charge and discharge curves of Li | NCM523 batteries at the 3rd and 50th cycle.

    图 4  电解液量对电池循环的影响 (a)不同电解液量下的电池示意图; (b) Li | NCM523全电池的循环性能; (c) Li | NCM523电池第3圈和第40圈对应的充放电曲线

    Fig. 4.  The effect of the amount of electrolyte on the cycling of batteries: (a) The schematics of batteries with different amounts of electrolyte; (b) the cycling performance of Li | NCM523 batteries; (c) the corresponding charge and discharge curves of Li | NCM523 batteries at the 3rd and 40th cycle.

    图 5  循环倍率对电池循环的影响 (a)不同循环倍率下的电池示意图; (b) Li | NCM523全电池的循环性能; (c) Li | NCM523电池第3圈和第70圈对应的充放电曲线

    Fig. 5.  The effect of the rate on the cycling of batteries: (a) The schematics of batteries with different rates; (b) the cycling performance of Li | NCM523 batteries; (c) the corresponding charge and discharge curves of Li | NCM523 batteries at the 3rd and 70th cycle.

  • [1]

    Cheng X, Zhang R, Zhao C, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar

    [2]

    Lu Y, Zhang Q, Li L, Niu Z, Chen J 2018 Chem. 4 2786Google Scholar

    [3]

    Sun T, Li Z, Zhang X 2018 Research 2018 1Google Scholar

    [4]

    Guan P, Zhou L, Yu Z, Sun Y, Liu Y, Wu F, Jiang Y, Chu D 2020 J. Energy Chem. 43 220Google Scholar

    [5]

    Li H 2019 Joule 3 911Google Scholar

    [6]

    Xu W, Wang J, Ding F, Chen X, Nasybulin E, Zhang Y, Zhang J 2014 Energy Environ. Sci. 7 513Google Scholar

    [7]

    Zhang X, Zhao C, Huang J, Zhang Q 2018 Engineering 4 831Google Scholar

    [8]

    Tikekar M D, Choudhury S, Tu Z, Archer L A 2016 Nat. Energy 1 16114Google Scholar

    [9]

    Jie Y, Ren X, Cao R, Cai W, Jiao S 2020 Adv. Funct. Mater. 30 1910777Google Scholar

    [10]

    Zhang X, Wang X, Li B, Shi P, Huang J, Chen A, Zhang Q 2020 J. Mater. Chem. A 8 4283Google Scholar

    [11]

    Yang H, Guo C, Naveed A, Lei J, Yang J, Nuli Y, Wang J 2018 Energy Storage Mater. 14 199Google Scholar

    [12]

    Chen J, Zhang X, Li B, Wang X, Shi P, Zhu W, Chen A, Jin Z, Xiang R, Huang J, Zhang Q 2020 J. Energy Chem. 47 128Google Scholar

    [13]

    Chen S, Zheng J, Mei D, Han K S, Engelhard M H, Zhao W, Xu W, Liu J, Zhang J G 2018 Adv. Mater. 30 1706102Google Scholar

    [14]

    Zhang X, Li T, Li B, Zhang R, Shi P, Yan C, Huang J, Zhang Q 2020 Angew. Chem. Int. Ed. 59 3252Google Scholar

    [15]

    Ma Y, Zhou Z, Li C, Wang L, Wang Y, Cheng X, Zuo P, Du C, Huo H, Gao Y, Yin G 2018 Energy Storage Mater. 11 197Google Scholar

    [16]

    Zhang W D, Zhuang H L, Fan L, Gao L N, Lu Y Y 2018 Sci. Adv. 4 eaar4410Google Scholar

    [17]

    He M, Guo R, Hobold G M, Gao H, Gallant B M 2020 Proc. Natl. Acad. Sci. U.S.A. 117 73Google Scholar

    [18]

    Wang Z, Qi F, Yin L, Shi Y, Sun C, An B, Cheng H, Li F 2020 Adv. Energy Mater. 10 1903843Google Scholar

    [19]

    Liu J, Wang Y, Liu F, Cheng F, Chen J 2020 J. Energy Chem. 42 1Google Scholar

    [20]

    Xu R, Xiao Y, Zhang R, Cheng X, Zhao C, Zhang X, Yan C, Zhang Q, Huang J 2019 Adv. Mater. 31 1808392Google Scholar

    [21]

    Yuan Y, Wu F, Chen G, Bai Y, Wu C 2019 J. Energy Chem. 37 197Google Scholar

    [22]

    Li N, Yin Y X, Yang C P, Guo Y 2016 Adv. Mater. 28 1853Google Scholar

    [23]

    Zhang S, Gao Z, Wang W, Lu Y, Deng Y, You J, Li J, Zhou Y, Huang L, Zhou X, Sun S 2018 Small 14 1801054Google Scholar

    [24]

    Lei D, He Y, Huang H, Yuan Y, Zhong G, Zhao Q, Hao X, Zhang D, Lai C, Zhang S, Ma J, Wei Y, Yu Q, Lü W, Yu Y, Li B, Yang Q, Yang Y, Lu J, Kang F 2019 Nat. Commun. 10 4244Google Scholar

    [25]

    Ma Q, Sun X, Liu P, Xia Y, Liu X, Luo J 2019 Angew. Chem. Int. Ed. 58 6200Google Scholar

    [26]

    Liang J, Zeng X, Zhang X, Zuo T, Yan M, Yin Y, Shi J, Wu X, Guo Y, Wan L 2019 J. Am. Chem. Soc. 141 9165Google Scholar

    [27]

    Zhang H, Liao X, Guan Y, Xiang Y, Li M, Zhang W, Zhu X, Ming H, Lu L, Qiu J, Huang Y, Cao G, Yang Y, Mai L, Zhao Y, Zhang H 2018 Nat. Commun. 9 3729Google Scholar

    [28]

    Shen X, Cheng X, Shi P, Huang J, Zhang X, Yan C, Li T, Zhang Q 2019 J. Energy Chem. 37 29Google Scholar

    [29]

    Duan H, Zhang J, Chen X, Zhang X, Li J, Huang L, Zhang X, Shi J, Yin Y, Zhang Q, Guo Y, Jiang L, Wan L 2018 J. Am. Chem. Soc. 140 18051Google Scholar

    [30]

    Shi P, Zhang X, Shen X, Zhang R, Liu H, Zhang Q 2020 Adv. Mater. Technol. 5 1900806Google Scholar

    [31]

    Jin C, Sheng O, Luo J, Yuan H, Fang C, Zhang W, Huang H, Gan Y, Xia Y, Liang C, Zhang J, Tao X 2017 Nano Energy 37 177Google Scholar

    [32]

    Li B, Chen X, Xiang C, Zhao C, Zhang R, Cheng X, Zhang Q 2019 Research 2019 1Google Scholar

    [33]

    Pei F, Fu A, Ye W, Peng J, Fang X, Wang M S, Zheng N 2019 ACS Nano 13 8337Google Scholar

    [34]

    Gao Z, Zhang S, Huang Z, Lu Y, Wang W, Wang K, Li J, Zhou Y, Huang L, Sun S 2019 Chin. Chem. Lett. 30 525Google Scholar

    [35]

    Liu Y, Qin X, Zhang S, Huang Y, Kang F, Chen G, Li B 2019 Energy Storage Mater. 18 320Google Scholar

    [36]

    Chen J, Yang Z, Liu G, Li C, Yi J, Fan M, Tan H, Lu Z, Yang C 2020 Energy Storage Mater. 25 305Google Scholar

    [37]

    Xing Y, Chen N, Luo M, Sun Y, Yang Y, Qian J, Li L, Guo S, Chen R, Wu F 2020 Energy Storage Mater. 24 707Google Scholar

    [38]

    Xu D, Su J, Jin J, Sun C, Ruan Y, Chen C, Wen Z 2019 Adv. Energy Mater. 9 1900611Google Scholar

    [39]

    Yu X, Wang L, Ma J, Sun X, Zhou X, Cui G 2020 Adv. Energy Mater. 10 1903939Google Scholar

    [40]

    Li G, Guan X, Wang A, Wang C, Luo J 2020 Energy Storage Mater. 24 574Google Scholar

    [41]

    Shen Y, Zhang Y, Han S, Wang J, Peng Z, Chen L 2018 Joule 2 1674Google Scholar

    [42]

    Zhao Q, Liu X, Stalin S, Khan K, Archer L A 2019 Nat. Energy 4 365Google Scholar

    [43]

    Zhang Y, Chen R, Wang S, Liu T, Xu B, Zhang X, Wang X, Shen Y, Lin Y, Li M, Fan L, Li L, Nan C 2020 Energy Storage Mater. 25 145Google Scholar

    [44]

    Zhang J, Zheng C, Li L, Xia Y, Huang H, Gan Y, Liang C, He X, Tao X, Zhang W 2020 Adv. Energy Mater. 10 1903311Google Scholar

    [45]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H, Huang X, Yang Y, Nan C W, Chen L 2018 ACS Energy Lett. 3 1212Google Scholar

    [46]

    Umeshbabu E, Zheng B, Yang Y 2019 Electrochem. Energy Rev. 2 199Google Scholar

    [47]

    肖睿娟, 李泓, 陈立泉 2018 物理学报 67 128801Google Scholar

    Xiao R J, Li H, Chen L Q 2018 Acta Phys. Sin. 67 128801Google Scholar

    [48]

    王其钰, 褚赓, 张杰男, 王怡, 周格, 聂凯会, 郑杰允, 禹习谦, 李泓 2018 储能科学与技术 7 327Google Scholar

    Wang Q Y, Chu G, Zhang J N, Wang Y, Zhou G, Nie K H, Zheng J Y, Yu X Q, Li H 2018 Energy Storage Sci. Technol. 7 327Google Scholar

    [49]

    Xiang J, Yang L, Yuan L, Yuan K, Zhang Y, Huang Y, Lin J, Pan F, Huang Y 2019 Joule 3 2334Google Scholar

    [50]

    Ghazi Z A, Sun Z, Sun C, Qi F, An B, Li F, Cheng H 2019 Small 15 1900687Google Scholar

    [51]

    Louli A J, Genovese M, Weber R, Hames S G, Logan E R, Dahn J R 2019 J. Electrochem. Soc. 166 A1291Google Scholar

    [52]

    Niu C, Lee H, Chen S, Li Q, Du J, Xu W, Zhang J, Whittingham M S, Xiao J, Liu J 2019 Nat. Energy 4 551Google Scholar

    [53]

    Chae S, Ko M, Kim K, Ahn K, Cho J 2017 Joule 1 47Google Scholar

    [54]

    Zheng H, Li J, Song X, Liu G, Battaglia V S 2012 Electrochim. Acta 71 258Google Scholar

    [55]

    Huang W, Attia P M, Wang H, Renfrew S E, Jin N, Das S, Zhang Z, Boyle D T, Li Y, Bazant M Z, McCloskey B D, Chueh W C, Cui Y 2019 Nano Lett. 19 5140Google Scholar

    [56]

    Zhang X, Cheng X, Zhang Q 2018 Adv. Mater. Interfaces 5 1701097Google Scholar

    [57]

    Liu J, Bao Z, Cui Y, Dufek E J, Goodenough J B, Khalifah P, Li Q, Liaw B Y, Liu P, Manthiram A, Meng Y S, Subramanian V R, Toney M F, Viswanathan V V, Whittingham M S, Xiao J, Xu W, Yang J, Yang X, Zhang J 2019 Nat. Energy 4 180Google Scholar

    [58]

    Pei A, Zheng G, Shi F, Li Y, Cui Y 2017 Nano Lett. 17 1132Google Scholar

    [59]

    Biswal P, Stalin S, Kludze A, Choudhury S, Archer L A 2019 Nano Lett. 19 8191Google Scholar

    [60]

    Shi P, Cheng X B, Li T, Zhang R, Liu H, Yan C, Zhang X Q, Huang J Q, Zhang Q 2019 Adv. Mater. 31 1902785Google Scholar

    [61]

    Liu Y, Lin D, Li Y, Chen G, Pei A, Nix O, Li Y, Cui Y 2018 Nat. Commun. 9 3656Google Scholar

    [62]

    Gao Y, Yan Z, Gray J L, He X, Wang D, Chen T, Huang Q, Li Y C, Wang H, Kim S H, Mallouk T E, Wang D 2019 Nat. Mater. 18 384Google Scholar

  • [1] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响. 物理学报, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] 周阳, 马啸, 周星宇, 张春辉, 王琴. 实用化态制备误差容忍参考系无关量子密钥分发协议. 物理学报, 2023, 72(24): 240301. doi: 10.7498/aps.72.20231144
    [3] 朱佳莉, 曹原, 张春辉, 王琴. 实用化量子密钥分发光网络中的资源优化配置. 物理学报, 2023, 72(2): 020301. doi: 10.7498/aps.72.20221661
    [4] 王妙, 杨万民, 王小梅, 昝雅婷, 陈森林, 张明, 胡成西. 二次单畴化制备GdBCO超导块材的方法及其性能. 物理学报, 2021, 70(15): 158101. doi: 10.7498/aps.70.20202141
    [5] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [6] 余启鹏, 刘琦, 王自强, 李宝华. 全固态金属锂电池负极界面问题及解决策略. 物理学报, 2020, 69(22): 228805. doi: 10.7498/aps.69.20201218
    [7] 熊雨薇, 尹奎波, 文一峰, 辛磊, 姚利兵, 朱重阳, 孙立涛. 纳米氧化锡负极材料锂化反应机理的原位透射电镜研究. 物理学报, 2019, 68(15): 158201. doi: 10.7498/aps.68.20190431
    [8] 徐光显, 黄河, 张现平, 黄尚宇, 马衍伟. 122型铁基超导线带材实用化研究进展. 物理学报, 2018, 67(20): 207402. doi: 10.7498/aps.67.20181256
    [9] 臧鸿雁, 柴宏玉. 一个二次多项式混沌系统的均匀化及其熵分析. 物理学报, 2016, 65(3): 030504. doi: 10.7498/aps.65.030504
    [10] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型. 物理学报, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [11] 叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵. 基于微陷阱结构的金属二次电子发射系数抑制研究. 物理学报, 2014, 63(14): 147901. doi: 10.7498/aps.63.147901
    [12] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型. 物理学报, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [13] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, 2013, 62(9): 098201. doi: 10.7498/aps.62.098201
    [14] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟. 物理学报, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [15] 马仰华, 赵建林, 王文礼, 黄卫东. 双轴晶体中二次谐波产生的最佳相位匹配条件. 物理学报, 2005, 54(5): 2084-2089. doi: 10.7498/aps.54.2084
    [16] 郭蕊香, 贾晓军, 谢常德, 彭堃墀. 实用化多功能光压缩器. 物理学报, 2002, 51(6): 1262-1267. doi: 10.7498/aps.51.1262
    [17] 于天燕, 余兵鲲, 王奇, 万尤宝, 潘守夔. 铌酸钾锂晶体及其宽带二次谐波产生. 物理学报, 2000, 49(3): 463-467. doi: 10.7498/aps.49.463
    [18] 李伯臧, 吴建华. 导出二次量子化表象的简单代数方法. 物理学报, 1992, 41(7): 1063-1071. doi: 10.7498/aps.41.1063
    [19] 李列明, 孙鑫, 冯伟国. 金属-真空表面的二次谐波理论. 物理学报, 1990, 39(4): 620-626. doi: 10.7498/aps.39.620
    [20] 朱昂如, 吴西林. 用能化电子效应考察二次离子的发射机理. 物理学报, 1984, 33(10): 1475-1479. doi: 10.7498/aps.33.1475
计量
  • 文章访问数:  6175
  • PDF下载量:  389
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-14
  • 修回日期:  2020-07-15
  • 上网日期:  2020-11-10
  • 刊出日期:  2020-11-20

/

返回文章
返回