-
高功率激光可通过直接烧蚀产生高温、高压、高应变率的物质状态, 同时也可驱动金属箔产生与之精密同步的超短超强X射线源, 成为利用原位X射线衍射技术研究材料在极端高温、高压、高应变率下相变动力学的重要实验平台. 本文基于原型高功率激光装置建立高压、高应变率加载下材料相变的原位X射线衍射诊断平台, 并以典型金属钒和铁为例开展冲击相变的原位观测. 实验表明, 在高应变率(
$ {10^{8}} —{10^{9}}\;{{\rm{s}}^{ - 1}} $ )冲击加载下, 金属钒在69 GPa时依然保持体心立方结构不变, 而金属铁在159 GPa时已经由体心立方结构转变为六角密排结构, 均与文献报道一致. 同时原位X射线衍射实验测量的材料压缩特性与宏观Hugoniot曲线符合得很好. 利用原位X射线衍射技术研究高应变率动态加载下材料的相变行为对理解材料相变的应变率效应和动力学过程具有重要的科学意义, 同时对提高材料工程服役的可靠性以及突破材料极端环境服役的发展瓶颈具有重要的工程价值.The knowledge of phase transition of material under dynamic loading is an important area of research in inertial confinement fusion and material science. Though the shock-induced phase transitions of various materials over a broad pressure range have become a field of study for decades, the loading strain rates in most of these experiments is not more than$ {10^{6}}\;{{\rm{s}}^{ - 1}} $ . However, in contrast with the strain rate range where the phase diagram is a good predictor of the crystal structure of a material, at higher strain rate ($ > {10^{6}}\;{{\rm{s}}^{ - 1}} $ ) the phase diagram measured can be quite different not only in shifting the boundary line between various phases, but also in giving a different sequence of crystal structure. High-power laser facility can drive shock wave and simultaneously provide a precisely synchronized ultra-short and ultra-intense X-ray source. Here, based on the Prototype laser facility, an in situ X-ray diffraction platform for diagnosing shock-induced phase transition of polycrystalline material is established. The in situ observation of material phase transition under high-strain-rate shock loading is carried out with typical metals of vanadium and iron. Diffraction results are consistent with vanadium remaining in the body-centered-cubic structure up to 69 GPa, while iron transforms from the body-centered-cubic structure into hexagonal-close-packed structure at 159 GPa. The compressive properties of vanadium and iron obtained in in situ X-ray diffraction experiment are in good agreement with their macroscopic Hugonoit curves. The decrease in the lattice volume over the pressure step period yields a strain rate on the order of$ {10^{8}} - {10^{9}}\;{{\rm{s}}^{ - 1}} $ . The available of the presented in situ X-ray diffraction plateform offers the potential to extend our understanding of the kinetics of phase transition in polycrystalline under high-pressure high-strain-rate shock compression.-
Keywords:
- high-strain-rate loading /
- in situ X-ray diffraction /
- shock-induced phase transition /
- high power laser facility
[1] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar
[2] Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar
[3] Amadou N, Resseguier T, Brambrink E, Vinci T, Benuzzi-Mounaix A, Huser G, Morard G, Guyot F, Miyanishi K, Ozaki N, Kodama R, Koenig M 2016 Phys. Rev. B 93 214108Google Scholar
[4] Gorman M G, Coleman A L, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, Sliwa M, Sanloup C, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S, McMahon M I 2018 Sci. Rep. 8 16927Google Scholar
[5] Armstrong M R, Radousky H B, Austin R A, Stavrou E, Zong H, Ackland G J, Brown S, Crowhurst J C, Gleason A E, Granados E, Grivickas P, Holtgrewe N, Lee H J, Li T T, Lobanov S, McKeown J T, Nagler R, Nam I, Nelson A J, Prakapenka V, Prescher C, Roehling J D, Teslich N E, Walter P, Goncharov A F, Belof J L 2018 arXiv:1808.02181v1
[6] Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar
[7] Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709Google Scholar
[8] Turneaure S J, Sinclair N, Gupta Y M 2016 Phys. Rev. Lett. 117 045502Google Scholar
[9] Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar
[10] Milathianaki D, Boutet S, Williams G J, Higginbotham A, Ratner D, Gleason A E, Messerschmidt M, Seibert M M, Swift D C, Hering P, Robinson J, White W E, Wark J S 2013 Science 342 220Google Scholar
[11] Coleman A L, Gorman M G, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Fratanduono D E, Smith R F, Galtier E, Lee H J, Nagler B, Granados E, Collins G W, Eggert J H, Wark J S, McMahon M I 2019 Phys. Rev. Lett. 122 255704Google Scholar
[12] Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar
[13] Wang J, Coppari F, Smith R F, Eggert J H, Lazicki A E, Fratanduono D E, Rygg J R, Boehly T R, Collins G W, Duffy T S 2016 Phys. Rev. B 94 104102Google Scholar
[14] Wicks J K, Smith R F, Fratanduono D E, Coppari F, Kraus R G, Newman M G, Rygg J R, Eggert J H, Duffy T S 2018 Sci. Adv. 4 eaao5864Google Scholar
[15] Chen X, Xue T, Liu D, Yang Q, Luo B, Mu Li, Li X, Li J 2018 Rev. Sci. Instrum. 89 013904Google Scholar
[16] McCoy C A, Marshall M C, Polsin D N, Fratanduono D E, Celliers P M, Meyerhofer D D, Boehly T R 2019 Phys. Rev. B 100 014106Google Scholar
[17] Lazicki A, Rygg J R, Coppari F, Smith R, Fratanduono D, Kraus R G, Collins G W, Briggs R, Braun D G, Swift D C, Eggert J H 2015 Phys. Rev. Lett. 115 075502Google Scholar
[18] 李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 物理学报 66 136101Google Scholar
Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar
[19] Swift D C, Tierney T E, Kopp R A, Gammel J T 2004 Phys. Rev. E 69 036406Google Scholar
[20] Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101Google Scholar
[21] Gathers G R 1986 J. Appl. Phys. 59 3291Google Scholar
[22] Browna J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496Google Scholar
[23] Schollmeier M, Ao T, Field E S, Galloway B R, Kalita P, Kimmel M W, Morgan D V, Rambo P K, Schwarz J, Shores J E, Smith I C, Speas C S, Benage J F, Porter J L 2018 Rev. Sci. Instrum. 89 10F102
[24] Vignes R M, Ahmed M F, Eggert J H, Fisher A C, Kalantar D H, Masters N D, Smith C A, Smith R F 2016 J. Phys. Conf. Ser. 717 012115Google Scholar
[25] Moriarty J A 1992 Phys. Rev. B 45 2004Google Scholar
[26] Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar
[27] Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter 20 275218Google Scholar
[28] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202Google Scholar
Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar
[29] Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K, Gumbrell E T, Luis J J, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar
[30] Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359Google Scholar
[31] Denoeud A, Ozaki N, Benuzzi-Mounaix A, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 7745
-
图 2 (a)冲击压力为 (69.36 ± 9.31) GPa时多晶钒原位X射线衍射图像; (b)平面晶体谱仪测量的高功率激光驱动钒箔产生的X射线源能谱, 能谱中主要是
${\rm{H}}{{\rm{e}}_\alpha }$ 线Fig. 2. (a) In situ X-ray diffraction image recoded for vanadium under pressure of (69.36 ± 9.31) GPa; (b) the X-ray spectrum emitted by the resulting vanadium foil is measured with crystal spectrometer and shows the dominant
${\rm{H}}{{\rm{e}}_\alpha }$ line.图 3 (a)通过坐标变换将钒原位X射线衍射图像转换到
$2\theta \text{-} \phi$ 空间; (b)沿$\phi$ 方向积分并扣除本底后得到一维X射线衍射曲线; (c)激光干涉测速仪(DISAR)测量的钒样品自由面粒子速度演化历史, 据此可计算样品压力; (d)原位X射线衍射实验测量的压力与压缩比($\rho/\rho_{0}$ )的关系, 实线代表轻气炮测量得到的钒Hugoniot曲线Fig. 3. (a) X-ray diffraction data for shock-compressed vanadium projected into
$2\theta \text{-} \phi$ space; (b) the corresponding background-subtracted one-dimensional X-ray diffraction pattern; (c) the free surface velocity of vanadium recorded by the DISAR system; (d) pressure vs. compression ratio ($\rho/\rho_{0}$ ) for vanadium, where Hugoniot measurements from gas gun experiments are shown as solid line.图 4 (a)冲击压力为 (159.30 ± 6.11) GPa时多晶铁原位X射线衍射图像; (b)平面晶体谱仪测量的高功率激光驱动铁箔产生的X射线源能谱, 能谱中主要是
${\rm{H}}{{\rm{e}}_\alpha }$ 线Fig. 4. (a) In situ X-ray diffraction image recoded for iron under pressure of (159.30 ± 6.11) GPa; (b) the X-ray spectrum emitted by the resulting iron foil is measured with crystal spectrometer and shows the dominant
${\rm{H}}{{\rm{e}}_\alpha }$ line.图 5 (a)通过坐标变换将铁原位X射线衍射图像转换到
$2\theta\text{-}\phi$ 空间; (b)沿$\phi$ 方向积分并扣除本底后得到一维X射线衍射曲线; (c)激光干涉测速仪(DISAR)测量的铁样品自由面粒子速度演化历史, 据此可计算样品压力; (d)原位X射线衍射实验测量的压力与压缩比($\rho/\rho_{0}$ )的关系, 实线代表轻气炮测量得到的铁Hugoniot曲线Fig. 5. (a) X-ray diffraction data for shock-compressed iron projected into
$2\theta\text{-}\phi$ space; (b) the corresponding background-subtracted one-dimensional X-ray diffraction pattern; (c) the free surface velocity of iron recorded by the DISAR system; (d) pressure vs. compression ratio ($\rho/\rho_{0}$ ) for iron, where Hugoniot measurements from gas gun experiments are shown as solid line. -
[1] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar
[2] Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar
[3] Amadou N, Resseguier T, Brambrink E, Vinci T, Benuzzi-Mounaix A, Huser G, Morard G, Guyot F, Miyanishi K, Ozaki N, Kodama R, Koenig M 2016 Phys. Rev. B 93 214108Google Scholar
[4] Gorman M G, Coleman A L, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, Sliwa M, Sanloup C, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S, McMahon M I 2018 Sci. Rep. 8 16927Google Scholar
[5] Armstrong M R, Radousky H B, Austin R A, Stavrou E, Zong H, Ackland G J, Brown S, Crowhurst J C, Gleason A E, Granados E, Grivickas P, Holtgrewe N, Lee H J, Li T T, Lobanov S, McKeown J T, Nagler R, Nam I, Nelson A J, Prakapenka V, Prescher C, Roehling J D, Teslich N E, Walter P, Goncharov A F, Belof J L 2018 arXiv:1808.02181v1
[6] Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar
[7] Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709Google Scholar
[8] Turneaure S J, Sinclair N, Gupta Y M 2016 Phys. Rev. Lett. 117 045502Google Scholar
[9] Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar
[10] Milathianaki D, Boutet S, Williams G J, Higginbotham A, Ratner D, Gleason A E, Messerschmidt M, Seibert M M, Swift D C, Hering P, Robinson J, White W E, Wark J S 2013 Science 342 220Google Scholar
[11] Coleman A L, Gorman M G, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Fratanduono D E, Smith R F, Galtier E, Lee H J, Nagler B, Granados E, Collins G W, Eggert J H, Wark J S, McMahon M I 2019 Phys. Rev. Lett. 122 255704Google Scholar
[12] Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar
[13] Wang J, Coppari F, Smith R F, Eggert J H, Lazicki A E, Fratanduono D E, Rygg J R, Boehly T R, Collins G W, Duffy T S 2016 Phys. Rev. B 94 104102Google Scholar
[14] Wicks J K, Smith R F, Fratanduono D E, Coppari F, Kraus R G, Newman M G, Rygg J R, Eggert J H, Duffy T S 2018 Sci. Adv. 4 eaao5864Google Scholar
[15] Chen X, Xue T, Liu D, Yang Q, Luo B, Mu Li, Li X, Li J 2018 Rev. Sci. Instrum. 89 013904Google Scholar
[16] McCoy C A, Marshall M C, Polsin D N, Fratanduono D E, Celliers P M, Meyerhofer D D, Boehly T R 2019 Phys. Rev. B 100 014106Google Scholar
[17] Lazicki A, Rygg J R, Coppari F, Smith R, Fratanduono D, Kraus R G, Collins G W, Briggs R, Braun D G, Swift D C, Eggert J H 2015 Phys. Rev. Lett. 115 075502Google Scholar
[18] 李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 物理学报 66 136101Google Scholar
Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar
[19] Swift D C, Tierney T E, Kopp R A, Gammel J T 2004 Phys. Rev. E 69 036406Google Scholar
[20] Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101Google Scholar
[21] Gathers G R 1986 J. Appl. Phys. 59 3291Google Scholar
[22] Browna J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496Google Scholar
[23] Schollmeier M, Ao T, Field E S, Galloway B R, Kalita P, Kimmel M W, Morgan D V, Rambo P K, Schwarz J, Shores J E, Smith I C, Speas C S, Benage J F, Porter J L 2018 Rev. Sci. Instrum. 89 10F102
[24] Vignes R M, Ahmed M F, Eggert J H, Fisher A C, Kalantar D H, Masters N D, Smith C A, Smith R F 2016 J. Phys. Conf. Ser. 717 012115Google Scholar
[25] Moriarty J A 1992 Phys. Rev. B 45 2004Google Scholar
[26] Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar
[27] Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter 20 275218Google Scholar
[28] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 物理学报 63 026202Google Scholar
Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar
[29] Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K, Gumbrell E T, Luis J J, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar
[30] Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359Google Scholar
[31] Denoeud A, Ozaki N, Benuzzi-Mounaix A, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 7745
计量
- 文章访问数: 8087
- PDF下载量: 161
- 被引次数: 0