搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽带高效聚焦的片上集成纳米透镜

田梓聪 郭遗敏 胡晨岩 王慧琴 路翠翠

引用本文:
Citation:

宽带高效聚焦的片上集成纳米透镜

田梓聪, 郭遗敏, 胡晨岩, 王慧琴, 路翠翠

Broadband efficient focusing on-chip integrated nano-lens

Tian Zi-Cong, Guo Yi-Min, Hu Chen-Yan, Wang Hui-Qin, Lu Cui-Cui
PDF
HTML
导出引用
  • 在光学材料与器件中, 由于不同波长的光会以不同速度传播, 因此一束复色光经过单个光学器件后会产生色散, 导致普通透镜不同波长的光无法合焦. 传统的聚焦系统可通过叠加多个透镜解决这一问题, 但这是以增加系统的复杂度、质量和成本为代价, 不适用于高集成度的纳米光学系统. 目前比较好的解决方法是平面超透镜, 即利用超表面对各点的振幅、相位、偏振等进行空间调控, 达到合焦的目的, 但这种平面超透镜难以直接片上集成. 本文将有限元法与遗传算法相组合发展出一种智能算法, 优化出一种宽带高效聚焦的片上集成纳米透镜. 该透镜尺寸只有2 μm × 2 μm, 可实现波长从470 nm至1734 nm的低色散聚焦, 能将大小为2 μm的激光光束通过透镜与波导的耦合聚焦成200 nm以下的光束, 耦合传播效率可达80%以上. 同时, 该智能算法能够适用于不同的纳米结构, 均可获得类似的聚焦效果和高效的耦合传播效率. 该工作为宽带高效的纳米透镜提供了重要思路, 也为实现高密度集成的纳米光子器件提供了新途径.
    As a basic optical element, optical lens is widely used for realizing the focusing, imaging and optical communication systems. Light of different wavelengths will propagate at different speeds. A beam of polychromatic light will produce chromatic dispersion after passing through a single optical device, which prevents the ordinary lenses from focusing the light of different wavelengths into a point. This means that the light of different wavelengths cannot be focused ideally. Traditional focusing systems can solve this problem by superimposing multiple lenses, but this is at the expense of increasing the complexity, weight, and cost of the system, and is not suitable for highly integrated nano-optical systems. At present, a better solution is to use the plane metalens, that is, using the metasurface to control the amplitude, phase and polarization at each point in space. However, the plane metalens is difficult to directly integrate on the chip. An intelligent algorithm developed by combining finite element method with genetic algorithm is used to optimize the design of multi-channel on-chip wavelength router devices and polarization router devices. In this paper, combining with years’ research results of the theory of multiple scattering coherent superposition of disordered media, the use of intelligent algorithm to design an on-chip integrated nano-lens that can achieve efficient focusing from the visible to the near infrared band. In the lens structure SiO2 serves as a substrate, and the arrangement structure of SiC rectangular column is designed. The substrate size is only 2 μm × 2 μm. The lens achieves low-dispersion focusing in the band from 470 nm to 1734 nm, with a focusing efficiency of over 55% at the highest level and 30% at the lowest level, and an average focusing efficiency of 42.1%. A 200-nm waveguide is added behind the focusing region. After refocusing through the waveguide, the laser beam with a size of 2 μm can be focused by the coupling of the lens and the waveguide into a beam below 200 nm in size. The focusing efficiency goes up to 80%. At the same time, the intelligent algorithm can be applied to different types of structures. The focusing lens structures composed of triangle, diamond, or circular nano columns are designed, which can achieve an approximate focusing effect and efficient coupling propagation efficiency. This work provides important ideas for developing broadband and efficient focusing nano-lens, as well as a new way to achieve the high-density integrated nanophotonic devices.
      通信作者: 王慧琴, hqwan@ncu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 91850117)资助的课题
      Corresponding author: Wang Hui-Qin, hqwan@ncu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 91850117)
    [1]

    Molesky S, Lin Z, Piggott A Y, Jin W, Vucković J, Rodriguez A W 2018 Nat. Photonics 12 659Google Scholar

    [2]

    Tanemura T, Balram K C, Ly-Gagnon D S, Wahl P, White J S, Brongersma M L, Miller D A B 2011 Nano Lett. 11 2693Google Scholar

    [3]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [4]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [5]

    Shrestha S, Overvig A C, Lu M, Stein A, Yu N 2018 Light Sci. Appl. 7 1081Google Scholar

    [6]

    Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 1367Google Scholar

    [7]

    Lu C C, Liu Z H, Wu Y, Xiao Z Y, Yu D Y, Zhang H Y, Wang C Y, Hu X Y, Liu Y C, Liu X Y, Zhang X D 2020 Adv. Opt. Mater. 8 1902018Google Scholar

    [8]

    王慧琴, 龚旗煌 2013 物理学报 62 214202Google Scholar

    Wang H Q, Gong Q H 2013 Acta Phys. Sin. 62 214202Google Scholar

    [9]

    王慧琴, 方利广, 王一凡, 余奥列 2011 物理学报 60 014203Google Scholar

    Wang H Q, Fang L G, Wang Y F, Yu A L 2011 Acta Phys. Sin. 60 014203Google Scholar

    [10]

    刘正东, 王慧琴 2009 物理学报 58 1648Google Scholar

    Liu Z D, Wang H Q 2009 Acta Phys. Sin. 58 1648Google Scholar

    [11]

    Wang H Q, Ou Y H, Han D F, Wang Y F 2011 Optoelectronics Lett. 7 179Google Scholar

    [12]

    王慧琴, 刘正东 2006 物理学报 55 2281Google Scholar

    Wang H Q, Liu Z D 2006 Acta Phys. Sin. 55 2281Google Scholar

    [13]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [14]

    John S 1991 Phys. Today 44 32Google Scholar

    [15]

    Cao H, Xu J Y, Seelig E W, Chang R P H 2000 Appl. Phys. Lett. 76 2997Google Scholar

    [16]

    Lu J, Vucković J 2013 Opt. Express 21 13351Google Scholar

    [17]

    Forrest S 1993 Science 261 872Google Scholar

    [18]

    Goh J, Fushman I, Englund D, Vucković J 2007 Opt. Express 15 8218Google Scholar

    [19]

    张静娟, 姬扬, 姚德成, 陈俊本 1996 物理学报 45 789Google Scholar

    Zhang J J, Ji Y, Yao D C, Chen J B 1996 Acta Phys. Sin. 45 789Google Scholar

  • 图 1  光经过碳化硅矩形后的衍射与干涉

    Fig. 1.  Diffraction and interference of light after passing through the silicon carbide rectangle.

    图 2  纳米透镜的结构优化示意图

    Fig. 2.  Schematic diagram of nano-lens structure optimization.

    图 3  不同波长下电场幅值分布图 (a) 500 nm; (b) 650 nm; (c) 800 nm; (d) 950 nm; (e) 1100 nm; (f) 1250 nm; (g) 1400 nm; (h) 1550 nm

    Fig. 3.  Distribution of the electric field intensity of different wavelength: (a) 500 nm; (b) 650 nm; (c) 800 nm; (d) 950 nm; (e) 1100 nm; (f) 1250 nm; (g) 1400 nm; (h) 1550 nm.

    图 4  对不同波长光的聚焦效率

    Fig. 4.  Focusing efficiency for different wavelengths of light.

    图 5  聚焦光的波导耦合输出

    Fig. 5.  Waveguide coupling output of focused light.

    图 6  光经透镜后在波导中的传播效率

    Fig. 6.  Propagation efficiency of light in a waveguide after passing through the lens.

    图 7  纳米柱结构与800 nm场幅值分布 (a) 三角形结构; (b) 菱形结构; (c) 圆形结构; (d) 三角形结构场幅值分布; (e) 菱形结构场幅值分布; (f) 圆形结构场幅值分布

    Fig. 7.  Nanoparticle structure and distribution of the electric field intensity at 800 nm: (a) Triangular structure; (b) rhombic structure; (c) circular structure; (d) the electric field intensity distribution of triangular structure; (e) the electric field intensity distribution of rhombic structure; (f) the electric field intensity distribution of circular structure.

    图 8  聚焦效率 (a) 三角形结构; (b) 菱形结构; (c) 圆形结构

    Fig. 8.  Focusing efficiency: (a) Triangular structure; (b) rhombic structure; (c) circular structure.

    图 9  (a)聚焦光的波导耦合输出; (b)光经透镜后在波导中的传播效率

    Fig. 9.  (a) Waveguide coupling output of focused light; (b) propagation efficiency of light in a waveguide after passing through the lens.

  • [1]

    Molesky S, Lin Z, Piggott A Y, Jin W, Vucković J, Rodriguez A W 2018 Nat. Photonics 12 659Google Scholar

    [2]

    Tanemura T, Balram K C, Ly-Gagnon D S, Wahl P, White J S, Brongersma M L, Miller D A B 2011 Nano Lett. 11 2693Google Scholar

    [3]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [4]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [5]

    Shrestha S, Overvig A C, Lu M, Stein A, Yu N 2018 Light Sci. Appl. 7 1081Google Scholar

    [6]

    Liu Z H, Liu X H, Xiao Z Y, Lu C C, Wang H Q, Wu Y, Hu X Y, Liu Y C, Zhang H Y, Zhang X D 2019 Optica 6 1367Google Scholar

    [7]

    Lu C C, Liu Z H, Wu Y, Xiao Z Y, Yu D Y, Zhang H Y, Wang C Y, Hu X Y, Liu Y C, Liu X Y, Zhang X D 2020 Adv. Opt. Mater. 8 1902018Google Scholar

    [8]

    王慧琴, 龚旗煌 2013 物理学报 62 214202Google Scholar

    Wang H Q, Gong Q H 2013 Acta Phys. Sin. 62 214202Google Scholar

    [9]

    王慧琴, 方利广, 王一凡, 余奥列 2011 物理学报 60 014203Google Scholar

    Wang H Q, Fang L G, Wang Y F, Yu A L 2011 Acta Phys. Sin. 60 014203Google Scholar

    [10]

    刘正东, 王慧琴 2009 物理学报 58 1648Google Scholar

    Liu Z D, Wang H Q 2009 Acta Phys. Sin. 58 1648Google Scholar

    [11]

    Wang H Q, Ou Y H, Han D F, Wang Y F 2011 Optoelectronics Lett. 7 179Google Scholar

    [12]

    王慧琴, 刘正东 2006 物理学报 55 2281Google Scholar

    Wang H Q, Liu Z D 2006 Acta Phys. Sin. 55 2281Google Scholar

    [13]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [14]

    John S 1991 Phys. Today 44 32Google Scholar

    [15]

    Cao H, Xu J Y, Seelig E W, Chang R P H 2000 Appl. Phys. Lett. 76 2997Google Scholar

    [16]

    Lu J, Vucković J 2013 Opt. Express 21 13351Google Scholar

    [17]

    Forrest S 1993 Science 261 872Google Scholar

    [18]

    Goh J, Fushman I, Englund D, Vucković J 2007 Opt. Express 15 8218Google Scholar

    [19]

    张静娟, 姬扬, 姚德成, 陈俊本 1996 物理学报 45 789Google Scholar

    Zhang J J, Ji Y, Yao D C, Chen J B 1996 Acta Phys. Sin. 45 789Google Scholar

  • [1] 刘凯越, 李腾耀, 郑娜娥, 田志富, 蔡通, 王彦朝, 曹超华. 基于迁移学习的共形超构表面散射场高效智能计算方法. 物理学报, 2024, 73(23): 234101. doi: 10.7498/aps.73.20241160
    [2] 卜梦旭, 顾文庭, 李博艺, 朱秋晨, 江雪, 他得安, 刘欣. 基于声透镜的多频经颅聚焦. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241123
    [3] 冯乃星, 王欢, 朱子贤, 董纯志, 李宏杨, 张玉贤, 杨利霞, 黄志祥. 基于极限梯度提升的完美匹配单层智能算法实现航空瞬变电磁问题高效吸收. 物理学报, 2024, 73(6): 065201. doi: 10.7498/aps.73.20231724
    [4] 杜特, 马汉斯, 姜鑫鹏, 赵芬, 张兆健, 王志成, 彭政, 张伊祎, 张煜青, 罗鸣宇, 邹宏新, 吴加贵, 闫培光, 朱刚毅, 于洋, 何新, 陈欢, 张振福, 杨俊波. 片上光互连器件的智能化设计研究进展. 物理学报, 2023, 72(18): 184204. doi: 10.7498/aps.72.20230705
    [5] 徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东. 长红外双波长共聚焦超透镜设计研究. 物理学报, 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [6] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像. 物理学报, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [7] 李家祥, 王慧琴, 徐和庆, 张华, 冯艳, 董美彤. 基于序列二次规划算法的超小尺寸微纳波长分束器的逆向设计. 物理学报, 2023, 72(19): 194101. doi: 10.7498/aps.72.20230892
    [8] 黄辉, 胡晨岩, 田梓聪, 缪秋霞, 王慧琴. 基于移动渐近线算法的大角度偏转分束器的智能设计. 物理学报, 2021, 70(23): 234102. doi: 10.7498/aps.70.20210117
    [9] 胡渝曜, 梁东, 王晶, 刘军. 基于电动可调焦透镜的大范围快速光片显微成像. 物理学报, 2020, 69(8): 088701. doi: 10.7498/aps.69.20191908
    [10] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [11] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [12] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能. 物理学报, 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [13] 高维尚, 邵诚, 高琴. 群体智能优化中的虚拟碰撞:雨林算法. 物理学报, 2013, 62(19): 190202. doi: 10.7498/aps.62.190202
    [14] 乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究. 物理学报, 2010, 59(3): 1977-1984. doi: 10.7498/aps.59.1977
    [15] 刘虹遥, 吕强, 罗海陆, 文双春. 各向异性超常材料平板透镜的聚焦特性分析. 物理学报, 2010, 59(1): 256-263. doi: 10.7498/aps.59.256
    [16] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析. 物理学报, 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [17] 罗亚梅, 吕百达. 异常空心光束通过球差光阑透镜的聚焦和在焦区的位相奇异特性. 物理学报, 2009, 58(6): 3915-3922. doi: 10.7498/aps.58.3915
    [18] 陶世荃, 凌德洪. 使用全息透镜作色散和聚焦元件的摄谱仪器. 物理学报, 1984, 33(3): 285-293. doi: 10.7498/aps.33.285
    [19] 周立伟, 艾克聪, 潘顺臣. 关于电磁复合聚焦阴极透镜的象差理论. 物理学报, 1983, 32(3): 376-392. doi: 10.7498/aps.32.376
    [20] 刘德森. 聚焦透镜棒的色差分析. 物理学报, 1982, 31(2): 226-233. doi: 10.7498/aps.31.226
计量
  • 文章访问数:  5918
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-19
  • 修回日期:  2020-08-18
  • 上网日期:  2020-12-07
  • 刊出日期:  2020-12-20

/

返回文章
返回