搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

室温磁性斯格明子材料及其应用研究进展

刘益 钱正洪 朱建国

引用本文:
Citation:

室温磁性斯格明子材料及其应用研究进展

刘益, 钱正洪, 朱建国

Research progress of room temperature magnetic skyrmion and its application

Liu Yi, Qian Zheng-Hong, Zhu Jian-Guo
PDF
HTML
导出引用
  • 磁性斯格明子是一种具有涡旋状非共线自旋结构的准粒子, 具有独特的拓扑保护特性, 可在极低电流驱动下运动, 有望在信息技术领域获得广泛应用. 从2015年开始, 科学家已经发现了多种室温磁性斯格明子材料, 例如斯格明子多层膜、人工斯格明子材料、β-Mn型单晶材料、中心对称材料(铁氧体、六方Ni2In型)等. 其中多层膜材料由于其制备工艺简单、可通过调节各膜层厚度优化性能、器件集成度高等优点而备受关注. 这些室温磁性斯格明子材料具有涌生电动势、拓扑霍尔效应、斯格明子霍尔效应等特性, 有望用来制备多种新型自旋电子器件, 例如赛道存储器、微波探测器、纳米振荡器等, 其中赛道存储器有望成为下一代非易失性、低能耗和高密度的存储器. 本文首先介绍了磁性斯格明子的基本特性, 然后综述了近年来室温磁性斯格明子材料的研究进展、制备技术及表征方法, 最后简单介绍了用室温磁性斯格明子材料研制赛道存储器、微波探测器等原型器件的研究进展, 展望了室温磁性斯格明子材料的未来发展趋势.
    It has been found that many magnetic materials possess the properties arising from skyrmions at room temperature. In addition to the common interaction energy, chiral interaction is also needed to form the skyrmion in magnetic material. There are four chiral magnetic interactions, namely: 1) Dzyaloshinskii-Moriya (DM) interaction; 2) long-ranged magnetic dipolar interaction; 3) four-spin exchange interaction; 4) frustrated exchanged interaction. Through the competition between exchange interaction and chiral interaction, magnetic skyrmion can be realized in magnetic material subject to a certain magnetic field and temperature. The skyrmion generated by the DM interaction features small size (5–100 nm), which is easy to adjust. The skyrmion can be driven by magnetic field or ultralow current density. The magnetic materials with skyrmion can exhibit the properties related to the skyrmion Hall effect, the topological Hall effect and the emergent electrodynamics, which are closely related to the skyrmion number. The existence of skyrmion in the magnetic material can be indirectly measured by topological Hall effect. The movement of skyrmion can be driven by spin polarized current in the direction either parallel or perpendicular to the current direction. The movement of the skyrmion driven by spin polarized currents will continue when the current is present, and will disappear when the current disappears. In previous studies, magnetic skyrmions were realized in a variety of materials. However magnetic skyrmions were found only in very limited types of single crystal materials at room temperature or near room temperature. In recent years, scientists have discovered a variety of magnetic skyrmion materials at room temperature, including film materials (such as multilayer materials, artificial skyrmion materials) and crystal materialssuch as β-Mn-type Co10–x/2Zn10–x/2Mnx, Fe3Sn2. Among all kinds of room temperature magnetic skyrmion materials, the most valuable one is the multilayer film material. The Skyrmion multilayer film has the advantages of small size, adjustable material type, simple preparation, good temperature stability, good device integration,etc. At the same time, skyrmion multilayer film is very easy to optimize by adjusting and constructing a special structure that has the wanted types of materials each with a certain thickness. Artificial skyrmion material obtains artificial skyrmion by constructing a micro-nano structure, therefore the artificial skyrmion with high-temperature stability can be realized by choosing high Curie temperature materials. There are a variety of materials which can realize the skyrmion above room temperature, such as Co9Zn9Mn2 (300–390 K) and Fe3Sn2 (100–400 K). These room temperature materials further widen the temperature application range of skyrmion. The room temperature materials can be prepared or characterized by a variety of techniquesincluding sputtering for fabrication and X-ray magnetic circular dichroism-photoemission electron microscopy (XMCD-PEEM) for characterization. The discovery of the magnetic skyrmion materials at room temperature not only enriches the research content of materials science, but also makes the skyrmion widely applicable in novel electronic devices (such as racetrack memory, microwave detector, oscillators). Because the skyrmion has the advantages of small size, ultra-low driving current density, and topological stability, it is expected to produce racetrack memory based on the skyrmion with low energy consumption, non-volatile and high density. The MTJ microwave detector based on skyrmion can be achieved with no external magnetic field nor bias current but with low power input (< 1.0 μW); the sensitivity of the microwave detector can reach 2000 V·W–1. The frequency of the oscillator based on skyrmion can be tuned by magnetic field or current, and moreover, the oscillato is very easy to integrate with IC. In this paper, first, the basic characteristic of magnetic skyrmion is introduced; and then room temperature magnetic skyrmion is reviewed; finally the advances of the racetrack memory, microwave detectors and oscillators are introduced, highlighting the development trend of room temperature magnetic skyrmion.
      通信作者: 钱正洪, zqian@hdu.edu.cn ; 朱建国, nic0400@scu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFF01010701)和中央高校基本科研业务费专项资金资助的课题
      Corresponding author: Qian Zheng-Hong, zqian@hdu.edu.cn ; Zhu Jian-Guo, nic0400@scu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFF01010701) and the Fundamental Research Funds for the Central Universities, China
    [1]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [2]

    Finocchio G, Büttner F, Tomasello R, Carpentieri M, Kläui M 2016 J. Phys. D: Appl. Phys. 49 423001Google Scholar

    [3]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [4]

    Zhang X, Zhou Y, Song K, Park T, Xia J, Ezawa M, Liu X, Zhao W, Zhao G, Woo S 2020 J. Phys.: Condens. Matter. 32 143001Google Scholar

    [5]

    栗佳 2017 物理 46 281Google Scholar

    Li J 2017 Physics 46 281Google Scholar

    [6]

    Skyrme T H R 1962 Nucl. Phys. 31 556Google Scholar

    [7]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

    [8]

    Sondhi S L, Karlhede A, Kivelson S A, Rezayi E H 1993 Phys. Rev. B 47 16419Google Scholar

    [9]

    Rössler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [10]

    Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [11]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [12]

    Park H S, Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotechnol. 9 337Google Scholar

    [13]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [14]

    Jiang W J, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O 2015 Science 349 283Google Scholar

    [15]

    Li J, Tan A, Moon K W, Doran A, Marcus M A, Young A T, Arenholz E, Ma S, Yang R F, Hwang C, Qiu Z Q 2014 Nat. Commun. 5 4704Google Scholar

    [16]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E 2016 Adv. Mater. 28 6887Google Scholar

    [17]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X, Heinonen O, Wang K L 2016 Nat. Mater. 13 162Google Scholar

    [18]

    Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444Google Scholar

    [19]

    Woo S, Litzius K, Krüger B, Im M, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M, Fischer P, Kläui M, Beach G S D 2016 Nat. Mater. 15 501Google Scholar

    [20]

    Jiang W, Chen G, Liu K, Zang J, Te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1Google Scholar

    [21]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar

    [22]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201Google Scholar

    [23]

    Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S, Park S, Kim Y, Kim J, Lee D, Lee O, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Commun. 9 959Google Scholar

    [24]

    Karube K, White J S, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Ronnow H M, Tokura Y, Taguchi Y 2017 Phys. Rev. Materials 1 74405Google Scholar

    [25]

    Tokunaga Y, Yu X Z, White J S, Rønnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638Google Scholar

    [26]

    侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒 2018 物理学报 67 137509Google Scholar

    Hou Z, Ding B, Li H, Xu G, Wang W, Wu G H 2018 Acta Phys. Sin. 67 137509Google Scholar

    [27]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031Google Scholar

    [28]

    Kanazawa N, Seki S, Tokura Y 2017 Adv. Mater. 29 1603227Google Scholar

    [29]

    Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tre-tiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D, Kläui M 2017 Nat. Phys. 13 170Google Scholar

    [30]

    Liu Y, Luo Y, Qian Z, Zhu J 2018 Chin. Phys. B 27 127503Google Scholar

    [31]

    Seki S, Mochizuki M 2016 Skyrmions in Magnetic Materials (Switzerland: Springer International Publishing) p35

    [32]

    Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648Google Scholar

    [33]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988Google Scholar

    [34]

    Ao P, Thouless D J 1993 Phys. Rev. Lett. 70 2158Google Scholar

    [35]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [36]

    Seki S, Tokura Y 2012 Science 336 198Google Scholar

    [37]

    Okamura Y, Kagawa F, Seki S, Tokura Y 2016 Nat. Commun. 7 12669Google Scholar

    [38]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, Bergmann K V, Kubetzka A, Wiesendanger R 2013 Science 341 636Google Scholar

    [39]

    Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S 2013 Science 340 1076Google Scholar

    [40]

    Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A, Liu K 2015 Nat. Commun. 6 8462Google Scholar

    [41]

    Karube K, White J S, Reynolds N, Gavilano J L, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow H M, Tokura Y, Taguchi Y 2016 Nat. Mater. 15 1237Google Scholar

    [42]

    Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856Google Scholar

    [43]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar

    [44]

    Cao A, Zhang X, Koopmans B, Peng S, Zhang Y, Wang Z, Yan S, Yang H, Zhao W 2018 Nanoscale 10 12062Google Scholar

    [45]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar

    [46]

    Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D, Yacoby A 2018 Nat. Commun. 9 2712Google Scholar

    [47]

    Woo S, Song K M, Zhang X, Ezawa M, Zhou Y, Liu X, Weigand M, Finizio S, Raabe J, Park M, Lee K, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Electron. 1 288Google Scholar

    [48]

    White J S, Prša K, Huang P, Omrani A A, živković I, Bartkowiak M, Berger H, Magrez A, Gavilano J L, Nagy G, Zang J, Rønnow H M 2014 Phys. Rev. Lett. 113 107203Google Scholar

    [49]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198Google Scholar

    [50]

    Chen G, Mascaraque A, Diaye A, Schmid A 2015 Appl. Phys. Lett. 106 242404Google Scholar

    [51]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boeni P 2009 Phys. Rev. Lett. 102 186602Google Scholar

    [52]

    Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J, Wang K L 2019 Nat. Electron. 2 182Google Scholar

    [53]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [54]

    Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Dieny B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar

    [55]

    Zhang X C, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293Google Scholar

    [56]

    Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H 2018 Nano Lett. 18 1274Google Scholar

    [57]

    Müller J 2017 New J. Phys. 19 25002Google Scholar

    [58]

    Leonov A O, Loudon J C, Bogdanov A N 2016 Appl. Phys. Lett. 109 172404Google Scholar

    [59]

    夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳 2018 物理学报 67 137505Google Scholar

    Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X, Zhou Y 2018 Acta Phys. Sin. 67 137505Google Scholar

    [60]

    Okamura Y, Kagawa F, Mochizuki M, Kubota M, Seki S, Ishiwata S, Kawasaki M, Onose Y, Tokura Y 2013 Nat. Commun. 4 2391Google Scholar

    [61]

    Seki S, Mochizuki M 2013 Phys. Rev. B 87 134403Google Scholar

    [62]

    Finocchio G, Ricci M, Tomasello R, Giordano A, Lanuzza M, Puliafito V, Burrascano P, Azzerboni B, Carpentieri M 2015 Appl. Phys. Lett. 107 262401Google Scholar

    [63]

    Fang B, Carpentieri M, Hao X, Jiang H, Katine J A, Krivorotov I N, Ocker B, Langer J, Wang K L, Zhang B, Azzerboni B, Amiri P K, Finocchio G, Zeng Z 2016 Nat. Commun. 7 11259Google Scholar

    [64]

    Zhang S, Wang J, Zheng Q, Zhu Q, Liu X, Chen S, Jin C, Liu Q, Jia C, Xue D 2015 New J. Phys. 17 23061Google Scholar

    [65]

    Zeng Z, Finocchio G, Jiang H 2013 Nanoscale 5 2219Google Scholar

    [66]

    Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, Akerman J 2015 Nat. Commun. 6 8193Google Scholar

    [67]

    Liu R H, Lim W L, Urazhdin S 2015 Phys. Rev. Lett. 114 137201Google Scholar

  • 图 1  不同自旋结构的斯格明子示意图 (a) 奈尔型斯格明子; (b) 布洛赫型斯格明子; (c) 奈尔型斯格明子; (d)布洛赫型斯格明子; (e)−(h) 反斯格明子; (i)单位磁矩方位示意图

    Fig. 1.  The spin structure diagram of different skyrmions: (a)Néel type skyrmion; (b) Bloch type skyrmion; (c) Néel type skyrmion; (d) Bloch type skyrmion; (e)−(h) anti-skyrmion; (i) the altitude and azimuth diagram of unit magnetic moment.

    图 2  (a)斯格明子在电流作用下的运动及电子在涌生磁场作用生成的洛伦兹力作用下的偏转[1]; (b) 斯格明子振荡示意图[1]

    Fig. 2.  (a) Skyrmion move under the flow of electrons. Electrons are deflected by the Lorentz force due to the emergent magnetic field[1]; (b) oscillation diagram of magnetic skyrmion[1].

    图 4  (a)实空间中四方和三方斯格明子晶格示意图[24]; (b) Co9Zn9Mn2单晶的温度-磁场相图(T-H)[24]

    Fig. 4.  (a) Schematic figures of a triangular-lattice skyrmion crystal (SkX) and a square like-lattice SkX in real space[24]; (b) temperature(T)- magnetic field(H) state diagram of bulk Co9Zn9Mn2[24].

    图 3  (a) Ta/CoFeB/TaOx三层膜桥式结构中斯格明子的形成[14]; (b) 在Pt/Co/MgO三层膜正方型结构中的斯格明子[21]; (c)在Pt和Ir层中Co层中DM作用的的叠加[18]; (d)在脉冲10 V电场下, 迷宫磁畴转化为斯格明子[19]; (e) 通过磁光克尔显微镜在薄膜Ta/CoFeB/TaOx直接观察到斯格明子霍尔效应[17]; (f)斯格明子霍尔角与电流密度的函数关系[17]

    Fig. 3.  (a) Skyrmion bubbles realized at the exit of a constriction of Ta/CoFeB/TaOx trilayer[14]; (b) skyrmion realized in a square of Pt/Co/MgO trilayer[21]; (c) additive DM for Co between Pt and Ir[18];(d) with the electric field pulse, the labyrinth domain is transformed into the skyrmion[19] (e) skyrmion Hall effect is clearly observed in successive Kerr microscopy images of a Ta/CoFeB/TaOx trilayer[17]; (f) phase diagram of the skyrmion Hall angle as a function of current density[17].

    图 5  (a) 垂直赛道存储器示意图; (b) 水平赛道示意图; (c) 信息读出; (d) 信息写入; (e)赛道存储器的排列示意图[53]

    Fig. 5.  (a) Schematic diagram of vertical racetrack; (b) schematic diagram of horizontal racetrack; (c) reading of information; (d) writing of information; (e) schematic diagram of racetrack storage array[53].

    图 6  (a) 微波探测器及其电路原理图; (b) 斯格明子螺旋示意图[64]

    Fig. 6.  (a) Microwave detector devices and circuit schematics; (b) skyrmion rotates around the nano-contact[64].

    表 1  手性相互作用的类型[1]

    Table 1.  Types of chiral interactions[1].

    作用机制磁偶极相
    互作用
    DM作用阻挫交
    换作用
    四自旋交换
    相互作用
    斯格明子
    尺寸/nm
    100—10005—100~1~1
    典型材料MnNiGa[16]MnSi[10]Fe3Sn2[26]Fe/Ir(111)[11]
    下载: 导出CSV

    表 2  低温磁性斯格明子材料

    Table 2.  Magnetic skyrmions materials at low temperature

    材料材料
    种类
    斯格明
    子种类
    制备方法斯格明子
    温度/K
    MnSi[10]单晶布洛赫布里奇
    曼法
    29
    Fe0.5Co0.5Si[35]单晶布洛赫布里奇
    曼法
    25
    FeGe[13]单晶布洛赫布里奇
    曼法
    60—260
    FeGe[33]单晶布洛赫布里奇
    曼法
    250—270
    Fe1–xCoxSi
    (x = 0.5)[39]
    单晶布洛赫布里奇
    曼法
    10
    Fe/Ir[11]金属超
    薄层
    奈尔型分子束
    外延法
    11
    PdFe/Ir(1 1 1)[38]金属超
    薄层
    奈尔型分子束
    外延法
    4.2
    Cu2OSeO3[36]单晶布洛赫布里奇
    曼法
    60
    FeGe1–xSix
    (x ~ 0.25)[39]
    单晶布洛赫布里奇
    曼法
    95
    下载: 导出CSV

    表 3  室温斯格明子材料

    Table 3.  Magnetic skyrmions materials at room temperature.

    材料类型典型材料制备方法斯格明子温
    度范围/K
    斯格明子的
    尺寸/nm
    薄膜材料多层膜材料Ta/CoFeB/TaOx[17]
    (Ir/Co/Pt)10[18]
    Pt/Co/Ta, Pt/CoFeB/MgO[19]
    直流溅射室温1000
    30—90
    100
    反铁磁/铁磁材料薄膜[Pt/Gd25Fe65.6Co9.4/MgO]n[23]直流溅射室温180
    人工斯格明子材料Co/Ni/Cu(001)[15]
    Co/[Co/Pd]n, Co/Pd[40]
    直流溅射室温1000
    单晶材料手性对称材料Co8Zn8Mn4[41]
    Co8Zn9Mn3[25]
    (β-Mn结构)
    布里奇曼法284—300
    311—320
    > 125
    中心对
    称材料
    铁氧体Ba(Fe1–xScxMg0.05)12O19[42]布里奇曼法室温200
    金属间化合物MnNiGa[16]布里奇曼法100—34090
    阻挫型Fe3Sn2[26]聚焦离子束技术(FIB)100—340300
    下载: 导出CSV

    表 4  室温薄膜材料中斯格明子在电流驱动下运动

    Table 4.  The motion of skyrmion in room temperature films driven by current.

    材料驱动电流/107A·cm–2移动速度/m·s–1霍尔角/(°)温度磁场/mT
    Ta/CoFeB/TaOx[17]0.620.7532室温0.52
    (Pt/Co/Ta)15[19]3.505019.4室温
    (Pt/CoFeB/MgO)15[19]5.001004.01室温
    [Pt/Gd25Fe65.6Co9.4)/MgO]20[23]3.55 5020室温145.00
    [Pt/CoFeB/MgO]15[29]4.2010030室温30.00
    下载: 导出CSV

    表 5  斯格明子材料常见制备方式

    Table 5.  Common preparation method of skyrmion materials.

    方式材料类型制备时间优点
    直流溅射薄膜材料3 h成本低, 适合工业量产
    分子束外延薄膜材料 > 1 d薄膜平整度高
    布里奇曼法单晶材料1 m制作大尺寸器件
    下载: 导出CSV

    表 6  室温斯格明子的表征技术一览表[4]

    Table 6.  List of room temperature skyrmion characterization technologies[4].

    方式分辨率
    /nm
    优点适用场景
    XMCD-
    PEEM
    ~25平面内高自
    旋分辨率
    外层磁性
    斯格明子
    STXM~25可探测磁场及电场
    敏感材料实时监控
    多层膜内部的斯
    格明子结构
    SPLEEM~10平面高分辨率高
    的测试敏感度
    原位沉积表面
    的斯格明子
    X射线
    全息术
    ~10无误差探测实时
    监控(~70 ps)
    纳米尺寸的多层
    膜内部的斯格
    明子结构
    MOKEM1000操作简单易行尺寸大于1 μm
    的斯格明子
    下载: 导出CSV
  • [1]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899Google Scholar

    [2]

    Finocchio G, Büttner F, Tomasello R, Carpentieri M, Kläui M 2016 J. Phys. D: Appl. Phys. 49 423001Google Scholar

    [3]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [4]

    Zhang X, Zhou Y, Song K, Park T, Xia J, Ezawa M, Liu X, Zhao W, Zhao G, Woo S 2020 J. Phys.: Condens. Matter. 32 143001Google Scholar

    [5]

    栗佳 2017 物理 46 281Google Scholar

    Li J 2017 Physics 46 281Google Scholar

    [6]

    Skyrme T H R 1962 Nucl. Phys. 31 556Google Scholar

    [7]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152Google Scholar

    [8]

    Sondhi S L, Karlhede A, Kivelson S A, Rezayi E H 1993 Phys. Rev. B 47 16419Google Scholar

    [9]

    Rössler U K, Bogdanov A N, Pfleiderer C 2006 Nature 442 797Google Scholar

    [10]

    Mühlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Böni P 2009 Science 323 915Google Scholar

    [11]

    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S 2011 Nat. Phys. 7 713Google Scholar

    [12]

    Park H S, Yu X, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y 2014 Nat. Nanotechnol. 9 337Google Scholar

    [13]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106Google Scholar

    [14]

    Jiang W J, Upadhyaya P, Zhang W, Yu G, Jungfleisch M B, Fradin F Y, Pearson J E, Tserkovnyak Y, Wang K L, Heinonen O 2015 Science 349 283Google Scholar

    [15]

    Li J, Tan A, Moon K W, Doran A, Marcus M A, Young A T, Arenholz E, Ma S, Yang R F, Hwang C, Qiu Z Q 2014 Nat. Commun. 5 4704Google Scholar

    [16]

    Wang W, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E 2016 Adv. Mater. 28 6887Google Scholar

    [17]

    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X, Heinonen O, Wang K L 2016 Nat. Mater. 13 162Google Scholar

    [18]

    Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, Fert A 2016 Nat. Nanotechnol. 11 444Google Scholar

    [19]

    Woo S, Litzius K, Krüger B, Im M, Caretta L, Richter K, Mann M, Krone A, Reeve R M, Weigand M, Agrawal P, Lemesh I, Mawass M, Fischer P, Kläui M, Beach G S D 2016 Nat. Mater. 15 501Google Scholar

    [20]

    Jiang W, Chen G, Liu K, Zang J, Te Velthuis S G E, Hoffmann A 2017 Phys. Rep. 704 1Google Scholar

    [21]

    Boulle O, Vogel J, Yang H, Pizzini S, de Souza Chaves D, Locatelli A, Menteş T O, Sala A, Buda-Prejbeanu L D, Klein O, Belmeguenai M, Roussigné Y, Stashkevich A, Chérif S M, Aballe L, Foerster M, Chshiev M, Auffret S, Miron I M, Gaudin G 2016 Nat. Nanotechnol. 11 449Google Scholar

    [22]

    Sun L, Cao R X, Miao B F, Feng Z, You B, Wu D, Zhang W, Hu A, Ding H F 2013 Phys. Rev. Lett. 110 167201Google Scholar

    [23]

    Woo S, Song K M, Zhang X, Zhou Y, Ezawa M, Liu X, Finizio S, Raabe J, Lee N J, Kim S, Park S, Kim Y, Kim J, Lee D, Lee O, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Commun. 9 959Google Scholar

    [24]

    Karube K, White J S, Morikawa D, Bartkowiak M, Kikkawa A, Tokunaga Y, Arima T, Ronnow H M, Tokura Y, Taguchi Y 2017 Phys. Rev. Materials 1 74405Google Scholar

    [25]

    Tokunaga Y, Yu X Z, White J S, Rønnow H M, Morikawa D, Taguchi Y, Tokura Y 2015 Nat. Commun. 6 7638Google Scholar

    [26]

    侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒 2018 物理学报 67 137509Google Scholar

    Hou Z, Ding B, Li H, Xu G, Wang W, Wu G H 2018 Acta Phys. Sin. 67 137509Google Scholar

    [27]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031Google Scholar

    [28]

    Kanazawa N, Seki S, Tokura Y 2017 Adv. Mater. 29 1603227Google Scholar

    [29]

    Litzius K, Lemesh I, Krüger B, Bassirian P, Caretta L, Richter K, Büttner F, Sato K, Tre-tiakov O A, Förster J, Reeve R M, Weigand M, Bykova I, Stoll H, Schütz G, Beach G S D, Kläui M 2017 Nat. Phys. 13 170Google Scholar

    [30]

    Liu Y, Luo Y, Qian Z, Zhu J 2018 Chin. Phys. B 27 127503Google Scholar

    [31]

    Seki S, Mochizuki M 2016 Skyrmions in Magnetic Materials (Switzerland: Springer International Publishing) p35

    [32]

    Jonietz F, Mühlbauer S, Pfleiderer C, Neubauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine R A, Everschor K, Garst M, Rosch A 2010 Science 330 1648Google Scholar

    [33]

    Yu X Z, Kanazawa N, Zhang W Z, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y 2012 Nat. Commun. 3 988Google Scholar

    [34]

    Ao P, Thouless D J 1993 Phys. Rev. Lett. 70 2158Google Scholar

    [35]

    Yu X Z, Onose Y, Kanazawa N, Park J H, Han J H, Matsui Y, Nagaosa N, Tokura Y 2010 Nature 465 901Google Scholar

    [36]

    Seki S, Tokura Y 2012 Science 336 198Google Scholar

    [37]

    Okamura Y, Kagawa F, Seki S, Tokura Y 2016 Nat. Commun. 7 12669Google Scholar

    [38]

    Romming N, Hanneken C, Menzel M, Bickel J E, Wolter B, Bergmann K V, Kubetzka A, Wiesendanger R 2013 Science 341 636Google Scholar

    [39]

    Milde P, Köhler D, Seidel J, Eng L M, Bauer A, Chacon A, Kindervater J, Mühlbauer S, Pfleiderer C, Buhrandt S 2013 Science 340 1076Google Scholar

    [40]

    Gilbert D A, Maranville B B, Balk A L, Kirby B J, Fischer P, Pierce D T, Unguris J, Borchers J A, Liu K 2015 Nat. Commun. 6 8462Google Scholar

    [41]

    Karube K, White J S, Reynolds N, Gavilano J L, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow H M, Tokura Y, Taguchi Y 2016 Nat. Mater. 15 1237Google Scholar

    [42]

    Yu X, Mostovoy M, Tokunaga Y, Zhang W, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856Google Scholar

    [43]

    Yu G, Upadhyaya P, Li X, Li W, Kim S K, Fan Y, Wong K L, Tserkovnyak Y, Amiri P K, Wang K L 2016 Nano Lett. 16 1981Google Scholar

    [44]

    Cao A, Zhang X, Koopmans B, Peng S, Zhang Y, Wang Z, Yan S, Yang H, Zhao W 2018 Nanoscale 10 12062Google Scholar

    [45]

    Soumyanarayanan A, Raju M, Oyarce A L G, Tan A K C, Im M, Petrovic A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, Panagopoulos C 2017 Nat. Mater. 16 898Google Scholar

    [46]

    Dovzhenko Y, Casola F, Schlotter S, Zhou T X, Büttner F, Walsworth R L, Beach G S D, Yacoby A 2018 Nat. Commun. 9 2712Google Scholar

    [47]

    Woo S, Song K M, Zhang X, Ezawa M, Zhou Y, Liu X, Weigand M, Finizio S, Raabe J, Park M, Lee K, Choi J W, Min B, Koo H C, Chang J 2018 Nat. Electron. 1 288Google Scholar

    [48]

    White J S, Prša K, Huang P, Omrani A A, živković I, Bartkowiak M, Berger H, Magrez A, Gavilano J L, Nagy G, Zang J, Rønnow H M 2014 Phys. Rev. Lett. 113 107203Google Scholar

    [49]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198Google Scholar

    [50]

    Chen G, Mascaraque A, Diaye A, Schmid A 2015 Appl. Phys. Lett. 106 242404Google Scholar

    [51]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boeni P 2009 Phys. Rev. Lett. 102 186602Google Scholar

    [52]

    Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J, Wang K L 2019 Nat. Electron. 2 182Google Scholar

    [53]

    Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190Google Scholar

    [54]

    Hirohata A, Yamada K, Nakatani Y, Prejbeanu I, Dieny B, Pirro P, Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711Google Scholar

    [55]

    Zhang X C, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293Google Scholar

    [56]

    Hou Z, Zhang Q, Xu G, Gong C, Ding B, Wang Y, Li H, Liu E, Xu F, Zhang H 2018 Nano Lett. 18 1274Google Scholar

    [57]

    Müller J 2017 New J. Phys. 19 25002Google Scholar

    [58]

    Leonov A O, Loudon J C, Bogdanov A N 2016 Appl. Phys. Lett. 109 172404Google Scholar

    [59]

    夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳 2018 物理学报 67 137505Google Scholar

    Xia J, Han Z Y, Song Y F, Jiang W J, Lin L R, Zhang X C, Liu X X, Zhou Y 2018 Acta Phys. Sin. 67 137505Google Scholar

    [60]

    Okamura Y, Kagawa F, Mochizuki M, Kubota M, Seki S, Ishiwata S, Kawasaki M, Onose Y, Tokura Y 2013 Nat. Commun. 4 2391Google Scholar

    [61]

    Seki S, Mochizuki M 2013 Phys. Rev. B 87 134403Google Scholar

    [62]

    Finocchio G, Ricci M, Tomasello R, Giordano A, Lanuzza M, Puliafito V, Burrascano P, Azzerboni B, Carpentieri M 2015 Appl. Phys. Lett. 107 262401Google Scholar

    [63]

    Fang B, Carpentieri M, Hao X, Jiang H, Katine J A, Krivorotov I N, Ocker B, Langer J, Wang K L, Zhang B, Azzerboni B, Amiri P K, Finocchio G, Zeng Z 2016 Nat. Commun. 7 11259Google Scholar

    [64]

    Zhang S, Wang J, Zheng Q, Zhu Q, Liu X, Chen S, Jin C, Liu Q, Jia C, Xue D 2015 New J. Phys. 17 23061Google Scholar

    [65]

    Zeng Z, Finocchio G, Jiang H 2013 Nanoscale 5 2219Google Scholar

    [66]

    Zhou Y, Iacocca E, Awad A A, Dumas R K, Zhang F C, Braun H B, Akerman J 2015 Nat. Commun. 6 8193Google Scholar

    [67]

    Liu R H, Lim W L, Urazhdin S 2015 Phys. Rev. Lett. 114 137201Google Scholar

  • [1] 史猛, 王伟伟, 杜海峰. 基于符号回归方法探索磁性斯格明子结构近似解析式. 物理学报, 2024, 73(1): 011201. doi: 10.7498/aps.73.20231473
    [2] 陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭. 基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测. 物理学报, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [3] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰. SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 物理学报, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [4] 张静言, 窦鹏伟, 赵云驰, 张石磊, 刘佳强, 祁杰, 吕浩昌, 刘若洋, 于广华, 姜勇, 沈保根, 王守国. 霍尔天平材料的多场调控. 物理学报, 2021, 70(4): 048501. doi: 10.7498/aps.70.20201799
    [5] 张真真, 黎华, 曹俊诚. 高速太赫兹探测器. 物理学报, 2018, 67(9): 090702. doi: 10.7498/aps.67.20180226
    [6] 董博闻, 张静言, 彭丽聪, 何敏, 张颖, 赵云驰, 王超, 孙阳, 蔡建旺, 王文洪, 魏红祥, 沈保根, 姜勇, 王守国. 磁性斯格明子的多场调控研究. 物理学报, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [7] 胡杨凡, 万学进, 王彪. 磁性斯格明子晶格的磁弹现象与机理. 物理学报, 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [8] 刘艺舟, 臧佳栋. 磁性斯格明子的研究现状和展望. 物理学报, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [9] 侯志鹏, 丁贝, 李航, 徐桂舟, 王文洪, 吴光恒. 宽温域跨室温磁斯格明子材料的发现及器件研究. 物理学报, 2018, 67(13): 137509. doi: 10.7498/aps.67.20180419
    [10] 梁雪, 赵莉, 邱雷, 李双, 丁丽红, 丰友华, 张溪超, 周艳, 赵国平. 磁性斯格明子的赛道存储. 物理学报, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [11] 李文静, 光耀, 于国强, 万蔡华, 丰家峰, 韩秀峰. 薄膜异质结中磁性斯格明子的相关研究. 物理学报, 2018, 67(13): 131204. doi: 10.7498/aps.67.20180549
    [12] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [13] 汪家余, 代月花, 赵远洋, 徐建彬, 杨菲, 代广珍, 杨金. 电荷俘获存储器的过擦现象. 物理学报, 2014, 63(20): 203101. doi: 10.7498/aps.63.203101
    [14] 汪家余, 赵远洋, 徐建彬, 代月花. 缺陷对电荷俘获存储器写速度影响. 物理学报, 2014, 63(5): 053101. doi: 10.7498/aps.63.053101
    [15] 孙志斌, 马海强, 雷 鸣, 杨捍东, 吴令安, 翟光杰, 冯 稷. 近红外单光子探测器. 物理学报, 2007, 56(10): 5790-5795. doi: 10.7498/aps.56.5790
    [16] 彭子龙, 韩秀峰, 赵素芬, 魏红祥, 杜关祥, 詹文山. 磁随机存储器中垂直电流驱动的磁性隧道结自由层的磁化翻转. 物理学报, 2006, 55(2): 860-864. doi: 10.7498/aps.55.860
    [17] 孙劲鹏, 王太宏. 基于库仑阻塞原理的多值存储器. 物理学报, 2003, 52(10): 2563-2568. doi: 10.7498/aps.52.2563
    [18] 徐锋, 刘辽. 瞬时响应的粒子探测器模型. 物理学报, 1988, 37(8): 1267-1274. doi: 10.7498/aps.37.1267
    [19] 陈继述. 红外薄膜热电探测器分析. 物理学报, 1974, 23(6): 51-58. doi: 10.7498/aps.23.51
    [20] А.Ф.杜纳耶切夫, Ю.Д.布罗高舒金, 唐孝威. π-介子星裂探测器. 物理学报, 1960, 16(8): 471-478. doi: 10.7498/aps.16.471
计量
  • 文章访问数:  15188
  • PDF下载量:  782
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-26
  • 修回日期:  2020-07-25
  • 上网日期:  2020-12-02
  • 刊出日期:  2020-12-05

/

返回文章
返回