-
柔性压力传感器作为一种新型的电子器件, 它在人机交互、医疗健康、机器人触觉等应用领域具有比刚性传感器更大的优势, 但也对材料提出了更严格的要求. 例如, 它要求构成器件的材料很薄、较软, 在某些情况下可贴合于人体皮肤表面或者植入体内, 这进一步要求材料具有良好的生物相容性, 并能与生物组织实现良好的力学匹配. 在器件性能方面, 柔性压力传感器的设计主要关注于灵敏度、响应时间、检测限、稳定性等性能的提高. 最近, 研究者们又将目光拓展到了器件的压力响应范围、压力分辨率、空间分辨率及拉伸性能等, 使得传感器具有更广阔的应用前景. 本篇综述介绍了近年来柔性压力传感器研究的进展, 主要包括柔性压力传感器的传感原理、传感性能及应用前景, 并最后对该类器件的发展进行了展望.As an emerging type of electronic devices, flexible pressure sensors have more advantages than rigid sensors in human-computer interaction, healthcare, and tactile sensing in robots. These advantages, however, require the materials to be thin and soft. For applications in human bodies, the sensor needs to be biocompatible and mechanically match the biotissue such that they can be conformable to the skin textures, or be implanted in the body. Sensitivity, response time, limitation of detection, and stability are basic properties to evaluate a pressure sensor. Recently, some other parameters of flexible pressure sensors including pressure response range, pressure resolution, space resolution, and stretchability have also been studied, enabling such devices to have a wider application prospect. This review introduces about the state of the arts of flexible pressure sensors in recent years, and is intended to discuss the sensing mechanisms, properties, and potential applications of flexible tactile sensors. At last, we talk about the future of flexible tactile sensors.
-
Keywords:
- flexible pressure sensor /
- wearable electronic device /
- tactile sensing /
- health monitoring
[1] Wang Y, Wu X, Mei D, Zhu L, Chen J 2019 Sens. Actuators, A. 297 111512Google Scholar
[2] Xu M, Gao Y, Yu G, Lu C, Tan J, Xuan F 2018 Sens. Actuators, A. 284 260Google Scholar
[3] Wang Y, Chen J, Mei D 2020 Sens. Actuators, A. 307 111972Google Scholar
[4] Mao R, Yao W, Qadir A, Chen W, Gao W, Xu Y, Hu H 2020 Sens. Actuators, A. 312 112144Google Scholar
[5] Wang Y, Chao M, Wan P, Zhang L 2020 Nano Energy 70 104560Google Scholar
[6] Wu Y, Karakurt I, Beker L, Kubota Y, Xu R, Ho K Y, Zhao S, Zhong J, Zhang M, Wang X, Lin L 2018 Sens. Actuators, A. 279 46Google Scholar
[7] Shi Q, Zhang Z, Chen T, Lee C 2019 Nano Energy 62 355Google Scholar
[8] Kumar A 2018 Manuf. Lett. 15 122Google Scholar
[9] Hammock M L, Chortos A, Tee B C, Tok J B, Bao Z 2013 Adv. Mater. 25 5997Google Scholar
[10] Yang T, Xie D, Li Z, Zhu H 2017 Mat. Sci. Eng. R. 115 1Google Scholar
[11] Wan Y, Wang Y, Guo C F 2017 Mater. Today Phys. 1 61Google Scholar
[12] Chen W, Yan X 2020 J. Mater. Sci. Technol. 43 175Google Scholar
[13] Niu S, Matsuhisa N, Beker L, Li J, Wang S, Wang J, Jiang Y, Yan X, Yun Y, Burnett W J N E 2019 Nat. Electron. 2 361Google Scholar
[14] Sankar S, Brown A, Balamurugan D, Nguyen H, Iskarous M, Simcox T, Kumar D, Nakagawa A, Thakor N 2019 IEEE Sensors Montreal, Canada, October 27–30, 2019 p1
[15] Tee B C K, Chortos A, Berndt A, Nguyen A K, Tom A, McGuire A, Lin Z C, Tien K, Bae W G, Wang H, Mei P, Chou H H, Cui B, Deisseroth K, Ng T N, Bao Z 2015 Science 350 313Google Scholar
[16] Zhao Z, Huang Q, Yan C, Liu Y, Zeng X, Wei X, Hu Y, Zheng Z 2020 Nano Energy 70 104528Google Scholar
[17] Qi K, Wang H, You X, Tao X, Li M, Zhou Y, Zhang Y, He J, Shao W, Cui S 2020 J. Colloid Interface Sci. 561 93Google Scholar
[18] Lee B Y, Kim J, Kim H, Kim C, Lee S D 2016 Sens. Actuators, A. 240 103Google Scholar
[19] Ma L Q, Shuai X T, Hu Y G, Liang X W, Zhu P, Sun R, Wong C P 2018 J. Mater. Chem. C. 6 13232Google Scholar
[20] Zhang X, Hu Y, Gu H, Zhu P, Jiang W, Zhang G, Sun R, Wong C P 2019 Adv. Mater. Technol. 4 1900367Google Scholar
[21] Zhang Y, Hu Y, Zhu P, Han F, Zhu Y, Sun R, Wong C P 2017 ACS Appl. Mater. Interfaces 9 35968Google Scholar
[22] Li H, Wu K, Xu Z, Wang Z, Meng Y, Li L 2018 ACS Appl. Mater. Interfaces 10 20826Google Scholar
[23] Chen Y M, He S M, Huang C H, Huang C C, Shih W P, Chu C L, Kong J, Li J, Su C Y 2016 Nanoscale 8 3555Google Scholar
[24] Narducci M, Yu Chia L, Fang W, Tsai J 2013 J. Micromech. Microeng. 23 055007Google Scholar
[25] Shi H, Al Rubaiai M, Holbrook C M, Miao J, Pinto T, Wang C, Tan X 2019 Adv. Funct. Mater. 29 1903020Google Scholar
[26] Tolvanen J, Hannu J, Jantunen H 2017 IEEE Sens. J. 17 4735Google Scholar
[27] Pruvost M, Smit W, Monteux C, Poulin P, Colin A 2019 npj Flexible Electron. 3 1Google Scholar
[28] Wan S, Bi H, Zhou Y, Xie X, Su S, Yin K, Sun L 2017 Carbon 114 209Google Scholar
[29] Luo Y, Shao J, Chen S, Chen X, Tian H, Li X, Wang L, Wang D, Lu B 2019 ACS Appl. Mater. Interfaces 11 17796Google Scholar
[30] Cheng M Y, Lin C L, Lai Y T, Yang Y J 2010 Sensors (Basel) 10 10211Google Scholar
[31] Bai N, Wang L, Wang Q, Deng J, Wang Y, Lu P, Huang J, Li G, Zhang Y, Yang J, Xie K, Zhao X, Guo C F 2020 Nat. Commun. 11 209Google Scholar
[32] Pereira V, Castro Neto A, Peres N M R 2009 Phys. Rev. B. 80 045401
[33] Toriyama T, Sugiyama S 2002 J. Microelectromech. Syst. 11 598Google Scholar
[34] Timsit R 1999 IEEE Trans. Compon. Packaging Technol. 22 85Google Scholar
[35] Zhang H D, Liu Y J, Zhang J, Zhu J W, Qin Q H, Zhao C Z, Li X, Zhang J C, Long Y Z 2018 J. Phys. D: Appl. Phys. 51 085102Google Scholar
[36] He Z, Byun J H, Zhou G, Park B J, Kim T H, Lee S B, Yi J W, Um M K, Chou T W 2019 Carbon 146 701Google Scholar
[37] Tee B C, Wang C, Allen R, Bao Z 2012 Nat. Nanotechnol. 7 825Google Scholar
[38] Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I 2014 Adv. Mater. 26 3451Google Scholar
[39] Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z 2014 Nat. Commun. 5 3002Google Scholar
[40] Li Q, Jia Y, Yang X, et al. 2019 ACS Appl. Mater. Interfaces 11 31Google Scholar
[41] Pang C, Lee G Y, Kim T I, Kim S M, Kim H N, Ahn S H, Suh K Y 2012 Nat. Mater. 11 795Google Scholar
[42] Park J, Lee Y, Hong J, Lee Y, Ha M, Jung Y, Lim H, Kim S Y, Ko H 2014 ACS Nano 8 12020Google Scholar
[43] Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y, Ko H 2014 ACS Nano 8 4689Google Scholar
[44] Su B, Gong S, Ma Z, Yap L W, Cheng W 2015 Small 11 1886Google Scholar
[45] Tian G, Deng W L, Gao Y Y, Xiong D, Yan C, He X B, Yang T, Jin L, Chu X, Zhang H T, Yan W, Yang W Q 2019 Nano Energy 59 574Google Scholar
[46] Noh M S, Kim S, Hwang D K, Kang C Y 2017 Sens. Actuators A 261 288Google Scholar
[47] Tolvanen J, Hannu J, Juuti J, Jantunen H 2018 Electron. Mater. Lett. 14 113Google Scholar
[48] Min Gyu K, Woo Suk J, Chong Yun K, Seok Jin Y 2016 Actuators 5 5Google Scholar
[49] Cherumannil Karumuthil S, Singh K, Valiyaneerilakkal U, Akhtar J, Varghese S 2020 Sens. Actuators, A. 303 111677Google Scholar
[50] Kim H, Torres F, Wu Y Y, Villagran D, Lin Y R, Tseng T L 2017 Smart Mater. Struct. 26 085027Google Scholar
[51] Dagdeviren C, Su Y, Joe P, Yona R, Liu Y, Kim Y S, Huang Y, Damadoran A R, Xia J, Martin L W, Huang Y, Rogers J A 2014 Nat. Commun. 5 4496Google Scholar
[52] Kim H, Torres F, Villagran D, Stewart C, Lin Y R, Tseng T L B 2017 Macromol. Mater. Eng. 302 1700229Google Scholar
[53] Yang Y, Pan H, Xie G Z, Jiang Y D, Chen C X, Su Y J, Wang Y, Tai H L 2020 Sens. Actuators A 301 111789Google Scholar
[54] Chen Z F, Wang Z, Li X M, Lin Y X, Luo N Q, Long M Z, Zhao N, Xu J B 2017 ACS Nano 11 4507Google Scholar
[55] Garcia C, Trendafilova I, Guzman de Villoria R, Sanchez del Rio J 2018 Nano Energy 50 401Google Scholar
[56] Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328Google Scholar
[57] Das P S, Chhetry A, Maharjan P, Rasel M S, Park J Y 2019 Nano Res. 12 1789Google Scholar
[58] Zhao X, Chen B, Wei G, Wu J M, Han W, Yang Y 2019 Adv. Mater. Technol. 4 1800723Google Scholar
[59] Ryu S, Lee P, Chou J B, Xu R, Zhao R, Hart A J, Kim S G 2015 ACS Nano 9 5929Google Scholar
[60] Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H, Bao Z 2011 Nat. Nanotechnol. 6 788Google Scholar
[61] Wang Z, Jiang R, Li G, Chen Y, Tang Z, Wang Y, Liu Z, Jiang H, Zhi C 2017 ACS Appl. Mater. Interfaces 9 22685Google Scholar
[62] Gao J F, Li B, Huang X W, Wang L, Lin L W, Wang H, Xue H G 2019 Chem. Eng. J. 373 298Google Scholar
[63] Tung T T, Karunagaran R, Tran D N H, Gao B S, Nag Chowdhury S, Pillin I, Castro M, Feller J F, Losic D 2016 J. Mater. Chem. C 4 3422Google Scholar
[64] Xu F, Zhu Y 2012 Adv. Mater. 24 5117Google Scholar
[65] Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, Wang Z L 2008 Nano Lett. 8 3035Google Scholar
[66] Muthukumar N, Thilagavathi G, Kannaian T 2016 High Perform. Polym. 28 368Google Scholar
[67] Park H, Jeong Y R, Yun J, Hong S Y, Jin S, Lee S J, Zi G, Ha J S 2015 ACS Nano 9 9974Google Scholar
[68] Luo M Y, Li M F, Li Y Q, Chang K Q, Liu K, Liu Q Z, Wang Y D, Lu Z T, Liu X, Wang D 2017 Compos. Commun. 6 68Google Scholar
[69] Luo C, Liu N S, Zhang H, Liu W J, Yue Y, Wang S L, Rao J Y, Yang C X, Su J, Jiang X L, Gao Y H 2017 Nano Energy 41 527Google Scholar
[70] Jang H H, Park J S, Choi B 2019 Sens. Actuators A 286 107Google Scholar
[71] Cho S H, Lee S W, Yu S, Kim H, Chang S, Kang D, Hwang I, Kang H S, Jeong B, Kim E H, Cho S M, Kim K L, Lee H, Shim W, Park C 2017 ACS Appl. Mater. Interfaces 9 10128Google Scholar
[72] Zhang S, Wang F, Peng H, Yan J, Pan G 2018 ACS Omega 3 3014Google Scholar
[73] Yoon S G, Park B J, Chang S T 2017 ACS Appl. Mater. Interfaces 9 36206Google Scholar
[74] Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Ko S H 2012 Adv. Mater. 24 3326Google Scholar
[75] Liang J, Li L, Tong K, Ren Z, Hu W, Niu X, Chen Y, Pei Q 2014 ACS Nano 8 1590Google Scholar
[76] Graz I M, Cotton D P J, Lacour S P 2009 Appl. Phys. Lett. 94 071902Google Scholar
[77] Huang S, Liu Y, Zhao Y, Ren Z, Guo C F 2018 Adv. Funct. Mater. 29 1805924
[78] Keplinger C, Sun J Y, Foo C C, Rothemund P, Whitesides G M, Suo Z 2013 Science 341 984Google Scholar
[79] Yang C H, Suo Z G 2018 Nat. Rev. Mater. 3 125Google Scholar
[80] Kang D, Pikhitsa P V, Choi Y W, Lee C, Shin S S, Piao L, Park B, Suh K Y, Kim T, Choi M 2014 Nature 516 222Google Scholar
[81] Wang X, Zhang H, Dong L, Han X, Du W, Zhai J, Pan C, Wang Z L 2016 Adv. Mater. 28 2896Google Scholar
[82] Ma M Y, Zhang Z, Liao Q L, Yi F, Han L H, Zhang G J, Liu S, Liao X Q, Zhang Y 2017 Nano Energy 32 389Google Scholar
[83] Pan C F, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y, Wang Z L 2013 Nat. Photonics 7 752Google Scholar
[84] Chen H, Miao L, Su Z, Song Y, Han M, Chen X, Cheng X, Chen D, Zhang H 2017 Nano Energy 40 65Google Scholar
[85] Liang Z, Cheng J, Zhao Q, Zhao X, Han Z, Chen Y, Ma Y, Feng X 2019 Adv. Mater. Technol. 4 1900317Google Scholar
[86] Kim J, Lee M, Shim H J, Ghaffari R, Cho H R, Son D, Jung Y H, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee S T, Kim J H, Choi S H, Hyeon T, Kim D H 2014 Nat. Commun. 5 5747Google Scholar
[87] Sim K, Rao Z, Zou Z, Ershad F, Lei J, Thukral A, Chen J, Huang Q A, Xiao J, Yu C 2019 Sci. Adv. 5 eaav9653Google Scholar
[88] Kim J S, Lee S C, Hwang J, Lee E, Cho K, Kim S J, Kim D H, Lee W H 2020 Adv. Funct. Mater. 30 2070089Google Scholar
[89] Liu H, Li M, Ouyang C, Lu T J, Li F, Xu F 2018 Small 14 1801711Google Scholar
[90] Lei Z, Wu P 2018 Nat. Commun. 9 1134Google Scholar
[91] Liao M, Wan P, Wen J, Gong M, Wu X, Wang Y, Shi R, Zhang L 2017 Adv. Funct. Mater. 27 1703852Google Scholar
[92] Ding H, Xin Z, Yang Y, Luo Y, Xia K, Wang B, Sun Y, Wang J, Zhang Y, Wu H, Fan S, Zhang L, Liu K 2020 Adv. Funct. Mater. 30 1909616Google Scholar
[93] Wu Y Z, Liu Y W, Zhou Y L, Man Q K, Hu C, Asghar W, Li F L, Yu Z, Shang J, Liu G, Liao M Y, Li R W 2018 Sci. Robot. 3 eaat0429Google Scholar
[94] Chou H H, Nguyen A, Chortos A, To J W F, Lu C, Mei J, Kurosawa T, Bae W G, Tok J B H, Bao Z 2015 Nat. Commun. 6 8011Google Scholar
[95] Meng K, Wu Y, He Q, Zhou Z, Wang X, Zhang G, Fan W, Liu J, Yang J 2019 ACS Appl. Mater. Interfaces 11 46399Google Scholar
[96] Li X, Fan Y J, Li H Y, Cao J W, Xiao Y C, Wang Y, Liang F, Wang H L, Jiang Y, Wang Z L, Zhu G 2020 ACS Nano
[97] Chen S, Wu N, Lin S, Duan J, Xu Z, Pan Y, Zhang H, Xu Z, Huang L, Hu B, Zhou J 2020 Nano Energy 70 104460Google Scholar
[98] Lin Z, Yang J, Li X, Wu Y, Wei W, Liu J, Chen J, Yang J 2018 Adv. Funct. Mater. 28 1704112.1
[99] Min S D, Yun Y, Shin H 2014 IEEE Sens. J. 14 3245Google Scholar
[100] Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang Z L 2017 Adv. Mater. 29 1703700Google Scholar
[101] Deng C, Tang W, Liu L, Chen B, Li M, Wang Z L 2018 Adv. Funct. Mater. 28 1801606Google Scholar
[102] Ying H, Zhang Y, Cheng J 2014 Nat. Commun. 5 3218Google Scholar
[103] Boutry C M, Nguyen A, Lawal Q O, Chortos A, Rondeau Gagné S, Bao Z 2015 Adv. Mater. 27 6954Google Scholar
[104] Li Z, Feng H, Zheng Q, Li H, Zhao C, Ouyang H, Noreen S, Yu M, Su F, Liu R, Li L, Wang Z L, Li Z 2018 Nano Energy 54 390Google Scholar
[105] Jiang D, Shi B, Ouyang H, Fan Y, Wang Z L, Li Z 2020 ACS Nano 14 6436Google Scholar
[106] Zhang P, Chen Y, Guo Z H, Guo W, Pu X, Wang Z L 2020 Adv. Funct. Mater. 30 1909252Google Scholar
[107] Wang F, Jiang J, Liu Q, Zhang Y, Wang J, Wang S, Han L, Liu H, Sang Y 2020 Nano Energy 70 104457Google Scholar
[108] Xiao K, Wan C, Jiang L, Chen X, Antonietti M 2020 Adv. Mater. 32 e2000218Google Scholar
-
图 2 电容型压力传感器和电阻型压力传感器 (a) 基于电双层的电容型压力传感器, 含有多级非稳态自补偿结构[31]; (b) 半球、倾斜微柱、没有高度梯度的自补偿结构、多级非稳态自补偿结构在压力下电极与微结构接触面积变化情况[31]; (c) 基于互锁结构的电阻型压力传感器[43]; (d) 无微结构、单侧球状微结构、互锁结构在压力下电阻变化情况[43]
Fig. 2. Capacitive pressure sensor and resistive pressure sensor: (a) Graded intrafillable architecture (GIA)-based iontronic pressure sensor with ultra-broad-range high sensitivity[31]; (b) comparison in contact area of electrode and microstructure among hemisphere, tilted pillar, intrafillable pillar without gradient and GIA[31]; (c) resistive pressure sensor with interlocked microdome arrays[43]; (d)the change in resistance among planar, single microdomes and interlocked microdomes[43].
图 3 压电型压力传感器和摩擦电型压力传感器 (a)基于PDA修饰
$ \mathrm{B}\mathrm{a}\mathrm{T}\mathrm{i}{\mathrm{O}}_{3} $ (BTO)的压电型压力传感器原理示意图[53]; (b)不同质量分数的PDA@BTO纳米颗粒对压力作用下输出电压、电流能力的影响[53]; (c)在砂纸上固化PDMS作为摩擦材料制备的压力传感器[57]; (d)不同压力范围内该传感器的灵敏度[57]Fig. 3. Piezoelectric pressure sensor and triboelectric pressure sensor: (a) Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film[53]; (b) the output voltages and currents of pressure sensors with different contents of PDA@BTO nanoparticles[53]; (c) a flexible self-powered pressure sensor with coarse PDMS[57]; (d) pressure sensitivity indicating different sensitivities at different pressure regimes[57].
图 4 压力响应范围 (a) 利用PZT制作的阵列型压力传感器. PDMS薄膜被真空镊子夹住轻置于传感器上[51]; (b) 通过计算得到PDMS薄膜和传感器接触带来的压力分布示意图[51]; (c) 基于多级非稳态自补偿结构的传感器与其他类型传感器相比具有极宽的压力响应范围和较高的灵敏度[31]
Fig. 4. Response range: (a) Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response. PDMS film was held by a vacuum tweezer[51]; (b) map of contact pressure. Calculated pressure associated with contact between a PDMS post (1 mm thick) and an array of PZT elements on silicone[51]; (c) graded intrafillable architecture-based iontronic pressure sensor has ultrahigh pressure response range and sensitivity[31].
图 5 空间分辨率 (a) 基于交叉定位技术设计传感器阵列[81]; (b) 基于纳米线发光二极管的传感器阵列, 可以准确地反映受压区域.如这里用“ABC”字母模板施加压力[83]; (c) 传感器阵列对手势的追踪响应[81]; (d) 从没有应变到–0.15%的应变, 发光二极管的强度变化[83]
Fig. 5. Space resolution: (a) Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix based on cross location technique[81]; (b) high-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. A convex character pattern, such as ‘ABC’, is used to apply the pressure pattern on top of the ITO electrode[83]; (c) sensor array tracks to gesture and gives pressure distribution map[81]; (d) electroluminescence images of the device at strains of 0 and –0.15%, respectively[83].
图 6 压力分辨率 (a)把质量十分轻的不同物品放在3块砖(320 kPa)上[31]; (b)增加的压力为300, 40, 18 Pa时检测到的电容值变化[31]; (c)把传感器压在汽车轮胎下[31]; (d)在汽车上装上和卸下一箱纸巾, 检测对应的电容值变化[31]; (e)体重为50 kg的女性上车和下车, 检测对应的电容值变化[31]
Fig. 6. Pressure sensor with high pressure resolution: (a) Detection of different micro pressure objects placed on three concrete bricks weighing 320 kPa[31]; (b) capacitance signals corresponding to panel[31]; (c) experimental set-up of a car with a GIA-based iontronic pressure sensor bonded under a rear tire, the test frequency is 10 kHz[31]; (d) capacitance signals corresponding to a loaded, unloaded, and reloaded 1.7 kg bag of paper towels in the trunk of the car[31]; (e) capacitance signals corresponding to a 50 kg female passenger getting into and out of the car[31].
图 7 压力传感器用于触觉感知 (a) 超薄单晶硅纳米带制作的电子皮肤中压力传感模块示意图和扫描电镜图[86]; (b) 贴附电子皮肤的假肢在敲键盘和抓球时电阻的变化[86]; (c) 能够像变色龙一样随着环境变化的传感器, 颜色变化主要由电致变色高分子来提供[94]; (d) 对该传感器间歇性施加不同的压力, 有明显的颜色变化[94]
Fig. 7. Pressure sensor used for tactile sensing: (a) Schematic and scanning electron microscope image showing the working principle of the Si nanoribbon pressure sensor with a cavity[86]; (b) resistance change when prosthetic limb taps a keyboard and catches a baseball[86]; (c) a chameleon-inspired stretchable electronic skin with interactive color changing controlled by tactile sensing[94]; (d) the change of colors under different pressures[94].
图 8 压力传感器用于健康监测 (a) 同时用商用检测设备和基于该压力传感器搭建的检测系统对指尖脉搏进行检测[95]; (b) 使用该压力传感器检测35岁(左)和65岁(右)受试者得到的指尖脉搏波形[95]; (c) 基于摩擦电型压力传感器阵列制备的床单, 小图展示了它由导电纤维和中间的PET薄膜构成[98]; (d) 人的身体姿势和位置与对应的压力分布示意图(左), 受试者睡觉时不同区域压力指数分布直方图(右)[98]; (e) 晚上23:00—早上08:00睡眠期间活动次数的分时直方图和相应的睡眠质量报告[98]
Fig. 8. Health monitoring: (a) Simultaneous fingertip-pulse wave monitoring using the intelligent arteriosclerosis monitoring system based on fingertip-contact pressure sensor and a commercial medical monitor[95]; (b) fingertip-pulse waveforms of a 35-year-old participant (left) and a 65-year-old participant (right) [95]; (c) illustration of TENG -array-based smart textile. Inset is an enlarged view of one TENG unit of the smart textile[98]; (d) graphical user interface of the human body’s posture, position, and pressure distribution (left). Diagrams showing the press number distribution of a sleeper over an entire night (right)[98]; (e) time-sharing histogram of active number during the sleeping period of 23:00 PM to 08:00 AM and the correspondingly generated sleep quality report[98].
-
[1] Wang Y, Wu X, Mei D, Zhu L, Chen J 2019 Sens. Actuators, A. 297 111512Google Scholar
[2] Xu M, Gao Y, Yu G, Lu C, Tan J, Xuan F 2018 Sens. Actuators, A. 284 260Google Scholar
[3] Wang Y, Chen J, Mei D 2020 Sens. Actuators, A. 307 111972Google Scholar
[4] Mao R, Yao W, Qadir A, Chen W, Gao W, Xu Y, Hu H 2020 Sens. Actuators, A. 312 112144Google Scholar
[5] Wang Y, Chao M, Wan P, Zhang L 2020 Nano Energy 70 104560Google Scholar
[6] Wu Y, Karakurt I, Beker L, Kubota Y, Xu R, Ho K Y, Zhao S, Zhong J, Zhang M, Wang X, Lin L 2018 Sens. Actuators, A. 279 46Google Scholar
[7] Shi Q, Zhang Z, Chen T, Lee C 2019 Nano Energy 62 355Google Scholar
[8] Kumar A 2018 Manuf. Lett. 15 122Google Scholar
[9] Hammock M L, Chortos A, Tee B C, Tok J B, Bao Z 2013 Adv. Mater. 25 5997Google Scholar
[10] Yang T, Xie D, Li Z, Zhu H 2017 Mat. Sci. Eng. R. 115 1Google Scholar
[11] Wan Y, Wang Y, Guo C F 2017 Mater. Today Phys. 1 61Google Scholar
[12] Chen W, Yan X 2020 J. Mater. Sci. Technol. 43 175Google Scholar
[13] Niu S, Matsuhisa N, Beker L, Li J, Wang S, Wang J, Jiang Y, Yan X, Yun Y, Burnett W J N E 2019 Nat. Electron. 2 361Google Scholar
[14] Sankar S, Brown A, Balamurugan D, Nguyen H, Iskarous M, Simcox T, Kumar D, Nakagawa A, Thakor N 2019 IEEE Sensors Montreal, Canada, October 27–30, 2019 p1
[15] Tee B C K, Chortos A, Berndt A, Nguyen A K, Tom A, McGuire A, Lin Z C, Tien K, Bae W G, Wang H, Mei P, Chou H H, Cui B, Deisseroth K, Ng T N, Bao Z 2015 Science 350 313Google Scholar
[16] Zhao Z, Huang Q, Yan C, Liu Y, Zeng X, Wei X, Hu Y, Zheng Z 2020 Nano Energy 70 104528Google Scholar
[17] Qi K, Wang H, You X, Tao X, Li M, Zhou Y, Zhang Y, He J, Shao W, Cui S 2020 J. Colloid Interface Sci. 561 93Google Scholar
[18] Lee B Y, Kim J, Kim H, Kim C, Lee S D 2016 Sens. Actuators, A. 240 103Google Scholar
[19] Ma L Q, Shuai X T, Hu Y G, Liang X W, Zhu P, Sun R, Wong C P 2018 J. Mater. Chem. C. 6 13232Google Scholar
[20] Zhang X, Hu Y, Gu H, Zhu P, Jiang W, Zhang G, Sun R, Wong C P 2019 Adv. Mater. Technol. 4 1900367Google Scholar
[21] Zhang Y, Hu Y, Zhu P, Han F, Zhu Y, Sun R, Wong C P 2017 ACS Appl. Mater. Interfaces 9 35968Google Scholar
[22] Li H, Wu K, Xu Z, Wang Z, Meng Y, Li L 2018 ACS Appl. Mater. Interfaces 10 20826Google Scholar
[23] Chen Y M, He S M, Huang C H, Huang C C, Shih W P, Chu C L, Kong J, Li J, Su C Y 2016 Nanoscale 8 3555Google Scholar
[24] Narducci M, Yu Chia L, Fang W, Tsai J 2013 J. Micromech. Microeng. 23 055007Google Scholar
[25] Shi H, Al Rubaiai M, Holbrook C M, Miao J, Pinto T, Wang C, Tan X 2019 Adv. Funct. Mater. 29 1903020Google Scholar
[26] Tolvanen J, Hannu J, Jantunen H 2017 IEEE Sens. J. 17 4735Google Scholar
[27] Pruvost M, Smit W, Monteux C, Poulin P, Colin A 2019 npj Flexible Electron. 3 1Google Scholar
[28] Wan S, Bi H, Zhou Y, Xie X, Su S, Yin K, Sun L 2017 Carbon 114 209Google Scholar
[29] Luo Y, Shao J, Chen S, Chen X, Tian H, Li X, Wang L, Wang D, Lu B 2019 ACS Appl. Mater. Interfaces 11 17796Google Scholar
[30] Cheng M Y, Lin C L, Lai Y T, Yang Y J 2010 Sensors (Basel) 10 10211Google Scholar
[31] Bai N, Wang L, Wang Q, Deng J, Wang Y, Lu P, Huang J, Li G, Zhang Y, Yang J, Xie K, Zhao X, Guo C F 2020 Nat. Commun. 11 209Google Scholar
[32] Pereira V, Castro Neto A, Peres N M R 2009 Phys. Rev. B. 80 045401
[33] Toriyama T, Sugiyama S 2002 J. Microelectromech. Syst. 11 598Google Scholar
[34] Timsit R 1999 IEEE Trans. Compon. Packaging Technol. 22 85Google Scholar
[35] Zhang H D, Liu Y J, Zhang J, Zhu J W, Qin Q H, Zhao C Z, Li X, Zhang J C, Long Y Z 2018 J. Phys. D: Appl. Phys. 51 085102Google Scholar
[36] He Z, Byun J H, Zhou G, Park B J, Kim T H, Lee S B, Yi J W, Um M K, Chou T W 2019 Carbon 146 701Google Scholar
[37] Tee B C, Wang C, Allen R, Bao Z 2012 Nat. Nanotechnol. 7 825Google Scholar
[38] Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I 2014 Adv. Mater. 26 3451Google Scholar
[39] Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z 2014 Nat. Commun. 5 3002Google Scholar
[40] Li Q, Jia Y, Yang X, et al. 2019 ACS Appl. Mater. Interfaces 11 31Google Scholar
[41] Pang C, Lee G Y, Kim T I, Kim S M, Kim H N, Ahn S H, Suh K Y 2012 Nat. Mater. 11 795Google Scholar
[42] Park J, Lee Y, Hong J, Lee Y, Ha M, Jung Y, Lim H, Kim S Y, Ko H 2014 ACS Nano 8 12020Google Scholar
[43] Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y, Ko H 2014 ACS Nano 8 4689Google Scholar
[44] Su B, Gong S, Ma Z, Yap L W, Cheng W 2015 Small 11 1886Google Scholar
[45] Tian G, Deng W L, Gao Y Y, Xiong D, Yan C, He X B, Yang T, Jin L, Chu X, Zhang H T, Yan W, Yang W Q 2019 Nano Energy 59 574Google Scholar
[46] Noh M S, Kim S, Hwang D K, Kang C Y 2017 Sens. Actuators A 261 288Google Scholar
[47] Tolvanen J, Hannu J, Juuti J, Jantunen H 2018 Electron. Mater. Lett. 14 113Google Scholar
[48] Min Gyu K, Woo Suk J, Chong Yun K, Seok Jin Y 2016 Actuators 5 5Google Scholar
[49] Cherumannil Karumuthil S, Singh K, Valiyaneerilakkal U, Akhtar J, Varghese S 2020 Sens. Actuators, A. 303 111677Google Scholar
[50] Kim H, Torres F, Wu Y Y, Villagran D, Lin Y R, Tseng T L 2017 Smart Mater. Struct. 26 085027Google Scholar
[51] Dagdeviren C, Su Y, Joe P, Yona R, Liu Y, Kim Y S, Huang Y, Damadoran A R, Xia J, Martin L W, Huang Y, Rogers J A 2014 Nat. Commun. 5 4496Google Scholar
[52] Kim H, Torres F, Villagran D, Stewart C, Lin Y R, Tseng T L B 2017 Macromol. Mater. Eng. 302 1700229Google Scholar
[53] Yang Y, Pan H, Xie G Z, Jiang Y D, Chen C X, Su Y J, Wang Y, Tai H L 2020 Sens. Actuators A 301 111789Google Scholar
[54] Chen Z F, Wang Z, Li X M, Lin Y X, Luo N Q, Long M Z, Zhao N, Xu J B 2017 ACS Nano 11 4507Google Scholar
[55] Garcia C, Trendafilova I, Guzman de Villoria R, Sanchez del Rio J 2018 Nano Energy 50 401Google Scholar
[56] Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328Google Scholar
[57] Das P S, Chhetry A, Maharjan P, Rasel M S, Park J Y 2019 Nano Res. 12 1789Google Scholar
[58] Zhao X, Chen B, Wei G, Wu J M, Han W, Yang Y 2019 Adv. Mater. Technol. 4 1800723Google Scholar
[59] Ryu S, Lee P, Chou J B, Xu R, Zhao R, Hart A J, Kim S G 2015 ACS Nano 9 5929Google Scholar
[60] Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H, Bao Z 2011 Nat. Nanotechnol. 6 788Google Scholar
[61] Wang Z, Jiang R, Li G, Chen Y, Tang Z, Wang Y, Liu Z, Jiang H, Zhi C 2017 ACS Appl. Mater. Interfaces 9 22685Google Scholar
[62] Gao J F, Li B, Huang X W, Wang L, Lin L W, Wang H, Xue H G 2019 Chem. Eng. J. 373 298Google Scholar
[63] Tung T T, Karunagaran R, Tran D N H, Gao B S, Nag Chowdhury S, Pillin I, Castro M, Feller J F, Losic D 2016 J. Mater. Chem. C 4 3422Google Scholar
[64] Xu F, Zhu Y 2012 Adv. Mater. 24 5117Google Scholar
[65] Zhou J, Gu Y, Fei P, Mai W, Gao Y, Yang R, Bao G, Wang Z L 2008 Nano Lett. 8 3035Google Scholar
[66] Muthukumar N, Thilagavathi G, Kannaian T 2016 High Perform. Polym. 28 368Google Scholar
[67] Park H, Jeong Y R, Yun J, Hong S Y, Jin S, Lee S J, Zi G, Ha J S 2015 ACS Nano 9 9974Google Scholar
[68] Luo M Y, Li M F, Li Y Q, Chang K Q, Liu K, Liu Q Z, Wang Y D, Lu Z T, Liu X, Wang D 2017 Compos. Commun. 6 68Google Scholar
[69] Luo C, Liu N S, Zhang H, Liu W J, Yue Y, Wang S L, Rao J Y, Yang C X, Su J, Jiang X L, Gao Y H 2017 Nano Energy 41 527Google Scholar
[70] Jang H H, Park J S, Choi B 2019 Sens. Actuators A 286 107Google Scholar
[71] Cho S H, Lee S W, Yu S, Kim H, Chang S, Kang D, Hwang I, Kang H S, Jeong B, Kim E H, Cho S M, Kim K L, Lee H, Shim W, Park C 2017 ACS Appl. Mater. Interfaces 9 10128Google Scholar
[72] Zhang S, Wang F, Peng H, Yan J, Pan G 2018 ACS Omega 3 3014Google Scholar
[73] Yoon S G, Park B J, Chang S T 2017 ACS Appl. Mater. Interfaces 9 36206Google Scholar
[74] Lee P, Lee J, Lee H, Yeo J, Hong S, Nam K H, Lee D, Lee S S, Ko S H 2012 Adv. Mater. 24 3326Google Scholar
[75] Liang J, Li L, Tong K, Ren Z, Hu W, Niu X, Chen Y, Pei Q 2014 ACS Nano 8 1590Google Scholar
[76] Graz I M, Cotton D P J, Lacour S P 2009 Appl. Phys. Lett. 94 071902Google Scholar
[77] Huang S, Liu Y, Zhao Y, Ren Z, Guo C F 2018 Adv. Funct. Mater. 29 1805924
[78] Keplinger C, Sun J Y, Foo C C, Rothemund P, Whitesides G M, Suo Z 2013 Science 341 984Google Scholar
[79] Yang C H, Suo Z G 2018 Nat. Rev. Mater. 3 125Google Scholar
[80] Kang D, Pikhitsa P V, Choi Y W, Lee C, Shin S S, Piao L, Park B, Suh K Y, Kim T, Choi M 2014 Nature 516 222Google Scholar
[81] Wang X, Zhang H, Dong L, Han X, Du W, Zhai J, Pan C, Wang Z L 2016 Adv. Mater. 28 2896Google Scholar
[82] Ma M Y, Zhang Z, Liao Q L, Yi F, Han L H, Zhang G J, Liu S, Liao X Q, Zhang Y 2017 Nano Energy 32 389Google Scholar
[83] Pan C F, Dong L, Zhu G, Niu S M, Yu R M, Yang Q, Liu Y, Wang Z L 2013 Nat. Photonics 7 752Google Scholar
[84] Chen H, Miao L, Su Z, Song Y, Han M, Chen X, Cheng X, Chen D, Zhang H 2017 Nano Energy 40 65Google Scholar
[85] Liang Z, Cheng J, Zhao Q, Zhao X, Han Z, Chen Y, Ma Y, Feng X 2019 Adv. Mater. Technol. 4 1900317Google Scholar
[86] Kim J, Lee M, Shim H J, Ghaffari R, Cho H R, Son D, Jung Y H, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee S T, Kim J H, Choi S H, Hyeon T, Kim D H 2014 Nat. Commun. 5 5747Google Scholar
[87] Sim K, Rao Z, Zou Z, Ershad F, Lei J, Thukral A, Chen J, Huang Q A, Xiao J, Yu C 2019 Sci. Adv. 5 eaav9653Google Scholar
[88] Kim J S, Lee S C, Hwang J, Lee E, Cho K, Kim S J, Kim D H, Lee W H 2020 Adv. Funct. Mater. 30 2070089Google Scholar
[89] Liu H, Li M, Ouyang C, Lu T J, Li F, Xu F 2018 Small 14 1801711Google Scholar
[90] Lei Z, Wu P 2018 Nat. Commun. 9 1134Google Scholar
[91] Liao M, Wan P, Wen J, Gong M, Wu X, Wang Y, Shi R, Zhang L 2017 Adv. Funct. Mater. 27 1703852Google Scholar
[92] Ding H, Xin Z, Yang Y, Luo Y, Xia K, Wang B, Sun Y, Wang J, Zhang Y, Wu H, Fan S, Zhang L, Liu K 2020 Adv. Funct. Mater. 30 1909616Google Scholar
[93] Wu Y Z, Liu Y W, Zhou Y L, Man Q K, Hu C, Asghar W, Li F L, Yu Z, Shang J, Liu G, Liao M Y, Li R W 2018 Sci. Robot. 3 eaat0429Google Scholar
[94] Chou H H, Nguyen A, Chortos A, To J W F, Lu C, Mei J, Kurosawa T, Bae W G, Tok J B H, Bao Z 2015 Nat. Commun. 6 8011Google Scholar
[95] Meng K, Wu Y, He Q, Zhou Z, Wang X, Zhang G, Fan W, Liu J, Yang J 2019 ACS Appl. Mater. Interfaces 11 46399Google Scholar
[96] Li X, Fan Y J, Li H Y, Cao J W, Xiao Y C, Wang Y, Liang F, Wang H L, Jiang Y, Wang Z L, Zhu G 2020 ACS Nano
[97] Chen S, Wu N, Lin S, Duan J, Xu Z, Pan Y, Zhang H, Xu Z, Huang L, Hu B, Zhou J 2020 Nano Energy 70 104460Google Scholar
[98] Lin Z, Yang J, Li X, Wu Y, Wei W, Liu J, Chen J, Yang J 2018 Adv. Funct. Mater. 28 1704112.1
[99] Min S D, Yun Y, Shin H 2014 IEEE Sens. J. 14 3245Google Scholar
[100] Liu M, Pu X, Jiang C, Liu T, Huang X, Chen L, Du C, Sun J, Hu W, Wang Z L 2017 Adv. Mater. 29 1703700Google Scholar
[101] Deng C, Tang W, Liu L, Chen B, Li M, Wang Z L 2018 Adv. Funct. Mater. 28 1801606Google Scholar
[102] Ying H, Zhang Y, Cheng J 2014 Nat. Commun. 5 3218Google Scholar
[103] Boutry C M, Nguyen A, Lawal Q O, Chortos A, Rondeau Gagné S, Bao Z 2015 Adv. Mater. 27 6954Google Scholar
[104] Li Z, Feng H, Zheng Q, Li H, Zhao C, Ouyang H, Noreen S, Yu M, Su F, Liu R, Li L, Wang Z L, Li Z 2018 Nano Energy 54 390Google Scholar
[105] Jiang D, Shi B, Ouyang H, Fan Y, Wang Z L, Li Z 2020 ACS Nano 14 6436Google Scholar
[106] Zhang P, Chen Y, Guo Z H, Guo W, Pu X, Wang Z L 2020 Adv. Funct. Mater. 30 1909252Google Scholar
[107] Wang F, Jiang J, Liu Q, Zhang Y, Wang J, Wang S, Han L, Liu H, Sang Y 2020 Nano Energy 70 104457Google Scholar
[108] Xiao K, Wan C, Jiang L, Chen X, Antonietti M 2020 Adv. Mater. 32 e2000218Google Scholar
计量
- 文章访问数: 72262
- PDF下载量: 3014
- 被引次数: 0